File: brain.py

package info (click to toggle)
python-vispy 0.6.6-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 21,240 kB
  • sloc: python: 57,407; javascript: 6,810; makefile: 63; sh: 5
file content (155 lines) | stat: -rw-r--r-- 4,568 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# vispy: gallery 2
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.

"""
3D brain mesh viewer.
"""

from timeit import default_timer
import numpy as np

from vispy import gloo
from vispy import app
from vispy.util.transforms import perspective, translate, rotate
from vispy.io import load_data_file

brain = np.load(load_data_file('brain/brain.npz', force_download='2014-09-04'))
data = brain['vertex_buffer']
faces = brain['index_buffer']

VERT_SHADER = """
#version 120
uniform mat4 u_model;
uniform mat4 u_view;
uniform mat4 u_projection;
uniform vec4 u_color;

attribute vec3 a_position;
attribute vec3 a_normal;
attribute vec4 a_color;

varying vec3 v_position;
varying vec3 v_normal;
varying vec4 v_color;

void main()
{
    v_normal = a_normal;
    v_position = a_position;
    v_color = a_color * u_color;
    gl_Position = u_projection * u_view * u_model * vec4(a_position,1.0);
}
"""

FRAG_SHADER = """
#version 120
uniform mat4 u_model;
uniform mat4 u_view;
uniform mat4 u_normal;

uniform vec3 u_light_intensity;
uniform vec3 u_light_position;

varying vec3 v_position;
varying vec3 v_normal;
varying vec4 v_color;

void main()
{
    // Calculate normal in world coordinates
    vec3 normal = normalize(u_normal * vec4(v_normal,1.0)).xyz;

    // Calculate the location of this fragment (pixel) in world coordinates
    vec3 position = vec3(u_view*u_model * vec4(v_position, 1));

    // Calculate the vector from this pixels surface to the light source
    vec3 surfaceToLight = u_light_position - position;

    // Calculate the cosine of the angle of incidence (brightness)
    float brightness = dot(normal, surfaceToLight) /
                      (length(surfaceToLight) * length(normal));
    brightness = max(min(brightness,1.0),0.0);

    // Calculate final color of the pixel, based on:
    // 1. The angle of incidence: brightness
    // 2. The color/intensities of the light: light.intensities
    // 3. The texture and texture coord: texture(tex, fragTexCoord)

    // Specular lighting.
    vec3 surfaceToCamera = vec3(0.0, 0.0, 1.0) - position;
    vec3 K = normalize(normalize(surfaceToLight) + normalize(surfaceToCamera));
    float specular = clamp(pow(abs(dot(normal, K)), 40.), 0.0, 1.0);

    gl_FragColor = v_color * brightness * vec4(u_light_intensity, 1);
}
"""


class Canvas(app.Canvas):
    def __init__(self):
        app.Canvas.__init__(self, keys='interactive')
        self.size = 800, 600

        self.program = gloo.Program(VERT_SHADER, FRAG_SHADER)

        self.theta, self.phi = -80, 180
        self.translate = 3

        self.faces = gloo.IndexBuffer(faces)
        self.program.bind(gloo.VertexBuffer(data))

        self.program['u_color'] = 1, 1, 1, 1
        self.program['u_light_position'] = (1., 1., 1.)
        self.program['u_light_intensity'] = (1., 1., 1.)

        self.apply_zoom()

        gloo.set_state(blend=False, depth_test=True, polygon_offset_fill=True)

        self._t0 = default_timer()
        self._timer = app.Timer('auto', connect=self.on_timer, start=True)

        self.update_matrices()

    def update_matrices(self):
        self.view = translate((0, 0, -self.translate))
        self.model = np.dot(rotate(self.theta, (1, 0, 0)),
                            rotate(self.phi, (0, 1, 0)))
        self.projection = np.eye(4, dtype=np.float32)
        self.program['u_model'] = self.model
        self.program['u_view'] = self.view
        self.program['u_normal'] = np.linalg.inv(np.dot(self.view,
                                                        self.model)).T

    def on_timer(self, event):
        elapsed = default_timer() - self._t0
        self.phi = 180 + elapsed * 50.
        self.update_matrices()
        self.update()

    def on_resize(self, event):
        self.apply_zoom()

    def on_mouse_wheel(self, event):
        self.translate += -event.delta[1]/5.
        self.translate = max(2, self.translate)
        self.update_matrices()
        self.update()

    def on_draw(self, event):
        gloo.clear()
        self.program.draw('triangles', indices=self.faces)

    def apply_zoom(self):
        gloo.set_viewport(0, 0, self.physical_size[0], self.physical_size[1])
        self.projection = perspective(45.0, self.size[0] /
                                      float(self.size[1]), 1.0, 20.0)
        self.program['u_projection'] = self.projection

if __name__ == '__main__':
    c = Canvas()
    c.show()
    app.run()