File: expression.py

package info (click to toggle)
python-vispy 0.6.6-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 21,240 kB
  • sloc: python: 57,407; javascript: 6,810; makefile: 63; sh: 5
file content (601 lines) | stat: -rw-r--r-- 23,492 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
from __future__ import print_function, unicode_literals, absolute_import, division

from .error import InternalError
from .utils import approx_equal, REQUIRED, STRONG, repr_strength

###########################################################################
# Variables
#
# Variables are the atomic unit of linear programming, describing the
# quantities that are to be solved and constrained.
###########################################################################

class AbstractVariable(object):
    def __init__(self, name):
        self.name = name
        self.is_dummy = False
        self.is_external = False
        self.is_pivotable = False
        self.is_restricted = False

    def __rmul__(self, x):
        return self.__mul__(x)

    def __mul__(self, x):
        if isinstance(x, (float, int)):
            return Expression(self, x)
        elif isinstance(x, Expression):
            if x.is_constant:
                return Expression(self, value=x.constant)
            else:
                raise TypeError('Cannot multiply variable by non-constant expression')
        else:
            raise TypeError('Cannot multiply variable by object of type %s' % type(x))

    def __truediv__(self, x):
        return self.__div__(x)

    def __div__(self, x):
        if isinstance(x, (float, int)):
            if approx_equal(x, 0):
                raise ZeroDivisionError()
            return Expression(self, 1.0 / x)
        elif isinstance(x, Expression):
            if x.is_constant:
                return Expression(self, value=1.0/x.constant)
            else:
                raise TypeError('Cannot add non-constant expression to variable')
        else:
            raise TypeError('Cannot divide variable by object of type %s' % type(x))

    def __radd__(self, x):
        return self.__add__(x)

    def __add__(self, x):
        if isinstance(x, (int, float)):
            return Expression(self, constant=x)
        elif isinstance(x, Expression):
            return Expression(self) + x
        elif isinstance(x, AbstractVariable):
            return Expression(self) + Expression(x)
        else:
            raise TypeError('Cannot add object of type %s to expression' % type(x))

    def __rsub__(self, x):
        if isinstance(x, (int, float)):
            return Expression(self, -1.0, constant=x)
        elif isinstance(x, Expression):
            return x - Expression(self)
        elif isinstance(x, AbstractVariable):
            return Expression(x) - Expression(self)
        else:
            raise TypeError('Cannot subtract variable from object of type %s' % type(x))

    def __sub__(self, x):
        if isinstance(x, (int, float)):
            return Expression(self, constant=-x)
        elif isinstance(x, Expression):
            return Expression(self) - x
        elif isinstance(x, AbstractVariable):
            return Expression(self) - Expression(x)
        else:
            raise TypeError('Cannot subtract object of type %s from variable' % type(x))


class Variable(AbstractVariable):
    def __init__(self, name, value=0.0):
        super(Variable, self).__init__(name)
        self.value = float(value)
        self.is_external = True

    def __repr__(self):
        return '%s[%s]' % (self.name, self.value)

    __hash__ = object.__hash__

    def __eq__(self, other):
        if isinstance(other, (Expression, Variable, float, int)):
            return Constraint(self, Constraint.EQ, other)
        else:
            raise TypeError('Cannot compare variable with object of type %s' % type(other))

    def __lt__(self, other):
        # < and <= are equivalent in the API; it's effectively true
        # due to float arithmetic, and it makes the API a little less hostile,
        # because all the comparison operators exist.
        return self.__le__(other)

    def __le__(self, other):
        if isinstance(other, (Expression, Variable, float, int)):
            return Constraint(self, Constraint.LEQ, other)
        else:
            raise TypeError('Cannot compare variable with object of type %s' % type(other))

    def __gt__(self, other):
        # > and >= are equivalent in the API; it's effectively true
        # due to float arithmetic, and it makes the API a little less hostile,
        # because all the comparison operators exist.
        return self.__ge__(other)

