1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# vispy: testskip
# -----------------------------------------------------------------------------
# 2016, Scott Paine
# Distributed under the terms of the new BSD License.
# -----------------------------------------------------------------------------
"""
**********
Wiggly Bar
**********
Usage of VisPy to numerically simulate and view a simple physics model.
.. image:: http://i.imgur.com/ad0s9lB.png
This is a simple example of using VisPy to simulate a system with
two springs, a pivot, and a mass.
The system evolves in a nonlinear fashion, according to two equations:
.. image:: http://i.imgur.com/8reci4N.png
In these equations, the J term is the polar moment of inertia of the rod
given by:
.. image:: http://i.imgur.com/94cI1TL.png
The system has the option to update once every step using the
`Euler <https://en.wikipedia.org/wiki/Euler_method>`_ method
or a more stable third-order
`Runge-Kutta <https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods>`_
method. The instability of the Euler Method becomes apparent as the time step
is increased.
"""
from __future__ import division, print_function, absolute_import
from vispy import app, visuals
from vispy.visuals import transforms
from vispy.io import load_data_file
import sys
import numpy as np
import string
import logging
import traceback
# To switch between PyQt5 and PySide2 bindings just change the from import
from PyQt5 import QtCore, QtGui, QtWidgets
# Provide automatic signal function selection for PyQt5/PySide2
pyqtsignal = QtCore.pyqtSignal if hasattr(QtCore, 'pyqtSignal') else QtCore.Signal
logger = logging.getLogger(__name__)
VALID_METHODS = ['euler', 'runge-kutta']
PARAMETERS = [('d1', 0.0, 10.0, 'double', 0.97),
('d2', 0.0, 10.0, 'double', 0.55),
('m', 0.01, 100.0, 'double', 2.0),
('M', 0.01, 100.0, 'double', 12.5),
('k1', 0.01, 75.0, 'double', 1.35),
('k2', 0.01, 75.0, 'double', 0.50),
('b', 1.0, 1000.0, 'double', 25.75),
('time step', 0.001, 1.0, 'double', 1/60),
('x', -0.25, 0.25, 'double', -0.01),
('x dot', -10.0, 10.0, 'double', -0.12),
('theta', -np.pi/5, np.pi/5, 'double', 0.005),
('theta dot', -np.pi/2, np.pi/2, 'double', 0.0),
('scale', 5, 500, 'int', 50),
('font size', 6.0, 128.0, 'double', 24.0)]
CONVERSION_DICT = {'d1': 'd1', 'd2': 'd2', 'm': 'little_m', 'M': 'big_m',
'k1': 'spring_k1', 'k2': 'spring_k2', 'b': 'b',
'x': 'x', 'x dot': 'x_dot', 'theta': 'theta',
'theta dot': 'theta_dot', 'scale': 'scale',
'time step': 'dt', 'font size': 'font_size'}
def make_spiral(num_points=100, num_turns=4, height=12, radius=2.0,
xnot=None, ynot=None, znot=None):
"""
Generate a list of points corresponding to a spiral.
Parameters
----------
num_points : int
Number of points to map spiral over. More points means a
rounder spring.
num_turns : int
Number of coils in the spiral
height : float
The height of the spiral. Keep it in whatever units the rest of the
spiral is in.
radius : float
The radius of the coils. The spiral will end up being 2*radius wide.
xnot : float
Initial x-coordinate for the spiral coordinates to start at.
ynot : float
Initial y-coordinate for the spiral coordinates to start at.
znot : float
Initial z-coordinate for the spiral coordinates to start at.
Returns
-------
coord_list: list of tuples
Coordinate list of (x, y, z) positions for the spiral
Notes
-----
Right now, this assumes the center is at x=0, y=0. Later, it might be
good to add in stuff to change that.
