File: wiggly_bar.py

package info (click to toggle)
python-vispy 0.16.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,112 kB
  • sloc: python: 61,648; javascript: 6,800; ansic: 2,104; makefile: 141; sh: 6
file content (904 lines) | stat: -rw-r--r-- 34,342 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# vispy: testskip
# -----------------------------------------------------------------------------
# 2016, Scott Paine
# Distributed under the terms of the new BSD License.
# -----------------------------------------------------------------------------

"""
**********
Wiggly Bar
**********
Usage of VisPy to numerically simulate and view a simple physics model.

.. image:: http://i.imgur.com/ad0s9lB.png

This is a simple example of using VisPy to simulate a system with
two springs, a pivot, and a mass.

The system evolves in a nonlinear fashion, according to two equations:

.. image:: http://i.imgur.com/8reci4N.png

In these equations, the J term is the polar moment of inertia of the rod
given by:

.. image:: http://i.imgur.com/94cI1TL.png

The system has the option to update once every step using the
`Euler <https://en.wikipedia.org/wiki/Euler_method>`_ method
or a more stable third-order
`Runge-Kutta <https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods>`_
method. The instability of the Euler Method becomes apparent as the time step
is increased.
"""

from __future__ import division, print_function, absolute_import
from vispy import app, visuals
from vispy.visuals import transforms
from vispy.io import load_data_file
import sys
import numpy as np
import string
import logging
import traceback

# To switch between PyQt5 and PySide2 bindings just change the from import
from PyQt5 import QtCore, QtGui, QtWidgets
# Provide automatic signal function selection for PyQt5/PySide2
pyqtsignal = QtCore.pyqtSignal if hasattr(QtCore, 'pyqtSignal') else QtCore.Signal

logger = logging.getLogger(__name__)

VALID_METHODS = ['euler', 'runge-kutta']

PARAMETERS = [('d1', 0.0, 10.0, 'double', 0.97),
              ('d2', 0.0, 10.0, 'double', 0.55),
              ('m', 0.01, 100.0, 'double', 2.0),
              ('M', 0.01, 100.0, 'double', 12.5),
              ('k1', 0.01, 75.0, 'double', 1.35),
              ('k2', 0.01, 75.0, 'double', 0.50),
              ('b', 1.0, 1000.0, 'double', 25.75),
              ('time step', 0.001, 1.0, 'double', 1/60),
              ('x', -0.25, 0.25, 'double', -0.01),
              ('x dot', -10.0, 10.0, 'double', -0.12),
              ('theta', -np.pi/5, np.pi/5, 'double', 0.005),
              ('theta dot', -np.pi/2, np.pi/2, 'double', 0.0),
              ('scale', 5, 500, 'int', 50),
              ('font size', 6.0, 128.0, 'double', 24.0)]

CONVERSION_DICT = {'d1': 'd1', 'd2': 'd2', 'm': 'little_m', 'M': 'big_m',
                   'k1': 'spring_k1', 'k2': 'spring_k2', 'b': 'b',
                   'x': 'x', 'x dot': 'x_dot', 'theta': 'theta', 
                   'theta dot': 'theta_dot', 'scale': 'scale',
                   'time step': 'dt', 'font size': 'font_size'}


def make_spiral(num_points=100, num_turns=4, height=12, radius=2.0,
                xnot=None, ynot=None, znot=None):
    """
    Generate a list of points corresponding to a spiral.

    Parameters
    ----------
    num_points : int
        Number of points to map spiral over. More points means a
        rounder spring.
    num_turns : int
        Number of coils in the spiral
    height : float
        The height of the spiral. Keep it in whatever units the rest of the 
        spiral is in.
    radius : float
        The radius of the coils. The spiral will end up being 2*radius wide.
    xnot : float
        Initial x-coordinate for the spiral coordinates to start at.
    ynot : float
        Initial y-coordinate for the spiral coordinates to start at.
    znot : float
        Initial z-coordinate for the spiral coordinates to start at.

    Returns
    -------
    coord_list: list of tuples
        Coordinate list of (x, y, z) positions for the spiral

    Notes
    -----
    Right now, this assumes the center is at x=0, y=0. Later, it might be 
    good to add in stuff to change that.