    def __ge__(self, other):
        if isinstance(other, (Expression, Variable, float, int)):
            return Constraint(self, Constraint.GEQ, other)
        else:
            raise TypeError('Cannot compare variable with object of type %s' % type(other))


class DummyVariable(AbstractVariable):
    def __init__(self, number):
        super(DummyVariable, self).__init__(name='d%s' % (number))
        self.is_dummy = True
        self.is_restricted = True

    def __repr__(self):
        return '%s:dummy' % self.name


class ObjectiveVariable(AbstractVariable):
    def __init__(self, name):
        super(ObjectiveVariable, self).__init__(name)

    def __repr__(self):
        return '%s:obj' % self.name


class SlackVariable(AbstractVariable):
    def __init__(self, prefix, number):
        super(SlackVariable, self).__init__(name='%s%s' % (prefix, number))
        self.is_pivotable = True
        self.is_restricted = True

    def __repr__(self):
        return '%s:slack' % self.name

###########################################################################
# Expressions
#
# Expressions are combinations of variables with multipliers and constants
###########################################################################


class Expression(object):
    def __init__(self, variable=None, value=1.0, constant=0.0):
        assert isinstance(constant, (float, int))
        assert variable is None or isinstance(variable, AbstractVariable)

        self.constant = float(constant)
        self.terms = {}

        if variable:
            self.set_variable(variable, float(value))

    def __repr__(self):
        parts = []
        if not approx_equal(self.constant, 0.0) or self.is_constant:
            parts.append(repr(self.constant))
        for clv, coeff in sorted(self.terms.items(), key=lambda x:repr(x)):
            if approx_equal(coeff, 1.0):
                parts.append(repr(clv))
            else:
                parts.append(repr(coeff) + "*" + repr(clv))
        return ' + '.join(parts)

    @property
    def is_constant(self):
        return not self.terms

    def clone(self):
        expr = Expression(constant=self.constant)
        for clv, value in self.terms.items():
            expr.set_variable(clv, value)
        return expr

    ######################################################################
    # Mathematical operators
    ######################################################################

    def __rmul__(self, x):
        return self.__mul__(x)

    def __mul__(self, x):
        if isinstance(x, Expression):
            if self.is_constant:
                result = x * self.constant
            elif x.is_constant:
                result = self * x.constant
            else:
                raise TypeError('Cannot multiply expression by non-constant')
        elif isinstance(x, Variable):
            if self.is_constant:
                result = Expression(x, self.constant)
            else:
                raise TypeError('Cannot multiply a variable by a non-constant expression')
        elif isinstance(x, (float, int)):
            result = Expression(constant=self.constant * x)
            for clv, value in self.terms.items():
                result.set_variable(clv, value * x)
        else:
            raise TypeError('Cannot multiply expression by object of type %s' % type(x))
        return result

    def __truediv__(self, x):
        return self.__div__(x)

    def __div__(self, x):
        if isinstance(x, (float, int)):
            if approx_equal(x, 0):
                raise ZeroDivisionError()
            result = Expression(constant=self.constant / x)
            for clv, value in self.terms.items():
                result.set_variable(clv, value / x)
        else:
            if x.is_constant:
                result = self / x.constant
            else:
                raise TypeError('Cannot divide expression by non-constant')
        return result

    def __radd__(self, x):
        return self.__add__(x)

    def __add__(self, x):
        if isinstance(x, Expression):
            result = self.clone()
            result.add_expression(x, 1.0)
            return result
        elif isinstance(x, Variable):
            result = self.clone()
            result.add_variable(x, 1.0)
            return result
        elif isinstance(x, (int, float)):
            result = self.clone()
            result.add_expression(Expression(constant=x), 1.0)
            return result
        else:
            raise TypeError('Cannot add object of type %s to expression' % type(x))

