1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# vispy: gallery 30
"""
Demonstration of boids simulation. Boids is an artificial life
program, developed by Craig Reynolds in 1986, which simulates the
flocking behaviour of birds.
Based on code from glumpy by Nicolas Rougier.
"""
import time
import numpy as np
from scipy.spatial import cKDTree
from vispy import gloo
from vispy import app
VERT_SHADER = """
#version 120
attribute vec3 position;
attribute vec4 color;
attribute float size;
varying vec4 v_color;
void main (void) {
gl_Position = vec4(position, 1.0);
v_color = color;
gl_PointSize = size;
}
"""
FRAG_SHADER = """
#version 120
varying vec4 v_color;
void main()
{
float x = 2.0*gl_PointCoord.x - 1.0;
float y = 2.0*gl_PointCoord.y - 1.0;
float a = 1.0 - (x*x + y*y);
gl_FragColor = vec4(v_color.rgb, a*v_color.a);
}
"""
class Canvas(app.Canvas):
def __init__(self):
app.Canvas.__init__(self, keys='interactive')
ps = self.pixel_scale
# Create boids
n = 1000
size_type = ('size', 'f4', 1*ps) if ps > 1 else ('size', 'f4')
self.particles = np.zeros(2 + n, [('position', 'f4', 3),
('position_1', 'f4', 3),
('position_2', 'f4', 3),
('velocity', 'f4', 3),
('color', 'f4', 4),
size_type])
self.boids = self.particles[2:]
self.target = self.particles[0]
self.predator = self.particles[1]
self.boids['position'] = np.random.uniform(-0.25, +0.25, (n, 3))
self.boids['velocity'] = np.random.uniform(-0.00, +0.00, (n, 3))
self.boids['size'] = 4*ps
self.boids['color'] = 1, 1, 1, 1
self.target['size'] = 16*ps
self.target['color'][:] = 1, 1, 0, 1
self.predator['size'] = 16*ps
self.predator['color'][:] = 1, 0, 0, 1
self.target['position'][:] = 0.25, 0.0, 0
# Time
self._t = time.time()
self._pos = 0.0, 0.0
self._button = None
width, height = self.physical_size
gloo.set_viewport(0, 0, width, height)
# Create program
self.program = gloo.Program(VERT_SHADER, FRAG_SHADER)
# Create vertex buffers
self.vbo_position = gloo.VertexBuffer(self.particles['position']
.copy())
self.vbo_color = gloo.VertexBuffer(self.particles['color'].copy())
self.vbo_size = gloo.VertexBuffer(self.particles['size'].copy())
# Bind vertex buffers
self.program['color'] = self.vbo_color
self.program['size'] = self.vbo_size
self.program['position'] = self.vbo_position
gloo.set_state(clear_color=(0, 0, 0, 1), blend=True,
blend_func=('src_alpha', 'one'))
self._timer = app.Timer('auto', connect=self.update, start=True)
self.show()
def on_resize(self, event):
width, height = event.physical_size
gloo.set_viewport(0, 0, width, height)
def on_mouse_press(self, event):
self._button = event.button
self.on_mouse_move(event)
def on_mouse_release(self, event):
self._button = None
self.on_mouse_move(event)
def on_mouse_move(self, event):
if not self._button:
return
w, h = self.size
x, y = event.pos
sx = 2 * x / float(w) - 1.0
sy = - (2 * y / float(h) - 1.0)
if self._button == 1:
self.target['position'][:] = sx, sy, 0
elif self._button == 2:
self.predator['position'][:] = sx, sy, 0
def on_draw(self, event):
gloo.clear()
# Draw
self.program.draw('points')
# Next iteration
self._t = self.iteration(time.time() - self._t)
def iteration(self, dt):
t = self._t
t += 0.5 * dt
# self.target[...] = np.array([np.sin(t),np.sin(2*t),np.cos(3*t)])*.1
t += 0.5 * dt
# self.predator[...] = np.array([np.sin(t),np.sin(2*t),np.cos(3*t)])*.2
self.boids['position_2'] = self.boids['position_1']
self.boids['position_1'] = self.boids['position']
n = len(self.boids)
P = self.boids['position']
V = self.boids['velocity']
# Cohesion: steer to move toward the average position of local
# flockmates
C = -(P - P.sum(axis=0) / n)
# Alignment: steer towards the average heading of local flockmates
A = -(V - V.sum(axis=0) / n)
# Repulsion: steer to avoid crowding local flockmates
D, idxs = cKDTree(P).query(P, 5)
M = np.repeat(D < 0.05, 3, axis=1).reshape(n, 5, 3)
Z = np.repeat(P, 5, axis=0).reshape(n, 5, 3)
R = -((P[idxs] - Z) * M).sum(axis=1)
# Target : Follow target
T = self.target['position'] - P
# Predator : Move away from predator
dP = P - self.predator['position']
D = np.maximum(0, 0.3 -
np.sqrt(dP[:, 0] ** 2 +
dP[:, 1] ** 2 +
dP[:, 2] ** 2))
D = np.repeat(D, 3, axis=0).reshape(n, 3)
dP *= D
# self.boids['velocity'] += 0.0005*C + 0.01*A + 0.01*R +
# 0.0005*T + 0.0025*dP
self.boids['velocity'] += 0.0005 * C + 0.01 * \
A + 0.01 * R + 0.0005 * T + 0.025 * dP
self.boids['position'] += self.boids['velocity']
self.vbo_position.set_data(self.particles['position'].copy())
return t
if __name__ == '__main__':
c = Canvas()
app.run()
|