"""
coords_list = []
znot = -4 if znot is None else znot
xnot = radius if xnot is None else xnot
ynot = 0 if ynot is None else ynot
theta_not = np.arctan2(ynot, xnot)
coords_list.append((xnot, ynot, znot))
for point in range(num_points):
znot += height / num_points
theta_not += 2 * np.pi * num_turns / num_points
xnot = np.cos(theta_not) * radius
ynot = np.sin(theta_not) * radius
coords_list.append((xnot, ynot, znot))
return coords_list
def make_spring(num_points=300, num_turns=4, height=12, radius=2.0,
xnot=None, ynot=None, znot=None):
"""
Generate a list of points corresponding to a spring.
Parameters
----------
num_points : int
Number of points to map spring over. More points means a rounder
spring.
num_turns : int
Number of coils in the spring
height : float
The height of the spring. Keep it in whatever units the rest of the
spring is in.
radius : float
The radius of the coils. The spring will end up being
2*radius wide.
xnot : float
Initial x-coordinate for the spring coordinates to start at.
ynot : float
Initial y-coordinate for the spring coordinates to start at.
znot : float
Initial z-coordinate for the spring coordinates to start at.
Returns
-------
coord_list: list of tuples
Coordinate list of (x, y, z) positions for the spring
Notes
-----
Right now, this assumes the center is at x=0, y=0. Later, it might be
good to add in stuff to change that.
Right now, the length of the "ends" is 10% of the overall length, as
well as a small "turn" that is length radius / 2. In the future, maybe
there could be a kwarg to set the length of the sides of the spring.
For now, 10% looks good.
"""
coords_list = []
init_pts = num_points // 10
znot = 0 if znot is None else znot
xnot = 0 if xnot is None else xnot
ynot = 0 if ynot is None else ynot
coords_list.append((xnot, ynot, znot))
for _ in range(init_pts):
znot += height / num_points
coords_list.append((xnot, ynot, znot))
hold_z = znot
for i in range(init_pts // 2):
small_theta = (i + 1) * np.pi / init_pts
xnot = radius / 2 * (1 - np.cos(small_theta))
znot = hold_z + radius / 2 * np.sin(small_theta)
coords_list.append((xnot, ynot, znot))
coords_list += make_spiral(num_points=num_points - 3 * init_pts,
num_turns=num_turns,
height=(
height -
(91 * height / num_points) -
radius / 2
),
radius=radius,
xnot=xnot,
ynot=ynot,
znot=znot)
hold_z = coords_list[-1][-1]
for i in range(init_pts // 2):
small_theta = np.pi / 2 - (i + 1) * np.pi / init_pts
xnot = radius / 2 * (1 - np.cos(small_theta))
znot = hold_z + radius / 2 * np.cos(small_theta)
coords_list.append((xnot, ynot, znot))
xnot = 0.0
znot += height / num_points
for _ in range(init_pts):
znot += height / num_points
coords_list.append((xnot, ynot, znot))
coords_list.append((0, 0, height))
return coords_list
class WigglyBar(app.Canvas):
def __init__(self, d1=None, d2=None, little_m=None, big_m=None,
spring_k1=None, spring_k2=None, b=None,
x=None, x_dot=None, theta=None, theta_dot=None,
px_len=None, scale=None, pivot=False, method='Euler', dt=None,
font_size=None):
"""
Main VisPy Canvas for simulation of physical system.
Parameters
----------
d1 : float
Length of rod (in meters) from pivot to upper spring.
d2 : float
Length of rod (in meters) from pivot to lower spring.
little_m : float
Mass of attached cube (in kilograms).
big_m : float
Mass of rod (in kilograms).
spring_k1 : float
Spring constant of lower spring (in N/m).
spring_k2 : float
Spring constant of upper spring (in N/m).
b : float
Coefficient of quadratic sliding friction (in kg/m).
x : float
Initial x-position of mass (in m).
x_dot : float
Initial x-velocity of mass (in m/s).
theta : float
Initial angle of rod, with respect to vertical (in radians).
theta_dot : float
Initial angular velocity of rod (in rad/s).
px_len : int
Length of the rod, in pixels.
scale : int
Scaling factor to change size of elements.
pivot : bool
Switch for showing/hiding pivot point.
method : str
Method to use for updating.
dt : float
Time step for simulation.
font_size : float
Size of font for text elements, in points.