    """

    coords_list = []
    znot = -4 if znot is None else znot
    xnot = radius if xnot is None else xnot
    ynot = 0 if ynot is None else ynot

    theta_not = np.arctan2(ynot, xnot)

    coords_list.append((xnot, ynot, znot))

    for point in range(num_points):
        znot += height / num_points
        theta_not += 2 * np.pi * num_turns / num_points
        xnot = np.cos(theta_not) * radius
        ynot = np.sin(theta_not) * radius
        coords_list.append((xnot, ynot, znot))
    return coords_list


def make_spring(num_points=300, num_turns=4, height=12, radius=2.0,
                xnot=None, ynot=None, znot=None):
    """
        Generate a list of points corresponding to a spring.

        Parameters
        ----------
        num_points : int
            Number of points to map spring over. More points means a rounder 
            spring.
        num_turns : int
            Number of coils in the spring
        height : float
            The height of the spring. Keep it in whatever units the rest of the 
            spring is in.
        radius : float
            The radius of the coils. The spring will end up being
            2*radius wide.
        xnot : float
            Initial x-coordinate for the spring coordinates to start at.
        ynot : float
            Initial y-coordinate for the spring coordinates to start at.
        znot : float
            Initial z-coordinate for the spring coordinates to start at.

        Returns
        -------
        coord_list: list of tuples
            Coordinate list of (x, y, z) positions for the spring

        Notes
        -----
        Right now, this assumes the center is at x=0, y=0. Later, it might be 
        good to add in stuff to change that.

        Right now, the length of the "ends" is 10% of the overall length, as 
        well as a small "turn" that is length radius / 2. In the future, maybe 
        there could be a kwarg to set the length of the sides of the spring. 
        For now, 10% looks good.

        """
    coords_list = []
    init_pts = num_points // 10
    znot = 0 if znot is None else znot
    xnot = 0 if xnot is None else xnot
    ynot = 0 if ynot is None else ynot
    coords_list.append((xnot, ynot, znot))
    for _ in range(init_pts):
        znot += height / num_points
        coords_list.append((xnot, ynot, znot))
    hold_z = znot
    for i in range(init_pts // 2):
        small_theta = (i + 1) * np.pi / init_pts
        xnot = radius / 2 * (1 - np.cos(small_theta))
        znot = hold_z + radius / 2 * np.sin(small_theta)
        coords_list.append((xnot, ynot, znot))
    coords_list += make_spiral(num_points=num_points - 3 * init_pts,
                               num_turns=num_turns,
                               height=(
                                   height - 
                                   (91 * height / num_points) - 
                                   radius / 2
                               ),
                               radius=radius,
                               xnot=xnot,
                               ynot=ynot,
                               znot=znot)
    hold_z = coords_list[-1][-1]
    for i in range(init_pts // 2):
        small_theta = np.pi / 2 - (i + 1) * np.pi / init_pts
        xnot = radius / 2 * (1 - np.cos(small_theta))
        znot = hold_z + radius / 2 * np.cos(small_theta)
        coords_list.append((xnot, ynot, znot))
    xnot = 0.0
    znot += height / num_points
    for _ in range(init_pts):
        znot += height / num_points
        coords_list.append((xnot, ynot, znot))
    coords_list.append((0, 0, height))

    return coords_list


class WigglyBar(app.Canvas):
    def __init__(self, d1=None, d2=None, little_m=None, big_m=None,
                 spring_k1=None, spring_k2=None, b=None,
                 x=None, x_dot=None, theta=None, theta_dot=None,
                 px_len=None, scale=None, pivot=False, method='Euler', dt=None, 
                 font_size=None):
        """
        Main VisPy Canvas for simulation of physical system.

