File: terrain.py

package info (click to toggle)
python-vispy 0.16.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,112 kB
  • sloc: python: 61,648; javascript: 6,800; ansic: 2,104; makefile: 141; sh: 6
file content (212 lines) | stat: -rw-r--r-- 6,734 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# -*- coding: utf-8 -*-
# vispy: gallery 30
# -----------------------------------------------------------------------------
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------

""" Terrain generation using diamond-square alogrithm
and Scipy for Delaunay triangulation
"""

from vispy import gloo
from vispy import app
from vispy.util.transforms import perspective, translate, rotate
import numpy as np
from scipy.spatial import Delaunay

# Arrays for storing generated points and triangles
points = []
triangles = []
height = 0.0


def generate_terrain(r_min, r_max, c_min, c_max, disp):
    """Recursively generates terrain using diamond-square algorithm
    and stores the vertices in points
    """
    a = points[r_min, c_min, 2]
    b = points[r_min, c_max, 2]
    c = points[r_max, c_min, 2]
    d = points[r_max, c_max, 2]

    r_mid = (r_min + r_max) // 2
    c_mid = (c_min + c_max) // 2

    e = (a+b+c+d)/4 + np.random.uniform(0, disp)

    points[r_mid, c_mid, 2] = e

    points[r_min, c_mid, 2] = (a + b + e)/3 + np.random.uniform(0, disp)
    points[r_max, c_mid, 2] = (c + d + e)/3 + np.random.uniform(0, disp)
    points[r_mid, c_min, 2] = (a + c + e)/3 + np.random.uniform(0, disp)
    points[r_mid, c_max, 2] = (b + d + e)/3 + np.random.uniform(0, disp)

    new_disp = disp * (2 ** (-0.5))

    if (r_mid - r_min > 1 or c_mid - c_min > 1):
        generate_terrain(r_min, r_mid, c_min, c_mid, new_disp)
    if (r_max - r_mid > 1 or c_mid - c_min > 1):
        generate_terrain(r_mid, r_max, c_min, c_mid, new_disp)
    if (r_mid - r_min > 1 or c_max - c_mid > 1):
        generate_terrain(r_min, r_mid, c_mid, c_max, new_disp)
    if (r_max - r_mid > 1 or c_max - c_mid > 1):
        generate_terrain(r_mid, r_max, c_mid, c_max, new_disp)


def generate_points(length=3):
    """Generates points via recursive function and generate triangles using
    Scipy Delaunay triangulation

    Parameters
    ----------
    length : int
        (2 ** length + 1 by 2 ** length + 1) number of points is generated

    """
    print("Points are being generated...")
    global points, triangles, height
    size = 2**(length) + 1
    points = np.indices((size, size, 1)).T[0].transpose((1, 0, 2))
    points = points.astype(np.float32)
    generate_terrain(0, size-1, 0, size-1, length)
    height = length
    points = np.resize(points, (size*size, 3))
    points2 = np.delete(points, 2, 1)
    tri = Delaunay(points2)
    triangles = points[tri.simplices]
    triangles = np.vstack(triangles)
    print("Points successfully generated.")

VERT_SHADER = """
uniform   float u_height;
uniform   mat4 u_model;
uniform   mat4 u_view;
uniform   mat4 u_projection;

attribute vec3  a_position;

varying vec4 v_color;

void main (void) {
    gl_Position = u_projection * u_view * u_model * vec4(a_position, 1.0);
    v_color = vec4(0.0, a_position[2] * a_position[2] / (u_height * u_height
                   * u_height), 0.1, 1.0);
}
"""

FRAG_SHADER = """
varying vec4 v_color;

void main()
{
    gl_FragColor = v_color;
}
"""


class Canvas(app.Canvas):

    def __init__(self):
        app.Canvas.__init__(self, keys='interactive')
        self.program = gloo.Program(VERT_SHADER, FRAG_SHADER)
        # Sets the view to an appropriate position over the terrain
        self.default_view = np.array([[0.8, 0.2, -0.48, 0],
                                      [-0.5, 0.3, -0.78, 0],
                                      [-0.01, 0.9, -0.3, 0],
                                      [-4.5, -21.5, -7.4, 1]],
                                     dtype=np.float32)
        self.view = self.default_view
        self.model = np.eye(4, dtype=np.float32)
        self.projection = np.eye(4, dtype=np.float32)

        self.translate = [0, 0, 0]
        self.rotate = [0, 0, 0]

        self.program['u_height'] = height
        self.program['u_model'] = self.model
        self.program['u_view'] = self.view

        self.program['a_position'] = gloo.VertexBuffer(triangles)

        self.activate_zoom()

        gloo.set_state(clear_color='black', depth_test=True)

        self.show()

    def on_key_press(self, event):
        """Controls -
        a(A) - move left
        d(D) - move right
        w(W) - move up
        s(S) - move down
        x/X - rotate about x-axis cw/anti-cw
        y/Y - rotate about y-axis cw/anti-cw
        z/Z - rotate about z-axis cw/anti-cw
        space - reset view
        p(P) - print current view
        i(I) - zoom in
        o(O) - zoom out
        """
        self.translate = [0, 0, 0]
        self.rotate = [0, 0, 0]

        if(event.text == 'p' or event.text == 'P'):
            print(self.view)
        elif(event.text == 'd' or event.text == 'D'):
            self.translate[0] = 0.3
        elif(event.text == 'a' or event.text == 'A'):
            self.translate[0] = -0.3
        elif(event.text == 'w' or event.text == 'W'):
            self.translate[1] = 0.3
        elif(event.text == 's' or event.text == 'S'):
            self.translate[1] = -0.3
        elif(event.text == 'o' or event.text == 'O'):
            self.translate[2] = 0.3
        elif(event.text == 'i' or event.text == 'I'):
            self.translate[2] = -0.3
        elif(event.text == 'x'):
            self.rotate = [1, 0, 0]
        elif(event.text == 'X'):
            self.rotate = [-1, 0, 0]
        elif(event.text == 'y'):
            self.rotate = [0, 1, 0]
        elif(event.text == 'Y'):
            self.rotate = [0, -1, 0]
        elif(event.text == 'z'):
            self.rotate = [0, 0, 1]
        elif(event.text == 'Z'):
            self.rotate = [0, 0, -1]
        elif(event.text == ' '):
            self.view = self.default_view

        self.view = self.view.dot(
            translate(-np.array(self.translate)).dot(
                rotate(self.rotate[0], (1, 0, 0)).dot(
                    rotate(self.rotate[1], (0, 1, 0)).dot(
                        rotate(self.rotate[2], (0, 0, 1))))))
        self.program['u_view'] = self.view
        self.update()

    def on_resize(self, event):
        self.activate_zoom()

    def activate_zoom(self):
        gloo.set_viewport(0, 0, *self.physical_size)
        self.projection = perspective(60.0, self.size[0] /
                                      float(self.size[1]), 1.0, 100.0)
        self.program['u_projection'] = self.projection

    def on_draw(self, event):
        # Clear
        gloo.clear(color=True, depth=True)
        # Draw
        self.program.draw('triangles')


generate_points(8)

if __name__ == '__main__':
    c = Canvas()
    app.run()