Notes
-----
As of right now, the only supported methods are "euler" or
"runge-kutta". These correspond to an Euler method or an
order 3 Runge-Kutta method for updating x, theta, x dot, and theta dot.
"""
app.Canvas.__init__(self, title='Wiggly Bar', size=(800, 800),
create_native=False)
# Some initialization constants that won't change
self.standard_length = 0.97 + 0.55
self.center = np.asarray((500, 450))
self.visuals = []
self._set_up_system(
d1=d1, d2=d2, little_m=little_m, big_m=big_m,
spring_k1=spring_k1, spring_k2=spring_k2, b=b,
x=x, x_dot=x_dot, theta=theta, theta_dot=theta_dot,
px_len=px_len, scale=scale, pivot=pivot, method=method,
dt=dt, font_size=font_size
)
piv_x_y_px = np.asarray((
self.pivot_loc_px * np.sin(self.theta),
-1 * self.pivot_loc_px * (np.cos(self.theta))
))
# Make the spring points
points = make_spring(height=self.px_len/4, radius=self.px_len/24)
# Put up a text visual to display time info
self.font_size = 24. if font_size is None else font_size
self.text = visuals.TextVisual('0:00.00',
color='white',
pos=[50, 250, 0],
anchor_x='left',
anchor_y='bottom')
self.text.font_size = self.font_size
# Let's put in more text so we know what method is being used to
# update this
self.method_text = visuals.TextVisual(
'Method: {}'.format(self.method),
color='white',
pos=[50, 250, 0],
anchor_x='left',
anchor_y='top'
)
self.method_text.font_size = 2/3 * self.font_size
# Get the pivoting bar ready
self.rod = visuals.BoxVisual(width=self.px_len/40,
height=self.px_len/40,
depth=self.px_len,
color='white')
self.rod.transform = transforms.MatrixTransform()
self.rod.transform.scale(
(self.scale, self.scale * self.rod_scale, 0.0001)
)
self.rod.transform.rotate(np.rad2deg(self.theta), (0, 0, 1))
self.rod.transform.translate(self.center - piv_x_y_px)
# Show the pivot point (optional)
pivot_center = (self.center[0], self.center[1], -self.px_len/75)
self.center_point = visuals.SphereVisual(radius=self.px_len/75,
color='red')
self.center_point.transform = transforms.MatrixTransform()
self.center_point.transform.scale((self.scale, self.scale, 0.0001))
self.center_point.transform.translate(pivot_center)
# Get the upper spring ready.
self.spring_2 = visuals.TubeVisual(
points, radius=self.px_len/100, color=(0.5, 0.5, 1, 1)
)
self.spring_2.transform = transforms.MatrixTransform()
self.spring_2.transform.rotate(90, (0, 1, 0))
self.spring_2.transform.scale((self.scale, self.scale, 0.0001))
self.spring_2.transform.translate(self.center + self.s2_loc)