        Parameters
        ----------
        d1 : float
            Length of rod (in meters) from pivot to upper spring.
        d2 : float
            Length of rod (in meters) from pivot to lower spring.
        little_m : float
            Mass of attached cube (in kilograms).
        big_m : float
            Mass of rod (in kilograms).
        spring_k1 : float
            Spring constant of lower spring (in N/m).
        spring_k2 : float
            Spring constant of upper spring (in N/m).
        b : float
            Coefficient of quadratic sliding friction (in kg/m).
        x : float
            Initial x-position of mass (in m).
        x_dot : float
            Initial x-velocity of mass (in m/s).
        theta : float
            Initial angle of rod, with respect to vertical (in radians).
        theta_dot : float
            Initial angular velocity of rod (in rad/s).
        px_len : int
            Length of the rod, in pixels.
        scale : int
            Scaling factor to change size of elements.
        pivot : bool
            Switch for showing/hiding pivot point.
        method : str
            Method to use for updating.
        dt : float
            Time step for simulation.
        font_size : float
            Size of font for text elements, in points.

        Notes
        -----

        As of right now, the only supported methods are "euler" or
        "runge-kutta". These correspond to an Euler method or an
        order 3 Runge-Kutta method for updating x, theta, x dot, and theta dot.

        """

        app.Canvas.__init__(self, title='Wiggly Bar', size=(800, 800),
                            create_native=False)

        # Some initialization constants that won't change
        self.standard_length = 0.97 + 0.55
        self.center = np.asarray((500, 450))
        self.visuals = []

        self._set_up_system(
            d1=d1, d2=d2, little_m=little_m, big_m=big_m,
            spring_k1=spring_k1, spring_k2=spring_k2, b=b,
            x=x, x_dot=x_dot, theta=theta, theta_dot=theta_dot,
            px_len=px_len, scale=scale, pivot=pivot, method=method,
            dt=dt, font_size=font_size
        )

        piv_x_y_px = np.asarray((
            self.pivot_loc_px * np.sin(self.theta),
            -1 * self.pivot_loc_px * (np.cos(self.theta))
        ))

        # Make the spring points
        points = make_spring(height=self.px_len/4, radius=self.px_len/24)

        # Put up a text visual to display time info
        self.font_size = 24. if font_size is None else font_size
        self.text = visuals.TextVisual('0:00.00',
                                       color='white',
                                       pos=[50, 250, 0],
                                       anchor_x='left',
                                       anchor_y='bottom')
        self.text.font_size = self.font_size

        # Let's put in more text so we know what method is being used to 
        # update this
        self.method_text = visuals.TextVisual(
            'Method: {}'.format(self.method),
            color='white',
            pos=[50, 250, 0],
            anchor_x='left',
            anchor_y='top'
        )
        self.method_text.font_size = 2/3 * self.font_size

        # Get the pivoting bar ready
        self.rod = visuals.BoxVisual(width=self.px_len/40,
                                     height=self.px_len/40,
                                     depth=self.px_len,
                                     color='white')
        self.rod.transform = transforms.MatrixTransform()
        self.rod.transform.scale(
            (self.scale, self.scale * self.rod_scale, 0.0001)
        )
        self.rod.transform.rotate(np.rad2deg(self.theta), (0, 0, 1))
        self.rod.transform.translate(self.center - piv_x_y_px)

        # Show the pivot point (optional)
        pivot_center = (self.center[0], self.center[1], -self.px_len/75)
        self.center_point = visuals.SphereVisual(radius=self.px_len/75,
                                                 color='red')
        self.center_point.transform = transforms.MatrixTransform()
        self.center_point.transform.scale((self.scale, self.scale, 0.0001))
        self.center_point.transform.translate(pivot_center)

        # Get the upper spring ready.
        self.spring_2 = visuals.TubeVisual(
            points, radius=self.px_len/100, color=(0.5, 0.5, 1, 1)
        )
        self.spring_2.transform = transforms.MatrixTransform()
        self.spring_2.transform.rotate(90, (0, 1, 0))
        self.spring_2.transform.scale((self.scale, self.scale, 0.0001))
        self.spring_2.transform.translate(self.center + self.s2_loc)

        # Get the lower spring ready.
        self.spring_1 = visuals.TubeVisual(
            points, radius=self.px_len/100, color=(0.5, 0.5, 1, 1)
        )
        self.spring_1.transform = transforms.MatrixTransform()
        self.spring_1.transform.rotate(90, (0, 1, 0))
        self.spring_1.transform.scale(
            (
                self.scale *
                (1.0-(self.x*self.px_per_m)/(self.scale*self.px_len/2)),
                self.scale,
                0.0001
            )
        )
        self.spring_1.transform.translate(self.center + self.s1_loc)