    def __rsub__(self, x):
        if isinstance(x, Expression):
            result = self.clone()
            result.multiply(-1.0)
            result.add_expression(x, 1.0)
            return result
        elif isinstance(x, Variable):
            result = self.clone()
            result.multiply(-1.0)
            result.add_variable(x, 1.0)
            return result
        elif isinstance(x, (int, float)):
            result = self.clone()
            result.multiply(-1.0)
            result.add_expression(Expression(constant=x), 1.0)
            return result
        else:
            raise TypeError('Cannot subtract object of type %s from expression' % type(x))

    def __sub__(self, x):
        if isinstance(x, Expression):
            result = self.clone()
            result.add_expression(x, -1.0)
            return result
        elif isinstance(x, Variable):
            result = self.clone()
            result.add_variable(x, -1.0)
            return result
        elif isinstance(x, (int, float)):
            result = self.clone()
            result.add_expression(Expression(constant=x), -1.0)
            return result
        else:
            raise TypeError('Cannot subtract object of type %s from expression' % type(x))

    ######################################################################
    # Mathematical operators
    ######################################################################

    __hash__ = object.__hash__

    def __eq__(self, other):
        if isinstance(other, (Expression, Variable, float, int)):
            return Constraint(self, Constraint.EQ, other)
        else:
            raise TypeError('Cannot compare expression with object of type %s' % type(other))

    def __lt__(self, other):
        # < and <= are equivalent in the API; it's effectively true
        # due to float arithmetic, and it makes the API a little less hostile,
        # because all the comparison operators exist.
        return self.__le__(other)

    def __le__(self, other):
        if isinstance(other, (Expression, Variable, float, int)):
            return Constraint(self, Constraint.LEQ, other)
        else:
            raise TypeError('Cannot compare expression with object of type %s' % type(other))

    def __gt__(self, other):
        # > and >= are equivalent in the API; it's effectively true
        # due to float arithmetic, and it makes the API a little less hostile,
        # because all the comparison operators exist.
        return self.__ge__(other)

    def __ge__(self, other):
        if isinstance(other, (Expression, Variable, float, int)):
            return Constraint(self, Constraint.GEQ, other)
        else:
            raise TypeError('Cannot compare expression with object of type %s' % type(other))

    ######################################################################
    # Internal mechanisms
    ######################################################################

    def add_expression(self, expr, n=1.0, subject=None, solver=None):
        if isinstance(expr, AbstractVariable):
            expr = Expression(variable=expr)

        self.constant = self.constant + n * expr.constant
        for clv, coeff in expr.terms.items():
            self.add_variable(clv, coeff * n, subject, solver)

    def add_variable(self, v, cd=1.0, subject=None, solver=None):
        # print 'expression: add_variable', v, cd
        coeff = self.terms.get(v)
        if coeff:
            new_coefficient = coeff + cd
            if approx_equal(new_coefficient, 0.0):
                if solver:
                    solver.note_removed_variable(v, subject)
                self.remove_variable(v)
            else:
                self.set_variable(v, new_coefficient)
        else:
            if not approx_equal(cd, 0.0):
                self.set_variable(v, cd)
                if solver:
                    solver.note_added_variable(v, subject)

    def set_variable(self, v, c):
        self.terms[v] = float(c)

    def remove_variable(self, v):
        del self.terms[v]

    def any_pivotable_variable(self):
        if self.is_constant:
            raise InternalError('any_pivotable_variable called on a constant')

        retval = None
        for clv, c in self.terms.items():
            if clv.is_pivotable:
                retval = clv
                break

        return retval

    def substitute_out(self, outvar, expr, subject=None, solver=None):
        multiplier = self.terms.pop(outvar)
        self.constant = self.constant + multiplier  * expr.constant

        for clv, coeff in expr.terms.items():
            old_coefficient = self.terms.get(clv)
            if old_coefficient:
                new_coefficient = old_coefficient + multiplier * coeff
                if approx_equal(new_coefficient, 0):
                    solver.note_removed_variable(clv, subject)
                    del self.terms[clv]
                else:
                    self.set_variable(clv, new_coefficient)
            else:
                self.set_variable(clv, multiplier * coeff)
                if solver:
                    solver.note_added_variable(clv, subject)