# Get the lower spring ready.
self.spring_1 = visuals.TubeVisual(
points, radius=self.px_len/100, color=(0.5, 0.5, 1, 1)
)
self.spring_1.transform = transforms.MatrixTransform()
self.spring_1.transform.rotate(90, (0, 1, 0))
self.spring_1.transform.scale(
(
self.scale *
(1.0-(self.x*self.px_per_m)/(self.scale*self.px_len/2)),
self.scale,
0.0001
)
)
self.spring_1.transform.translate(self.center + self.s1_loc)
# Finally, prepare the mass that is being moved
self.mass = visuals.BoxVisual(
width=self.px_len / 4, height=self.px_len / 8,
depth=self.px_len / 4, color='white'
)
self.mass.transform = transforms.MatrixTransform()
self.mass.transform.scale((self.scale, self.scale, 0.0001))
self.mass.transform.translate(self.center + self.mass_loc)
# Append all the visuals
self.visuals.append(self.center_point)
self.visuals.append(self.rod)
self.visuals.append(self.spring_2)
self.visuals.append(self.spring_1)
self.visuals.append(self.mass)
self.visuals.append(self.text)
self.visuals.append(self.method_text)
# Set up a timer to update the image and give a real-time rendering
self._timer = app.Timer('auto', connect=self.on_timer, start=True)
def on_draw(self, ev):
# Stolen from previous - just clears the screen and redraws stuff
self.context.set_clear_color((0, 0, 0, 1))
self.context.set_viewport(0, 0, *self.physical_size)
self.context.clear()
for vis in self.visuals:
if vis is self.center_point and not self.show_pivot:
continue
else:
vis.draw()
def on_resize(self, event):
# Set canvas viewport and reconfigure visual transforms to match.
vp = (0, 0, self.physical_size[0], self.physical_size[1])
self.context.set_viewport(*vp)
for vis in self.visuals:
vis.transforms.configure(canvas=self, viewport=vp)
def on_timer(self, ev):
# Update x, theta, x_dot, theta_dot
self.params_update(dt=self.dt, method=self.method)
# Calculate change for the upper spring, relative to its starting point
extra_term = self.theta - self.theta_not
trig_junk = (
np.sin(self.theta_not) * (np.cos(extra_term) - 1) +
np.cos(self.theta_not) * np.sin(extra_term)
)
delta_x = self.d1 * self.px_per_m * trig_junk
net_s2_scale = (1 - (delta_x / (self.scale * self.px_len / 4)))
# Calculate change for the lower spring, relative to something
# arbitrary so I didn't have horrors mathematically
trig_junk_2 = np.sin(self.theta_not) - np.sin(self.theta)
first_term = self.d2 * trig_junk_2
top_term = (first_term - self.x)*self.px_per_m
net_s1_scale = 1 + top_term/self.s1_l_not
self.s1_loc[0] = -0.5 * (
-self.x*self.px_per_m +
self.s1_l_not +
self.d2*self.px_per_m*(np.sin(self.theta)+np.sin(self.theta_not))
)
self.s1_loc[0] -= 0.5 * net_s1_scale * self.s1_l_not
# Calculate the new pivot location - this is important because the
# rotation occurs about
# the center of the rod, so it has to be offset appropriately
piv_x_y_px = np.asarray((
self.pivot_loc_px*np.sin(self.theta),
-1 * self.pivot_loc_px*np.cos(self.theta)
))
# Calculate the new mass x location, relative (again) to some
# simple parameter where x=0
self.mass_loc[0] = self.x_is_0 + self.x * self.px_per_m
# Figure out how much time has passed
millis_passed = int(100 * (self.t % 1))
sec_passed = int(self.t % 60)
min_passed = int(self.t // 60)
# Apply the necessary transformations to the rod
self.rod.transform.reset()
self.rod.transform.scale(
(self.scale, self.scale * self.rod_scale, 0.0001)
)
self.rod.transform.rotate(np.rad2deg(self.theta), (0, 0, 1))
self.rod.transform.translate(self.center - piv_x_y_px)
# Redraw and rescale the upper spring
self.spring_2.transform.reset()
self.spring_2.transform.rotate(90, (0, 1, 0))
self.spring_2.transform.scale((net_s2_scale * self.scale,
self.scale,
0.0001))
self.spring_2.transform.translate(self.center +
self.s2_loc +
np.asarray([delta_x, 0]))
# Redraw and rescale the lower spring
# (the hardest part to get, mathematically)
self.spring_1.transform.reset()
self.spring_1.transform.rotate(90, (0, 1, 0))
self.spring_1.transform.scale((net_s1_scale * self.scale,
self.scale,
0.0001))
self.spring_1.transform.translate(self.center +
self.s1_loc)
# Redrew and rescale the mass
self.mass.transform.reset()
self.mass.transform.scale((self.scale, self.scale, 0.0001))
self.mass.transform.translate(self.center + self.mass_loc)
# Update the timer with how long it's been
self.text.text = '{:0>2d}:{:0>2d}.{:0>2d}'.format(min_passed,
sec_passed,
millis_passed)
# Trigger all of the drawing and updating
self.update()
def params_update(self, dt, method='euler'):
# Uses either Euler method or Runge-Kutta,
# depending on your input to "method"
if method.lower() == 'euler':
self._euler_update(dt)
elif method.lower() == 'runge-kutta':
self._runge_kutta_update(dt)
def _euler_update(self, dt):
"""Update system using Euler's method (equivalent to order 1
Runge-Kutta Method).