        # Finally, prepare the mass that is being moved
        self.mass = visuals.BoxVisual(
            width=self.px_len / 4, height=self.px_len / 8,
            depth=self.px_len / 4, color='white'
        )
        self.mass.transform = transforms.MatrixTransform()
        self.mass.transform.scale((self.scale, self.scale, 0.0001))
        self.mass.transform.translate(self.center + self.mass_loc)

        # Append all the visuals
        self.visuals.append(self.center_point)
        self.visuals.append(self.rod)
        self.visuals.append(self.spring_2)
        self.visuals.append(self.spring_1)
        self.visuals.append(self.mass)
        self.visuals.append(self.text)
        self.visuals.append(self.method_text)

        # Set up a timer to update the image and give a real-time rendering
        self._timer = app.Timer('auto', connect=self.on_timer, start=True)

    def on_draw(self, ev):
        # Stolen from previous - just clears the screen and redraws stuff
        self.context.set_clear_color((0, 0, 0, 1))
        self.context.set_viewport(0, 0, *self.physical_size)
        self.context.clear()
        for vis in self.visuals:
            if vis is self.center_point and not self.show_pivot:
                continue
            else:
                vis.draw()

    def on_resize(self, event):
        # Set canvas viewport and reconfigure visual transforms to match.
        vp = (0, 0, self.physical_size[0], self.physical_size[1])
        self.context.set_viewport(*vp)

        for vis in self.visuals:
            vis.transforms.configure(canvas=self, viewport=vp)

    def on_timer(self, ev):
        # Update x, theta, x_dot, theta_dot
        self.params_update(dt=self.dt, method=self.method)

        # Calculate change for the upper spring, relative to its starting point
        extra_term = self.theta - self.theta_not
        trig_junk = (
            np.sin(self.theta_not) * (np.cos(extra_term) - 1) +
            np.cos(self.theta_not) * np.sin(extra_term)
        )
        delta_x = self.d1 * self.px_per_m * trig_junk
        net_s2_scale = (1 - (delta_x / (self.scale * self.px_len / 4)))

        # Calculate change for the lower spring, relative to something 
        # arbitrary so I didn't have horrors mathematically
        trig_junk_2 = np.sin(self.theta_not) - np.sin(self.theta)
        first_term = self.d2 * trig_junk_2
        top_term = (first_term - self.x)*self.px_per_m
        net_s1_scale = 1 + top_term/self.s1_l_not
        self.s1_loc[0] = -0.5 * (
            -self.x*self.px_per_m + 
            self.s1_l_not +
            self.d2*self.px_per_m*(np.sin(self.theta)+np.sin(self.theta_not))
        )
        self.s1_loc[0] -= 0.5 * net_s1_scale * self.s1_l_not

        # Calculate the new pivot location - this is important because the 
        # rotation occurs about
        # the center of the rod, so it has to be offset appropriately
        piv_x_y_px = np.asarray((
            self.pivot_loc_px*np.sin(self.theta),
            -1 * self.pivot_loc_px*np.cos(self.theta)
        ))

        # Calculate the new mass x location, relative (again) to some 
        # simple parameter where x=0
        self.mass_loc[0] = self.x_is_0 + self.x * self.px_per_m

        # Figure out how much time has passed
        millis_passed = int(100 * (self.t % 1))
        sec_passed = int(self.t % 60)
        min_passed = int(self.t // 60)

        # Apply the necessary transformations to the rod
        self.rod.transform.reset()
        self.rod.transform.scale(
            (self.scale, self.scale * self.rod_scale, 0.0001)
        )
        self.rod.transform.rotate(np.rad2deg(self.theta), (0, 0, 1))
        self.rod.transform.translate(self.center - piv_x_y_px)

        # Redraw and rescale the upper spring
        self.spring_2.transform.reset()
        self.spring_2.transform.rotate(90, (0, 1, 0))
        self.spring_2.transform.scale((net_s2_scale * self.scale,
                                       self.scale,
                                       0.0001))
        self.spring_2.transform.translate(self.center +
                                          self.s2_loc +
                                          np.asarray([delta_x, 0]))

