File: unstructured_2d.py

package info (click to toggle)
python-vispy 0.6.6-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 21,240 kB
  • sloc: python: 57,407; javascript: 6,810; makefile: 63; sh: 5
file content (216 lines) | stat: -rw-r--r-- 7,359 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# -*- coding: utf-8 -*-
# vispy: testskip
# -----------------------------------------------------------------------------
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------
# Author:   Per Rosengren
# Date:     18/03/2014
# Abstract: Unstructured2D canvas example
# Keywords: unstructured delaunay colormap
# Require: scipy
# ----------------------------------------------------------------------------
"""Unstructured2D canvas example.

Takes unstructured 2D locations, with corresponding 1 or 2 dimensional
scalar "values". Plots the values looked up from colormaps and
interpolated between the locations.
"""
import sys
import numpy as np
import scipy.spatial

from vispy import gloo, app
from vispy.util.transforms import ortho


class Canvas(app.Canvas):

    def __init__(self,
                 x=None, y=None, u=None, v=None,
                 colormap=None, data_lim=None,
                 dir_x_right=True, dir_y_top=True,
                 **kwargs):
        app.Canvas.__init__(self, **kwargs)
        self.create_shader(colormap)
        self.create_mesh(x, y, u, v)
        self.program.bind(self.vbo)
        if data_lim is not None:
            self._data_lim = data_lim
        else:
            self._data_lim = [[x.min(), x.max()], [y.min(), y.max()]]
        self._dir_x_right = dir_x_right
        self._dir_y_top = dir_y_top

        self.activate_zoom()

        self.show()

    def create_shader(self, colormap):
        if len(colormap.shape) == 2:
            args = dict(
                n_dims="1",
                tex_t="float",
                texture2D_arg="vec2(v_texcoord, 0.)")
        else:
            args = dict(
                n_dims="2",
                tex_t="vec2",
                texture2D_arg="v_texcoord")
        vertex = """
            uniform mat4 projection;
            uniform sampler2D texture;

            attribute vec2 position;
            attribute {tex_t} texcoord;

            varying {tex_t} v_texcoord;
            void main()
            {{
                gl_Position = projection * vec4(position, 0.0, 1.0);
                v_texcoord = texcoord;
            }}
        """.format(**args)

        fragment = """
            uniform sampler2D texture;
            varying {tex_t} v_texcoord;
            void main()
            {{
                gl_FragColor = texture2D(texture, {texture2D_arg});
            }}
        """.format(**args)

        self.program = gloo.Program(vertex, fragment)
        if len(colormap.shape) == 2:
            self.program['texture'] = np.ascontiguousarray(
                colormap[None, :, :])
        else:
            self.program['texture'] = colormap
        self.program['texture'].interpolation = 'linear'
        self.projection = np.eye(4, dtype=np.float32)

    def create_mesh(self, x, y, u, v):
        tri = scipy.spatial.Delaunay(np.column_stack([x, y]))
        edges = tri.simplices.astype(np.uint32)
        uv = []
        for c in [u, v]:
            if c is not None:
                c = c.astype('f4')
                c = .5 + .5 * c / np.abs(c).max()
                uv.append(c)
        data = np.column_stack(
            [
                x.astype('f4'),
                y.astype('f4')
            ] + uv
        ).view(dtype=[('position', 'f4', 2),
                      ('texcoord', 'f4', 2 if v is not None else 1),
                      ])
        self.vbo = gloo.VertexBuffer(data)
        self.index = gloo.IndexBuffer(edges)

        gloo.set_state(blend=True, clear_color='white',
                       blend_func=('src_alpha', 'one_minus_src_alpha'))

    def on_draw(self, event):
        gloo.clear()
        self.program.draw('triangles', self.index)

    def on_resize(self, event):
        self.activate_zoom()