"""
# Calculate the second derivative of x
x_dd_t1 = -self.b * self.x_dot * np.abs(self.x_dot)
x_dd_t2 = -self.spring_k1 * (self.x + self.d2 * self.theta)
x_dot_dot = (x_dd_t1 + x_dd_t2) / self.little_m
# Calculate the second derivative of theta
term1 = -self.spring_k1 * self.d2 * self.x
term2 = (
-self.theta *
(self.spring_k1*(self.d2**2) + self.spring_k2*(self.d1**2))
)
theta_dot_dot = (term1 + term2) / self.j_term
# Update everything appropriately
self.t += dt
self.x += dt * self.x_dot
self.theta += dt * self.theta_dot
self.x_dot += dt * x_dot_dot
self.theta_dot += dt * theta_dot_dot
def _runge_kutta_update(self, dt):
"""Update using order 3 Runge-Kutta Method.
"""
info_vector = np.asarray(
[self.x_dot, self.theta_dot, self.x, self.theta]
).copy()
t1a = -self.b * info_vector[0] * np.abs(info_vector[0])
t1b = -self.spring_k1*(info_vector[2] + self.d2*info_vector[3])
t2a = -self.spring_k1*self.d2*info_vector[2]
t2b = -info_vector[3] * (
self.spring_k1*(self.d2 ** 2) + self.spring_k2*(self.d1 ** 2)
)
k1 = [
(t1a + t1b)/self.little_m,
(t2a + t2b)/self.j_term,
info_vector[0],
info_vector[1]
]
k1 = np.asarray(k1) * dt
updated_est = info_vector + 0.5 * k1
t1a = -self.b * updated_est[0] * np.abs(updated_est[0])
t1b = -self.spring_k1 * (updated_est[2] + self.d2 * updated_est[3])
t2a = -self.spring_k1 * self.d2 * updated_est[2]
t2b = -updated_est[3] * (
self.spring_k1 * (self.d2 ** 2) + self.spring_k2 * (self.d1 ** 2)
)
k2 = [
(t1a + t1b)/self.little_m,
(t2a + t2b)/self.j_term,
updated_est[0],
updated_est[1]
]
k2 = np.asarray(k2) * dt
updated_est = info_vector - k1 + 2 * k2
t1a = -self.b * updated_est[0] * np.abs(updated_est[0])
t1b = -self.spring_k1 * (updated_est[2] + self.d2 * updated_est[3])
t2a = -self.spring_k1 * self.d2 * updated_est[2]
t2b = -updated_est[3] * (
self.spring_k1 * (self.d2 ** 2) + self.spring_k2 * (self.d1 ** 2)
)
k3 = [
(t1a + t1b)/self.little_m,
(t2a + t2b)/self.j_term,
updated_est[0],
updated_est[1]
]
k3 = np.asarray(k3) * dt
final_est = info_vector + (1/6)*(k1 + 4*k2 + k3)
self.x_dot, self.theta_dot, self.x, self.theta = final_est.copy()
self.t += dt
def reset_parms(self, d1=None, d2=None, little_m=None, big_m=None,
spring_k1=None, spring_k2=None, b=None,
x=None, x_dot=None, theta=None, theta_dot=None,
px_len=None, scale=None, pivot=False, method='Euler',
dt=None, font_size=None):
"""
Reset system with a new set of paramters.
