1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
# -*- coding: utf-8 -*-
# vispy: gallery 300
# -----------------------------------------------------------------------------
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------
"""
GPU-based ray tracing example.
GLSL port of the following Python example:
https://gist.github.com/rossant/6046463
https://pbs.twimg.com/media/BPpbJTiCIAEoEPl.png
TODO:
* Once uniform structs are supported, refactor the code to encapsulate
objects (spheres, planes, lights) in structures.
* Customizable engine with an arbitrary number of objects.
"""
from math import cos
from vispy import app, gloo
vertex = """
#version 120
attribute vec2 a_position;
varying vec2 v_position;
void main()
{
gl_Position = vec4(a_position, 0.0, 1.0);
v_position = a_position;
}
"""
fragment = """
#version 120
const float M_PI = 3.14159265358979323846;
const float INFINITY = 1000000000.;
const int PLANE = 1;
const int SPHERE_0 = 2;
const int SPHERE_1 = 3;
uniform float u_aspect_ratio;
varying vec2 v_position;
uniform vec3 sphere_position_0;
uniform float sphere_radius_0;
uniform vec3 sphere_color_0;
uniform vec3 sphere_position_1;
uniform float sphere_radius_1;
uniform vec3 sphere_color_1;
uniform vec3 plane_position;
uniform vec3 plane_normal;
uniform float light_intensity;
uniform vec2 light_specular;
uniform vec3 light_position;
uniform vec3 light_color;
uniform float ambient;
uniform vec3 O;
float intersect_sphere(vec3 O, vec3 D, vec3 S, float R) {
float a = dot(D, D);
vec3 OS = O - S;
float b = 2. * dot(D, OS);
float c = dot(OS, OS) - R * R;
float disc = b * b - 4. * a * c;
if (disc > 0.) {
float distSqrt = sqrt(disc);
float q = (-b - distSqrt) / 2.0;
if (b >= 0.) {
q = (-b + distSqrt) / 2.0;
}
float t0 = q / a;
float t1 = c / q;
t0 = min(t0, t1);
t1 = max(t0, t1);
if (t1 >= 0.) {
if (t0 < 0.) {
return t1;
}
else {
return t0;
}
}
}
return INFINITY;
}
float intersect_plane(vec3 O, vec3 D, vec3 P, vec3 N) {
float denom = dot(D, N);
if (abs(denom) < 1e-6) {
return INFINITY;
}
float d = dot(P - O, N) / denom;
if (d < 0.) {
return INFINITY;
}
return d;
}
vec3 run(float x, float y) {
vec3 Q = vec3(x, y, 0.);
vec3 D = normalize(Q - O);
int depth = 0;
float t_plane, t0, t1;
vec3 rayO = O;
vec3 rayD = D;
vec3 col = vec3(0.0, 0.0, 0.0);
vec3 col_ray;
float reflection = 1.;
int object_index;
vec3 object_color;
vec3 object_normal;
float object_reflection;
vec3 M;
vec3 N, toL, toO;
while (depth < 5) {
/* start trace_ray */
t_plane = intersect_plane(rayO, rayD, plane_position, plane_normal);
t0 = intersect_sphere(rayO, rayD, sphere_position_0, sphere_radius_0);
t1 = intersect_sphere(rayO, rayD, sphere_position_1, sphere_radius_1);
if (t_plane < min(t0, t1)) {
// Plane.
M = rayO + rayD * t_plane;
object_normal = plane_normal;
// Plane texture.
if (mod(int(2*M.x), 2) == mod(int(2*M.z), 2)) {
object_color = vec3(1., 1., 1.);
}
else {
object_color = vec3(0., 0., 0.);
}
object_reflection = .25;
object_index = PLANE;
}
else if (t0 < t1) {
// Sphere 0.
M = rayO + rayD * t0;
object_normal = normalize(M - sphere_position_0);
object_color = sphere_color_0;
object_reflection = .5;
object_index = SPHERE_0;
}
else if (t1 < t0) {
// Sphere 1.
M = rayO + rayD * t1;
object_normal = normalize(M - sphere_position_1);
object_color = sphere_color_1;
object_reflection = .5;
object_index = SPHERE_1;
}
else {
break;
}
N = object_normal;
toL = normalize(light_position - M);
toO = normalize(O - M);
// Shadow of the spheres on the plane.
if (object_index == PLANE) {
t0 = intersect_sphere(M + N * .0001, toL,
sphere_position_0, sphere_radius_0);
t1 = intersect_sphere(M + N * .0001, toL,
sphere_position_1, sphere_radius_1);
if (min(t0, t1) < INFINITY) {
break;
}
}
col_ray = vec3(ambient, ambient, ambient);
col_ray += light_intensity * max(dot(N, toL), 0.) * object_color;
col_ray += light_specular.x * light_color *
pow(max(dot(N, normalize(toL + toO)), 0.), light_specular.y);
/* end trace_ray */
rayO = M + N * .0001;
rayD = normalize(rayD - 2. * dot(rayD, N) * N);
col += reflection * col_ray;
reflection *= object_reflection;
depth++;
}
return clamp(col, 0., 1.);
}
void main() {
vec2 pos = v_position;
gl_FragColor = vec4(run(pos.x*u_aspect_ratio, pos.y), 1.);
}
"""
class Canvas(app.Canvas):
def __init__(self):
app.Canvas.__init__(self, position=(300, 100),
size=(800, 600), keys='interactive')
self.program = gloo.Program(vertex, fragment)
self.program['a_position'] = [(-1., -1.), (-1., +1.),
(+1., -1.), (+1., +1.)]
self.program['sphere_position_0'] = (.75, .1, 1.)
self.program['sphere_radius_0'] = .6
self.program['sphere_color_0'] = (0., 0., 1.)
self.program['sphere_position_1'] = (-.75, .1, 2.25)
self.program['sphere_radius_1'] = .6
self.program['sphere_color_1'] = (.5, .223, .5)
self.program['plane_position'] = (0., -.5, 0.)
self.program['plane_normal'] = (0., 1., 0.)
self.program['light_intensity'] = 1.
self.program['light_specular'] = (1., 50.)
self.program['light_position'] = (5., 5., -10.)
self.program['light_color'] = (1., 1., 1.)
self.program['ambient'] = .05
self.program['O'] = (0., 0., -1.)
self.activate_zoom()
self._timer = app.Timer('auto', connect=self.on_timer, start=True)
self.show()
def on_timer(self, event):
t = event.elapsed
self.program['sphere_position_0'] = (+.75, .1, 2.0 + 1.0 * cos(4*t))
self.program['sphere_position_1'] = (-.75, .1, 2.0 - 1.0 * cos(4*t))
self.update()
def on_resize(self, event):
self.activate_zoom()
def activate_zoom(self):
width, height = self.size
gloo.set_viewport(0, 0, *self.physical_size)
self.program['u_aspect_ratio'] = width/float(height)
def on_draw(self, event):
self.program.draw('triangle_strip')
if __name__ == '__main__':
canvas = Canvas()
app.run()
|