        # Redraw and rescale the lower spring
        # (the hardest part to get, mathematically)
        self.spring_1.transform.reset()
        self.spring_1.transform.rotate(90, (0, 1, 0))
        self.spring_1.transform.scale((net_s1_scale * self.scale,
                                       self.scale,
                                       0.0001))
        self.spring_1.transform.translate(self.center +
                                          self.s1_loc)

        # Redrew and rescale the mass
        self.mass.transform.reset()
        self.mass.transform.scale((self.scale, self.scale, 0.0001))
        self.mass.transform.translate(self.center + self.mass_loc)

        # Update the timer with how long it's been
        self.text.text = '{:0>2d}:{:0>2d}.{:0>2d}'.format(min_passed,
                                                          sec_passed,
                                                          millis_passed)

        # Trigger all of the drawing and updating
        self.update()

    def params_update(self, dt, method='euler'):
        # Uses either Euler method or Runge-Kutta, 
        # depending on your input to "method"

        if method.lower() == 'euler':
            self._euler_update(dt)
        elif method.lower() == 'runge-kutta':
            self._runge_kutta_update(dt)

    def _euler_update(self, dt):
        """Update system using Euler's method (equivalent to order 1
        Runge-Kutta Method).
        """
        # Calculate the second derivative of x
        x_dd_t1 = -self.b * self.x_dot * np.abs(self.x_dot)
        x_dd_t2 = -self.spring_k1 * (self.x + self.d2 * self.theta)
        x_dot_dot = (x_dd_t1 + x_dd_t2) / self.little_m

        # Calculate the second derivative of theta
        term1 = -self.spring_k1 * self.d2 * self.x
        term2 = (
            -self.theta * 
            (self.spring_k1*(self.d2**2) + self.spring_k2*(self.d1**2))
        )
        theta_dot_dot = (term1 + term2) / self.j_term

        # Update everything appropriately
        self.t += dt
        self.x += dt * self.x_dot
        self.theta += dt * self.theta_dot
        self.x_dot += dt * x_dot_dot
        self.theta_dot += dt * theta_dot_dot

    def _runge_kutta_update(self, dt):
        """Update using order 3 Runge-Kutta Method.
        """
        info_vector = np.asarray(
            [self.x_dot, self.theta_dot, self.x, self.theta]
        ).copy()

        t1a = -self.b * info_vector[0] * np.abs(info_vector[0])
        t1b = -self.spring_k1*(info_vector[2] + self.d2*info_vector[3])

        t2a = -self.spring_k1*self.d2*info_vector[2]
        t2b = -info_vector[3] * (
            self.spring_k1*(self.d2 ** 2) + self.spring_k2*(self.d1 ** 2)
        )

        k1 = [
            (t1a + t1b)/self.little_m,
            (t2a + t2b)/self.j_term,
            info_vector[0],
            info_vector[1]
        ]

        k1 = np.asarray(k1) * dt

        updated_est = info_vector + 0.5 * k1

        t1a = -self.b * updated_est[0] * np.abs(updated_est[0])
        t1b = -self.spring_k1 * (updated_est[2] + self.d2 * updated_est[3])

        t2a = -self.spring_k1 * self.d2 * updated_est[2]
        t2b = -updated_est[3] * (
            self.spring_k1 * (self.d2 ** 2) + self.spring_k2 * (self.d1 ** 2)
        )

        k2 = [
            (t1a + t1b)/self.little_m,
            (t2a + t2b)/self.j_term,
            updated_est[0],
            updated_est[1]
        ]

        k2 = np.asarray(k2) * dt

        updated_est = info_vector - k1 + 2 * k2

        t1a = -self.b * updated_est[0] * np.abs(updated_est[0])
        t1b = -self.spring_k1 * (updated_est[2] + self.d2 * updated_est[3])

        t2a = -self.spring_k1 * self.d2 * updated_est[2]
        t2b = -updated_est[3] * (
            self.spring_k1 * (self.d2 ** 2) + self.spring_k2 * (self.d1 ** 2)
        )

        k3 = [
            (t1a + t1b)/self.little_m,
            (t2a + t2b)/self.j_term,
            updated_est[0],
            updated_est[1]
        ]