    def change_subject(self, old_subject, new_subject):
        self.set_variable(old_subject, self.new_subject(new_subject))

    def multiply(self, x):
        self.constant = self.constant * float(x)
        for clv, value in self.terms.items():
            self.set_variable(clv, value * x)

    def new_subject(self, subject):
        # print "new_subject", subject
        value = self.terms.pop(subject)
        reciprocal = 1.0 / value
        self.multiply(-reciprocal)
        return reciprocal

    def coefficient_for(self, clv):
        return self.terms.get(clv, 0.0)


###########################################################################
# Constraint
#
# Constraints are the restrictions on linear programming; an equality or
# inequality between two expressions.
###########################################################################

class AbstractConstraint(object):
    def __init__(self, strength, weight=1.0):
        self.strength = strength
        self.weight = weight
        self.is_edit_constraint = False
        self.is_inequality = False
        self.is_stay_constraint = False

    @property
    def is_required(self):
        return self.strength == REQUIRED

    def __repr__(self):
        return '%s:{%s}(%s)' % (repr_strength(self.strength), self.weight, self.expression)

class EditConstraint(AbstractConstraint):
    def __init__(self, variable, strength=STRONG, weight=1.0):
        super(EditConstraint, self).__init__(strength, weight)
        self.variable = variable
        self.expression = Expression(variable, -1.0, variable.value)
        self.is_edit_constraint = True

    def __repr__(self):
        return 'edit:%s' % super(EditConstraint, self).__repr__()


class StayConstraint(AbstractConstraint):
    def __init__(self, variable, strength=STRONG, weight=1.0):
        super(StayConstraint, self).__init__(strength, weight)
        self.variable = variable
        self.expression = Expression(variable, -1.0, variable.value)
        self.is_stay_constraint=True

    def __repr__(self):
        return 'stay:%s' % super(StayConstraint, self).__repr__()


class Constraint(AbstractConstraint):
    LEQ = -1
    EQ = 0
    GEQ = 1

    def __init__(self, param1, operator=EQ, param2=None, strength=REQUIRED, weight=1.0):
        """Define a new linear constraint.

        param1 may be an expression or variable
        param2 may be an expression, variable, or constant, or may be ommitted entirely.
        If param2 is specified, the operator must be either LEQ, EQ, or GEQ
        """
        if isinstance(param1, Expression):
            if param2 is None:
                super(Constraint, self).__init__(strength=strength, weight=weight)
                self.expression = param1
            elif isinstance(param2, Expression):
                super(Constraint, self).__init__(strength=strength, weight=weight)
                self.expression = param1.clone()
                if operator == self.LEQ:
                    self.expression.multiply(-1.0)
                    self.expression.add_expression(param2, 1.0)
                elif operator == self.EQ:
                    self.expression.add_expression(param2, -1.0)
                elif operator == self.GEQ:
                    self.expression.add_expression(param2, -1.0)
                else:
                    raise InternalError("Invalid operator in Constraint constructor")
            elif isinstance(param2, Variable):
                super(Constraint, self).__init__(strength=strength, weight=weight)
                self.expression = param1.clone()
                if operator == self.LEQ:
                    self.expression.multiply(-1.0)
                    self.expression.add_variable(param2, 1.0)
                elif operator == self.EQ:
                    self.expression.add_variable(param2, -1.0)
                elif operator == self.GEQ:
                    self.expression.add_variable(param2, -1.0)
                else:
                    raise InternalError("Invalid operator in Constraint constructor")