Parameters
----------
d1 : float
Length of rod (in meters) from pivot to upper spring.
d2 : float
Length of rod (in meters) from pivot to lower spring.
little_m : float
Mass of attached cube (in kilograms).
big_m : float
Mass of rod (in kilograms).
spring_k1 : float
Spring constant of lower spring (in N/m).
spring_k2 : float
Spring constant of upper spring (in N/m).
b : float
Coefficient of quadratic sliding friction (in kg/m).
x : float
Initial x-position of mass (in m).
x_dot : float
Initial x-velocity of mass (in m/s).
theta : float
Initial angle of rod, with respect to vertical (in radians).
theta_dot : float
Initial angular velocity of rod (in rad/s).
px_len : int
Length of the rod, in pixels.
scale : int
Scaling factor to change size of elements.
pivot : bool
Switch for showing/hiding pivot point.
method : str
Method to use for updating.
dt : float
Time step for simulation.
font_size : float
Size of font for text elements, in points.
Notes
-----
Since the time is reset, the system is reset as well by calling
this method.
"""
self._set_up_system(
d1=d1, d2=d2, little_m=little_m, big_m=big_m,
spring_k1=spring_k1, spring_k2=spring_k2, b=b,
x=x, x_dot=x_dot, theta=theta, theta_dot=theta_dot,
px_len=px_len, scale=scale, pivot=pivot, method=method,
dt=dt, font_size=font_size
)
def _set_up_system(self, d1=None, d2=None, little_m=None, big_m=None,
spring_k1=None, spring_k2=None, b=None,
x=None, x_dot=None, theta=None, theta_dot=None,
px_len=None, scale=None, pivot=False, method='Euler',
dt=None, font_size=None):
"""Initialize constants for the system that will be used later.
"""
self.method = (string.capwords(method, '-')
if method.lower() in VALID_METHODS else 'Euler')
self.font_size = font_size
try:
self.method_text.text = 'Method: {}'.format(self.method)
self.method_text.font_size = 2 / 3 * self.font_size
self.text.font_size = self.font_size
except AttributeError:
# Running in __init__, so self.method_text isn't established yet.
pass
self.show_pivot = pivot
# Initialize constants for the system
self.t = 0
self.dt = 1 / 60 if dt is None else dt
self.d1 = 0.97 if d1 is None else d1
self.d2 = 0.55 if d2 is None else d2
self.little_m = 2.0 if little_m is None else little_m
self.big_m = 12.5 if big_m is None else big_m
self.spring_k1 = 1.35 if spring_k1 is None else spring_k1
self.spring_k2 = 0.5 if spring_k2 is None else spring_k2
self.b = 25.75 if b is None else b
self.j_term = (
(1 / 3) * self.big_m * (self.d1 ** 3 + self.d2 ** 3) /
(self.d1 + self.d2)
)
self.x = -0.010 if x is None else x
self.x_dot = -0.12 if x_dot is None else x_dot
self.theta = 0.005 if theta is None else theta
self.theta_dot = 0.0 if theta_dot is None else theta_dot
self.theta_not = self.theta # I'll need this later
# Initialize constants for display
self.px_len = 10 if px_len is None else px_len
self.scale = 50 if scale is None else scale
self.px_per_m = self.scale * self.px_len / (0.97 + 0.55)
