File: mandelbrot_double.py

package info (click to toggle)
python-vispy 0.16.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,112 kB
  • sloc: python: 61,648; javascript: 6,800; ansic: 2,104; makefile: 141; sh: 6
file content (302 lines) | stat: -rw-r--r-- 8,913 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# -*- coding: utf-8 -*-
# vispy: gallery 30
# -----------------------------------------------------------------------------
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------
# Author: John David Reaver
# Date:   09/12/2014
# -----------------------------------------------------------------------------

"""
Example demonstrating the use of emulated double-precision floating point
numbers. Based off of mandelbrot.py.

The shader program emulates double-precision variables using a vec2 instead of
single-precision floats. Any function starting with ds_* operates on these
variables. See http://www.thasler.org/blog/?p=93.

NOTE: Some NVIDIA cards optimize the double-precision code away. Results are
therefore hardware dependent.

"""

from __future__ import division

import numpy as np
from vispy import app, gloo

# Shader source code
# -----------------------------------------------------------------------------
vertex = """
attribute vec2 position;

void main()
{
    gl_Position = vec4(position, 0, 1.0);
}
"""

fragment = """
#pragma optionNV(fastmath off)
#pragma optionNV(fastprecision off)

uniform vec2 inv_resolution_x;  // Inverse resolutions
uniform vec2 inv_resolution_y;
uniform vec2 center_x;
uniform vec2 center_y;
uniform vec2 scale;
uniform int iter;

// Jet color scheme
vec4 color_scheme(float x) {
    vec3 a, b;
    float c;
    if (x < 0.34) {
        a = vec3(0, 0, 0.5);
        b = vec3(0, 0.8, 0.95);
        c = (x - 0.0) / (0.34 - 0.0);
    } else if (x < 0.64) {
        a = vec3(0, 0.8, 0.95);
        b = vec3(0.85, 1, 0.04);
        c = (x - 0.34) / (0.64 - 0.34);
    } else if (x < 0.89) {
        a = vec3(0.85, 1, 0.04);
        b = vec3(0.96, 0.7, 0);
        c = (x - 0.64) / (0.89 - 0.64);
    } else {
        a = vec3(0.96, 0.7, 0);
        b = vec3(0.5, 0, 0);
        c = (x - 0.89) / (1.0 - 0.89);
    }
    return vec4(mix(a, b, c), 1.0);
}

vec2 ds_set(float a) {
    // Create an emulated double by storing first part of float in first half
    // of vec2
    vec2 z;
    z.x = a;
    z.y = 0.0;
    return z;
}

vec2 ds_add (vec2 dsa, vec2 dsb)
{
    // Add two emulated doubles. Complexity comes from carry-over.
    vec2 dsc;
    float t1, t2, e;

    t1 = dsa.x + dsb.x;
    e = t1 - dsa.x;
    t2 = ((dsb.x - e) + (dsa.x - (t1 - e))) + dsa.y + dsb.y;

    dsc.x = t1 + t2;
    dsc.y = t2 - (dsc.x - t1);
    return dsc;
}

vec2 ds_mul (vec2 dsa, vec2 dsb)
{
    vec2 dsc;
    float c11, c21, c2, e, t1, t2;
    float a1, a2, b1, b2, cona, conb, split = 8193.;

    cona = dsa.x * split;
    conb = dsb.x * split;
    a1 = cona - (cona - dsa.x);
    b1 = conb - (conb - dsb.x);
    a2 = dsa.x - a1;
    b2 = dsb.x - b1;

    c11 = dsa.x * dsb.x;
    c21 = a2 * b2 + (a2 * b1 + (a1 * b2 + (a1 * b1 - c11)));

    c2 = dsa.x * dsb.y + dsa.y * dsb.x;

    t1 = c11 + c2;
    e = t1 - c11;
    t2 = dsa.y * dsb.y + ((c2 - e) + (c11 - (t1 - e))) + c21;

    dsc.x = t1 + t2;
    dsc.y = t2 - (dsc.x - t1);

    return dsc;
}

// Compare: res = -1 if a < b
//              = 0 if a == b
//              = 1 if a > b
float ds_compare(vec2 dsa, vec2 dsb)
{
    if (dsa.x < dsb.x) return -1.;
    else if (dsa.x == dsb.x) {
        if (dsa.y < dsb.y) return -1.;
        else if (dsa.y == dsb.y) return 0.;
        else return 1.;
    }
    else return 1.;
}

void main() {
    vec2 z_x, z_y, c_x, c_y, x, y, frag_x, frag_y;
    vec2 four = ds_set(4.0);
    vec2 point5 = ds_set(0.5);

    // Recover coordinates from pixel coordinates
    frag_x = ds_set(gl_FragCoord.x);
    frag_y = ds_set(gl_FragCoord.y);

    c_x = ds_add(ds_mul(frag_x, inv_resolution_x), -point5);
    c_x = ds_add(ds_mul(c_x, scale), center_x);
    c_y = ds_add(ds_mul(frag_y, inv_resolution_y), -point5);
    c_y = ds_add(ds_mul(c_y, scale), center_y);