        k3 = np.asarray(k3) * dt

        final_est = info_vector + (1/6)*(k1 + 4*k2 + k3)

        self.x_dot, self.theta_dot, self.x, self.theta = final_est.copy()
        self.t += dt

    def reset_parms(self, d1=None, d2=None, little_m=None, big_m=None,
                    spring_k1=None, spring_k2=None, b=None,
                    x=None, x_dot=None, theta=None, theta_dot=None,
                    px_len=None, scale=None, pivot=False, method='Euler',
                    dt=None, font_size=None):
        """
        Reset system with a new set of paramters.

        Parameters
        ----------
        d1 : float
            Length of rod (in meters) from pivot to upper spring.
        d2 : float
            Length of rod (in meters) from pivot to lower spring.
        little_m : float
            Mass of attached cube (in kilograms).
        big_m : float
            Mass of rod (in kilograms).
        spring_k1 : float
            Spring constant of lower spring (in N/m).
        spring_k2 : float
            Spring constant of upper spring (in N/m).
        b : float
            Coefficient of quadratic sliding friction (in kg/m).
        x : float
            Initial x-position of mass (in m).
        x_dot : float
            Initial x-velocity of mass (in m/s).
        theta : float
            Initial angle of rod, with respect to vertical (in radians).
        theta_dot : float
            Initial angular velocity of rod (in rad/s).
        px_len : int
            Length of the rod, in pixels.
        scale : int
            Scaling factor to change size of elements.
        pivot : bool
            Switch for showing/hiding pivot point.
        method : str
            Method to use for updating.
        dt : float
            Time step for simulation.
        font_size : float
            Size of font for text elements, in points.

        Notes
        -----

        Since the time is reset, the system is reset as well by calling
        this method.

        """

        self._set_up_system(
            d1=d1, d2=d2, little_m=little_m, big_m=big_m,
            spring_k1=spring_k1, spring_k2=spring_k2, b=b,
            x=x, x_dot=x_dot, theta=theta, theta_dot=theta_dot,
            px_len=px_len, scale=scale, pivot=pivot, method=method,
            dt=dt, font_size=font_size
        )

    def _set_up_system(self, d1=None, d2=None, little_m=None, big_m=None,
                       spring_k1=None, spring_k2=None, b=None,
                       x=None, x_dot=None, theta=None, theta_dot=None,
                       px_len=None, scale=None, pivot=False, method='Euler',
                       dt=None, font_size=None):
        """Initialize constants for the system that will be used later.
        """

        self.method = (string.capwords(method, '-')
                       if method.lower() in VALID_METHODS else 'Euler')
        self.font_size = font_size
        try:
            self.method_text.text = 'Method: {}'.format(self.method)
            self.method_text.font_size = 2 / 3 * self.font_size
            self.text.font_size = self.font_size
        except AttributeError:
            # Running in __init__, so self.method_text isn't established yet.
            pass
        self.show_pivot = pivot

        # Initialize constants for the system
        self.t = 0
        self.dt = 1 / 60 if dt is None else dt
        self.d1 = 0.97 if d1 is None else d1
        self.d2 = 0.55 if d2 is None else d2
        self.little_m = 2.0 if little_m is None else little_m
        self.big_m = 12.5 if big_m is None else big_m
        self.spring_k1 = 1.35 if spring_k1 is None else spring_k1
        self.spring_k2 = 0.5 if spring_k2 is None else spring_k2
        self.b = 25.75 if b is None else b
        self.j_term = (
            (1 / 3) * self.big_m * (self.d1 ** 3 + self.d2 ** 3) /
            (self.d1 + self.d2)
        )
        self.x = -0.010 if x is None else x
        self.x_dot = -0.12 if x_dot is None else x_dot
        self.theta = 0.005 if theta is None else theta
        self.theta_dot = 0.0 if theta_dot is None else theta_dot
        self.theta_not = self.theta  # I'll need this later

        # Initialize constants for display
        self.px_len = 10 if px_len is None else px_len
        self.scale = 50 if scale is None else scale
        self.px_per_m = self.scale * self.px_len / (0.97 + 0.55)
        self.rod_scale = (self.d1 + self.d2) / self.standard_length