            elif isinstance(param2, (float, int)):
                super(Constraint, self).__init__(strength=strength, weight=weight)
                self.expression = param1.clone()
                if operator == self.LEQ:
                    self.expression.multiply(-1.0)
                    self.expression.add_expression(Expression(constant=param2), 1.0)
                elif operator == self.EQ:
                    self.expression.add_expression(Expression(constant=param2), -1.0)
                elif operator == self.GEQ:
                    self.expression.add_expression(Expression(constant=param2), -1.0)
                else:
                    raise InternalError("Invalid operator in Constraint constructor")
            else:
                raise InternalError("Invalid parameters to Constraint constructor")

        elif isinstance(param1, Variable):
            if param2 is None:
                super(Constraint, self).__init__(strength=strength, weight=weight)
                self.expression = Expression(param1)
            elif isinstance(param2, Expression):
                super(Constraint, self).__init__(strength=strength, weight=weight)
                self.expression = param2.clone()
                if operator == self.LEQ:
                    self.expression.add_variable(param1, -1.0)
                elif operator == self.EQ:
                    self.expression.add_variable(param1, -1.0)
                elif operator == self.GEQ:
                    self.expression.multiply(-1.0)
                    self.expression.add_variable(param1, 1.0)
                else:
                    raise InternalError("Invalid operator in Constraint constructor")

            elif isinstance(param2, Variable):
                super(Constraint, self).__init__(strength=strength, weight=weight)
                self.expression = Expression(param2)
                if operator == self.LEQ:
                    self.expression.add_variable(param1, -1.0)
                elif operator == self.EQ:
                    self.expression.add_variable(param1, -1.0)
                elif operator == self.GEQ:
                    self.expression.multiply(-1.0)
                    self.expression.add_variable(param1, 1.0)
                else:
                    raise InternalError("Invalid operator in Constraint constructor")

            elif isinstance(param2, (float, int)):
                super(Constraint, self).__init__(strength=strength, weight=weight)
                self.expression = Expression(constant=param2)
                if operator == self.LEQ:
                    self.expression.add_variable(param1, -1.0)
                elif operator == self.EQ:
                    self.expression.add_variable(param1, -1.0)
                elif operator == self.GEQ:
                    self.expression.multiply(-1.0)
                    self.expression.add_variable(param1, 1.0)
                else:
                    raise InternalError("Invalid operator in Constraint constructor")
            else:
                raise InternalError("Invalid parameters to Constraint constructor")

        elif isinstance(param1, (float, int)):
            if param2 is None:
                super(Constraint, self).__init__(strength=strength, weight=weight)
                self.expression = Expression(constant=param1)

            elif isinstance(param2, Expression):
                super(Constraint, self).__init__(strength=strength, weight=weight)
                self.expression = param2.clone()
                if operator == self.LEQ:
                    self.expression.add_expression(Expression(constant=param1), -1.0)
                elif operator == self.EQ:
                    self.expression.add_expression(Expression(constant=param1), -1.0)
                elif operator == self.GEQ:
                    self.expression.multiply(-1.0)
                    self.expression.add_expression(Expression(constant=param1), 1.0)
                else:
                    raise InternalError("Invalid operator in Constraint constructor")

            elif isinstance(param2, Variable):
                super(Constraint, self).__init__(strength=strength, weight=weight)
                self.expression = Expression(constant=param1)
                if operator == self.LEQ:
                    self.expression.add_variable(param2, -1.0)
                elif operator == self.EQ:
                    self.expression.add_variable(param2, -1.0)
                elif operator == self.GEQ:
                    self.expression.multiply(-1.0)
                    self.expression.add_variable(param2, 1.0)
                else:
                    raise InternalError("Invalid operator in Constraint constructor")

            elif isinstance(param2, (float, int)):
                raise InternalError("Cannot create an inequality between constants")

            else:
                raise InternalError("Invalid parameters to Constraint constructor")
        else:
            raise InternalError("Invalid parameters to Constraint constructor")

        self.is_inequality = operator != self.EQ

    def clone(self):
        c = Constraint(self.expression, strength=self.strength, weight=self.weight)
        c.is_inequality = self.is_inequality
        return c