    // Main Mandelbrot computation
    int i;
    z_x = c_x;
    z_y = c_y;
    for(i = 0; i < iter; i++) {
        x = ds_add(ds_add(ds_mul(z_x, z_x), -ds_mul(z_y, z_y)), c_x);
        y = ds_add(ds_add(ds_mul(z_y, z_x), ds_mul(z_x, z_y)), c_y);

        if(ds_compare(ds_add(ds_mul(x, x), ds_mul(y, y)), four) > 0.) break;
        z_x = x;
        z_y = y;
    }

    // Convert iterations to color
    float color = 1.0 - float(i) / float(iter);
    gl_FragColor = color_scheme(color);

}
"""


# vispy Canvas
# -----------------------------------------------------------------------------
class Canvas(app.Canvas):

    def __init__(self, *args, **kwargs):
        app.Canvas.__init__(self, *args, **kwargs)
        self.program = gloo.Program(vertex, fragment)

        # Draw a rectangle that takes up the whole screen. All of the work is
        # done in the shader.
        self.program["position"] = [(-1, -1), (-1, 1), (1, 1),
                                    (-1, -1), (1, 1), (1, -1)]

        self.scale = 3
        self.program["scale"] = set_emulated_double(self.scale)
        self.center = [-0.5, 0]
        self.bounds = [-2, 2]
        self.translate_center(0, 0)
        self.iterations = self.program["iter"] = 300

        self.apply_zoom()

        self.min_scale = 1e-12
        self.max_scale = 4

        gloo.set_clear_color(color='black')

        self.show()

    def on_draw(self, event):
        self.program.draw()

    def on_resize(self, event):
        self.apply_zoom()

    def apply_zoom(self):
        width, height = self.physical_size
        gloo.set_viewport(0, 0, width, height)
        self.program['inv_resolution_x'] = set_emulated_double(1 / width)
        self.program['inv_resolution_y'] = set_emulated_double(1 / height)

    def on_mouse_move(self, event):
        """Pan the view based on the change in mouse position."""
        if event.is_dragging and event.buttons[0] == 1:
            x0, y0 = event.last_event.pos[0], event.last_event.pos[1]
            x1, y1 = event.pos[0], event.pos[1]
            X0, Y0 = self.pixel_to_coords(float(x0), float(y0))
            X1, Y1 = self.pixel_to_coords(float(x1), float(y1))
            self.translate_center(X1 - X0, Y1 - Y0)
            self.update()

    def translate_center(self, dx, dy):
        """Translates the center point, and keeps it in bounds."""
        center = self.center
        center[0] -= dx
        center[1] -= dy
        center[0] = min(max(center[0], self.bounds[0]), self.bounds[1])
        center[1] = min(max(center[1], self.bounds[0]), self.bounds[1])
        self.center = center

        center_x = set_emulated_double(center[0])
        center_y = set_emulated_double(center[1])
        self.program["center_x"] = center_x
        self.program["center_y"] = center_y

    def pixel_to_coords(self, x, y):
        """Convert pixel coordinates to Mandelbrot set coordinates."""
        rx, ry = self.size
        nx = (x / rx - 0.5) * self.scale + self.center[0]
        ny = ((ry - y) / ry - 0.5) * self.scale + self.center[1]
        return [nx, ny]

    def on_mouse_wheel(self, event):
        """Use the mouse wheel to zoom."""
        delta = event.delta[1]
        if delta > 0:  # Zoom in
            factor = 0.9
        elif delta < 0:  # Zoom out
            factor = 1 / 0.9
        for _ in range(int(abs(delta))):
            self.zoom(factor, event.pos)
        self.update()

    def on_key_press(self, event):
        """Use + or - to zoom in and out.

        The mouse wheel can be used to zoom, but some people don't have mouse
        wheels :)

        """
        if event.text == '+' or event.text == '=':
            self.zoom(0.9)
        elif event.text == '-':
            self.zoom(1/0.9)
        self.update()

    def zoom(self, factor, mouse_coords=None):
        """Factors less than zero zoom in, and greater than zero zoom out.

        If mouse_coords is given, the point under the mouse stays stationary
        while zooming. mouse_coords should come from MouseEvent.pos.

        """
        if mouse_coords is not None:  # Record the position of the mouse
            x, y = float(mouse_coords[0]), float(mouse_coords[1])
            x0, y0 = self.pixel_to_coords(x, y)

        self.scale *= factor
        self.scale = max(min(self.scale, self.max_scale), self.min_scale)
        self.program["scale"] = set_emulated_double(self.scale)

        if mouse_coords is not None:  # Translate so mouse point is stationary
            x1, y1 = self.pixel_to_coords(x, y)
            self.translate_center(x1 - x0, y1 - y0)


def set_emulated_double(number):
    """Emulate a double using two numbers of type float32."""
    double = np.array([number, 0], dtype=np.float32)  # Cast number to float32
    double[1] = number - double[0]  # Remainder stored in second half of array
    return double


if __name__ == '__main__':
    canvas = Canvas(size=(800, 800), keys='interactive')
    app.run()