        # Set up stuff for establishing a pivot point to rotate about
        self.pivot_loc = (self.d2 - self.d1) / 2
        self.pivot_loc_px = self.pivot_loc * self.px_per_m

        # Set up positioning info for the springs and mass, as well as some
        # constants for use later
        # NOTE: Springs are not like boxes. Their center of rotation is at one
        #       end of the spring, unlike the box where it is in the middle.
        #       The location and scaling is set to reflect this. This means
        #       there's a little bit of x- and y-translation needed to properly
        #       center them.
        self.s2_loc = np.asarray(
            [self.d1 * self.px_per_m * np.sin(self.theta),
             -self.d1 * self.px_per_m * np.cos(
                 self.theta)]
        )
        self.s1_l_not = self.px_len / 4 * self.scale
        self.x_is_0 = (
            -self.d2 * self.px_per_m * np.sin(self.theta_not) -
            1.5 * self.s1_l_not
        )
        self.s1_loc = np.asarray(
            [self.x_is_0 + 0.5 * self.s1_l_not + self.x * self.px_per_m,
             self.d2 * self.px_per_m * np.cos(self.theta)]
        )
        self.mass_loc = np.asarray(
            [self.x_is_0 + self.x * self.px_per_m,
             self.d2 * self.px_per_m * np.cos(self.theta)]
        )


class Paramlist(object):

    def __init__(self, parameters):
        """Container for object parameters.
        Based on methods from ../gloo/primitive_mesh_viewer_qt.
        """
        self.parameters = parameters
        self.props = dict()
        self.props['pivot'] = False
        self.props['method'] = 'Euler'
        for nameV, minV, maxV, typeV, iniV in parameters:
            nameV = CONVERSION_DICT[nameV]
            self.props[nameV] = iniV


class SetupWidget(QtWidgets.QWidget):

    changed_parameter_sig = pyqtsignal(Paramlist)

    def __init__(self, parent=None):
        """Widget for holding all the parameter options in neat lists.
        Based on methods from ../gloo/primitive_mesh_viewer_qt.
        """
        super(SetupWidget, self).__init__(parent)

        # Create the parameter list from the default parameters given here
        self.param = Paramlist(PARAMETERS)

        # Checkbox for whether or not the pivot point is visible
        self.pivot_chk = QtWidgets.QCheckBox(u"Show pivot point")
        self.pivot_chk.setChecked(self.param.props['pivot'])
        self.pivot_chk.toggled.connect(self.update_parameters)

        # A drop-down menu for selecting which method to use for updating
        self.method_list = ['Euler', 'Runge-Kutta']
        self.method_options = QtWidgets.QComboBox()
        self.method_options.addItems(self.method_list)
        self.method_options.setCurrentIndex(
            self.method_list.index((self.param.props['method']))
        )
        self.method_options.currentIndexChanged.connect(
            self.update_parameters
        )

        # Separate the different parameters into groupboxes,
        # so there's a clean visual appearance
        self.parameter_groupbox = QtWidgets.QGroupBox(u"System Parameters")
        self.conditions_groupbox = QtWidgets.QGroupBox(u"Initial Conditions")
        self.display_groupbox = QtWidgets.QGroupBox(u"Display Parameters")

        self.groupbox_list = [self.parameter_groupbox,
                              self.conditions_groupbox,
                              self.display_groupbox]

        self.splitter = QtWidgets.QSplitter(QtCore.Qt.Vertical)

        # Get ready to create all the spinboxes with appropriate labels
        plist = []
        self.psets = []
        # important_positions is used to separate the
        # parameters into their appropriate groupboxes
        important_positions = [0, ]
        param_boxes_layout = [QtWidgets.QGridLayout(),
                              QtWidgets.QGridLayout(),
                              QtWidgets.QGridLayout()]
        for nameV, minV, maxV, typeV, iniV in self.param.parameters:
            # Create Labels for each element
            plist.append(QtWidgets.QLabel(nameV))

            if nameV == 'x' or nameV == 'scale':
                # 'x' is the start of the 'Initial Conditions' groupbox,
                # 'scale' is the start of the 'Display Parameters' groupbox
                important_positions.append(len(plist) - 1)