    def activate_zoom(self):
        width, heigh = self.size
        gloo.set_viewport(0, 0, *self.physical_size)
        data_width = self._data_lim[0][1] - self._data_lim[0][0]
        data_height = self._data_lim[1][1] - self._data_lim[1][0]
        data_aspect = data_width / float(data_height)
        frame_aspect = width / float(height)
        if frame_aspect >= data_aspect:
            padding = (frame_aspect * data_height - data_width) / 2.
            frame_lim = [
                [self._data_lim[0][0] - padding,
                 self._data_lim[0][1] + padding],
                [self._data_lim[1][0],
                 self._data_lim[1][1]]]
        else:
            padding = (data_width / frame_aspect - data_height) / 2.
            frame_lim = [
                [self._data_lim[0][0],
                 self._data_lim[0][1]],
                [self._data_lim[1][0] - padding,
                 self._data_lim[1][1] + padding]]
        args_ortho = frame_lim[0][::(1 if self._dir_x_right else -1)]
        args_ortho += frame_lim[1][::(1 if self._dir_y_top else -1)]
        args_ortho += -1000, 1000
        self.projection = ortho(*args_ortho)
        self.program['projection'] = self.projection


def create_colormap2d_hsv(size=512):
    import matplotlib.colors
    import math
    u, v = np.meshgrid(np.linspace(-1, 1, size), np.linspace(-1, 1, size))
    hsv = np.ones((size, size, 3), dtype=np.float32)
    hsv[:, :, 0] = (np.arctan2(u, v) / (2 * math.pi) + .5)
    hsv[:, :, 1] = np.minimum(1., np.sqrt(u ** 2 + v ** 2))
    rgb = matplotlib.colors.hsv_to_rgb(hsv)
    return rgb


def create_colormap2d_4dirs(size=512):
    rgb = np.ones((size, size, 3), dtype=np.float32)
    hs = size // 2
    u, v = np.meshgrid(np.linspace(1, 0, hs), np.linspace(1, 0, hs))
    rgb[:hs, :hs, 0] = 1.
    rgb[:hs, :hs, 1] = 1. - v + u / 2.
    rgb[:hs, :hs, 2] = 1. - np.maximum(u, v)
    u = u[:, ::-1]
    rgb[:hs, hs:, 0] = 1. - u + v
    rgb[:hs, hs:, 1] = 1. - np.maximum(u, v)
    rgb[:hs, hs:, 2] = 1. - v + u
    v = v[::-1, :]
    rgb[hs:, hs:, 0] = 1. - np.maximum(u, v)
    rgb[hs:, hs:, 1] = 1. - u + v
    rgb[hs:, hs:, 2] = 1. - v + u
    u = u[:, ::-1]
    rgb[hs:, :hs, 0] = 1. - v + u / 2.
    rgb[hs:, :hs, 1] = 1.
    rgb[hs:, :hs, 2] = 1. - np.maximum(u, v)
    rgb = np.minimum(1., rgb)
    return rgb


def create_colormap1d_hot(size=512):
    rgb = np.ones((size, 3), dtype=np.float32)
    hs = size // 2
    u = np.linspace(1, 0, hs)
    rgb[:hs, 0] = 1 - u
    rgb[:hs, 1] = 1 - u
    u = u[::-1]
    rgb[hs:, 1] = 1 - u
    rgb[hs:, 2] = 1 - u
    return rgb


if __name__ == '__main__':
    loc = np.random.random_sample(size=(100, 2))
    np.random.shuffle(loc)
    vec = np.empty_like(loc)
    vec[:, 0] = np.cos(loc[:, 0] * 10)
    vec[:, 1] = np.cos(loc[:, 1] * 13)
    width = 500
    height = 500
    c1 = Canvas(title="Unstructured 2D - 2D colormap",
                size=(width, height), position=(0, 40),
                x=loc[:, 0], y=loc[:, 1], u=vec[:, 0], v=vec[:, 1],
                colormap=create_colormap2d_4dirs(size=128),
                keys='interactive')
    c2 = Canvas(title="Unstructured 2D - 1D colormap",
                size=(width, height), position=(width + 20, 40),
                x=loc[:, 0], y=loc[:, 1], u=vec[:, 0],
                colormap=create_colormap1d_hot(size=128),
                keys='interactive')
    if sys.flags.interactive == 0:
        app.run()