self.rod_scale = (self.d1 + self.d2) / self.standard_length
# Set up stuff for establishing a pivot point to rotate about
self.pivot_loc = (self.d2 - self.d1) / 2
self.pivot_loc_px = self.pivot_loc * self.px_per_m
# Set up positioning info for the springs and mass, as well as some
# constants for use later
# NOTE: Springs are not like boxes. Their center of rotation is at one
# end of the spring, unlike the box where it is in the middle.
# The location and scaling is set to reflect this. This means
# there's a little bit of x- and y-translation needed to properly
# center them.
self.s2_loc = np.asarray(
[self.d1 * self.px_per_m * np.sin(self.theta),
-self.d1 * self.px_per_m * np.cos(
self.theta)]
)
self.s1_l_not = self.px_len / 4 * self.scale
self.x_is_0 = (
-self.d2 * self.px_per_m * np.sin(self.theta_not) -
1.5 * self.s1_l_not
)
self.s1_loc = np.asarray(
[self.x_is_0 + 0.5 * self.s1_l_not + self.x * self.px_per_m,
self.d2 * self.px_per_m * np.cos(self.theta)]
)
self.mass_loc = np.asarray(
[self.x_is_0 + self.x * self.px_per_m,
self.d2 * self.px_per_m * np.cos(self.theta)]
)
class Paramlist(object):
def __init__(self, parameters):
"""Container for object parameters.
Based on methods from ../gloo/primitive_mesh_viewer_qt.
"""
self.parameters = parameters
self.props = dict()
self.props['pivot'] = False
self.props['method'] = 'Euler'
for nameV, minV, maxV, typeV, iniV in parameters:
nameV = CONVERSION_DICT[nameV]
self.props[nameV] = iniV
class SetupWidget(QtWidgets.QWidget):
changed_parameter_sig = pyqtsignal(Paramlist)
def __init__(self, parent=None):
"""Widget for holding all the parameter options in neat lists.
Based on methods from ../gloo/primitive_mesh_viewer_qt.
"""
super(SetupWidget, self).__init__(parent)
# Create the parameter list from the default parameters given here
self.param = Paramlist(PARAMETERS)
# Checkbox for whether or not the pivot point is visible
self.pivot_chk = QtWidgets.QCheckBox(u"Show pivot point")
self.pivot_chk.setChecked(self.param.props['pivot'])
self.pivot_chk.toggled.connect(self.update_parameters)
# A drop-down menu for selecting which method to use for updating
self.method_list = ['Euler', 'Runge-Kutta']
self.method_options = QtWidgets.QComboBox()
self.method_options.addItems(self.method_list)
self.method_options.setCurrentIndex(
self.method_list.index((self.param.props['method']))
)
self.method_options.currentIndexChanged.connect(
self.update_parameters
)
# Separate the different parameters into groupboxes,
# so there's a clean visual appearance
self.parameter_groupbox = QtWidgets.QGroupBox(u"System Parameters")
self.conditions_groupbox = QtWidgets.QGroupBox(u"Initial Conditions")
self.display_groupbox = QtWidgets.QGroupBox(u"Display Parameters")
self.groupbox_list = [self.parameter_groupbox,
self.conditions_groupbox,
self.display_groupbox]
self.splitter = QtWidgets.QSplitter(QtCore.Qt.Vertical)
# Get ready to create all the spinboxes with appropriate labels
plist = []
self.psets = []
# important_positions is used to separate the
# parameters into their appropriate groupboxes
important_positions = [0, ]
param_boxes_layout = [QtWidgets.QGridLayout(),
QtWidgets.QGridLayout(),
QtWidgets.QGridLayout()]
for nameV, minV, maxV, typeV, iniV in self.param.parameters:
# Create Labels for each element
plist.append(QtWidgets.QLabel(nameV))
if nameV == 'x' or nameV == 'scale':
# 'x' is the start of the 'Initial Conditions' groupbox,
# 'scale' is the start of the 'Display Parameters' groupbox
important_positions.append(len(plist) - 1)