            # Create Spinboxes based on type - doubles get a DoubleSpinBox,
            # ints get regular SpinBox.
            # Step sizes are the same for every parameter except font size.
            if typeV == 'double':
                self.psets.append(QtWidgets.QDoubleSpinBox())
                self.psets[-1].setDecimals(3)
                if nameV == 'font size':
                    self.psets[-1].setSingleStep(1.0)
                else:
                    self.psets[-1].setSingleStep(0.01)
            elif typeV == 'int':
                self.psets.append(QtWidgets.QSpinBox())

            # Set min, max, and initial values
            self.psets[-1].setMaximum(maxV)
            self.psets[-1].setMinimum(minV)
            self.psets[-1].setValue(iniV)

        pidx = -1
        for pos in range(len(plist)):
            if pos in important_positions:
                pidx += 1
            param_boxes_layout[pidx].addWidget(plist[pos], pos + pidx, 0)
            param_boxes_layout[pidx].addWidget(self.psets[pos], pos + pidx, 1)
            self.psets[pos].valueChanged.connect(self.update_parameters)

        param_boxes_layout[0].addWidget(QtWidgets.QLabel('Method: '), 8, 0)
        param_boxes_layout[0].addWidget(self.method_options, 8, 1)
        param_boxes_layout[-1].addWidget(self.pivot_chk, 2, 0, 3, 0)

        for groupbox, layout in zip(self.groupbox_list, param_boxes_layout):
            groupbox.setLayout(layout)

        for groupbox in self.groupbox_list:
            self.splitter.addWidget(groupbox)

        vbox = QtWidgets.QVBoxLayout()
        hbox = QtWidgets.QHBoxLayout()
        hbox.addWidget(self.splitter)
        hbox.addStretch(5)
        vbox.addLayout(hbox)
        vbox.addStretch(1)

        self.setLayout(vbox)

    def update_parameters(self, option):
        """When the system parameters change, get the state and emit it."""
        self.param.props['pivot'] = self.pivot_chk.isChecked()
        self.param.props['method'] = self.method_list[
            self.method_options.currentIndex()
        ]
        keys = map(lambda x: x[0], self.param.parameters)
        for pos, nameV in enumerate(keys):
            self.param.props[CONVERSION_DICT[nameV]] = self.psets[pos].value()
        self.changed_parameter_sig.emit(self.param)


class MainWindow(QtWidgets.QMainWindow):

    def __init__(self, param=None):
        """Main Window for holding the Vispy Canvas and the parameter
        control menu.
        """
        QtWidgets.QMainWindow.__init__(self)

        self.resize(1067, 800)
        icon = load_data_file('wiggly_bar/spring.ico')
        self.setWindowIcon(QtGui.QIcon(icon))
        self.setWindowTitle('Nonlinear Physical Model Simulation')

        self.parameter_object = SetupWidget(self)
        self.parameter_object.param = (param
                                       if param is not None else
                                       self.parameter_object.param)
        self.parameter_object.changed_parameter_sig.connect(self.update_view)

        self.view_box = WigglyBar(**self.parameter_object.param.props)

        self.view_box.create_native()
        self.view_box.native.setParent(self)

        splitter = QtWidgets.QSplitter(QtCore.Qt.Horizontal)
        splitter.addWidget(self.parameter_object)
        splitter.addWidget(self.view_box.native)

        self.setCentralWidget(splitter)

    def update_view(self, param):
        """Update the VisPy canvas when the parameters change.
        """
        self.view_box.reset_parms(**param.props)


def uncaught_exceptions(ex_type, ex_value, ex_traceback):
    lines = traceback.format_exception(ex_type, ex_value, ex_traceback)
    msg = ''.join(lines)
    logger.error('Uncaught Exception\n%s', msg)


def main():
    sys.excepthook = uncaught_exceptions
    logging.basicConfig(level=logging.INFO)
    logging.getLogger().setLevel(logging.INFO)
    appQt = QtWidgets.QApplication(sys.argv)
    win = MainWindow()
    win.show()
    appQt.exec_()

if __name__ == '__main__':
    main()