# Create Spinboxes based on type - doubles get a DoubleSpinBox,
# ints get regular SpinBox.
# Step sizes are the same for every parameter except font size.
if typeV == 'double':
self.psets.append(QtWidgets.QDoubleSpinBox())
self.psets[-1].setDecimals(3)
if nameV == 'font size':
self.psets[-1].setSingleStep(1.0)
else:
self.psets[-1].setSingleStep(0.01)
elif typeV == 'int':
self.psets.append(QtWidgets.QSpinBox())
# Set min, max, and initial values
self.psets[-1].setMaximum(maxV)
self.psets[-1].setMinimum(minV)
self.psets[-1].setValue(iniV)
pidx = -1
for pos in range(len(plist)):
if pos in important_positions:
pidx += 1
param_boxes_layout[pidx].addWidget(plist[pos], pos + pidx, 0)
param_boxes_layout[pidx].addWidget(self.psets[pos], pos + pidx, 1)
self.psets[pos].valueChanged.connect(self.update_parameters)
param_boxes_layout[0].addWidget(QtWidgets.QLabel('Method: '), 8, 0)
param_boxes_layout[0].addWidget(self.method_options, 8, 1)
param_boxes_layout[-1].addWidget(self.pivot_chk, 2, 0, 3, 0)
for groupbox, layout in zip(self.groupbox_list, param_boxes_layout):
groupbox.setLayout(layout)
for groupbox in self.groupbox_list:
self.splitter.addWidget(groupbox)
vbox = QtWidgets.QVBoxLayout()
hbox = QtWidgets.QHBoxLayout()
hbox.addWidget(self.splitter)
hbox.addStretch(5)
vbox.addLayout(hbox)
vbox.addStretch(1)
self.setLayout(vbox)
def update_parameters(self, option):
"""When the system parameters change, get the state and emit it."""
self.param.props['pivot'] = self.pivot_chk.isChecked()
self.param.props['method'] = self.method_list[
self.method_options.currentIndex()
]
keys = map(lambda x: x[0], self.param.parameters)
for pos, nameV in enumerate(keys):
self.param.props[CONVERSION_DICT[nameV]] = self.psets[pos].value()
self.changed_parameter_sig.emit(self.param)
class MainWindow(QtWidgets.QMainWindow):
def __init__(self, param=None):
"""Main Window for holding the Vispy Canvas and the parameter
control menu.
"""
QtWidgets.QMainWindow.__init__(self)
self.resize(1067, 800)
icon = load_data_file('wiggly_bar/spring.ico')
self.setWindowIcon(QtGui.QIcon(icon))
self.setWindowTitle('Nonlinear Physical Model Simulation')
self.parameter_object = SetupWidget(self)
self.parameter_object.param = (param
if param is not None else
self.parameter_object.param)
self.parameter_object.changed_parameter_sig.connect(self.update_view)
self.view_box = WigglyBar(**self.parameter_object.param.props)
self.view_box.create_native()
self.view_box.native.setParent(self)
splitter = QtWidgets.QSplitter(QtCore.Qt.Horizontal)
splitter.addWidget(self.parameter_object)
splitter.addWidget(self.view_box.native)
self.setCentralWidget(splitter)
def update_view(self, param):
"""Update the VisPy canvas when the parameters change.
"""
self.view_box.reset_parms(**param.props)
def uncaught_exceptions(ex_type, ex_value, ex_traceback):
lines = traceback.format_exception(ex_type, ex_value, ex_traceback)
msg = ''.join(lines)
logger.error('Uncaught Exception\n%s', msg)
def main():
sys.excepthook = uncaught_exceptions
logging.basicConfig(level=logging.INFO)
logging.getLogger().setLevel(logging.INFO)
appQt = QtWidgets.QApplication(sys.argv)
win = MainWindow()
win.show()
appQt.exec_()
if __name__ == '__main__':
main()
|