1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
# -*- coding: utf-8 -*-
"""
Debugging system for Triangulation class. Displays stepwise visual
representation of the algorithm.
This system currently requires pyqtgraph for its visual output.
"""
from __future__ import division
import numpy as np
import time
from ..util.geometry.triangulation import Triangulation
class DebugTriangulation(Triangulation):
"""
Visualize triangulation process stepwise to aid in debugging.
*interval* specifies the diration to wait before drawing each update in
the triangulation procedure. Negative values cause the display to wait
until the user clicks on the window for each update.
*skip* causes the display to immediately process the first N events
before pausing.
"""
def __init__(self, pts, edges, interval=0.01, skip=0):
self.interval = interval
self.iteration = 0
self.skip = skip
Triangulation.__init__(self, pts, edges)
# visual #debugging: draw edges, front, triangles
self.win = pg.plot()
self.graph = pg.GraphItem(pos=pts.copy(), adj=edges.copy(),
pen={'width': 3, 'color': (0, 100, 0)})
self.win.addItem(self.graph)
self.front_line = pg.PlotCurveItem(pen={'width': 2,
'dash': [5, 5],
'color': 'y'})
self.win.addItem(self.front_line)
self.tri_shapes = {}
self.nextStep = False
self.win.scene().sigMouseClicked.connect(self.mouseClicked)
def mouseClicked(self):
self.nextStep = True
def draw_state(self):
global app
print("State %s" % self.iteration)
self.iteration += 1
if self.iteration <= self.skip:
return
front_pts = self.pts[np.array(self.front)]
self.front_line.setData(front_pts[:, 0], front_pts[:, 1])
self.graph.setData(pos=self.pts, adj=self.edges)
# Auto-advance on timer
if self.interval < 0:
#Advance once per click
while True:
app.processEvents()
time.sleep(0.01)
if self.nextStep:
self.nextStep = False
break
else:
# sleep, but keep ui responsive
for i in range(int(self.interval / 0.01)):
app.processEvents()
time.sleep(0.01)
def draw_tri(self, tri, source=None):
# assign triangle color based on the source that generated it
color = {
None: (0, 255, 255, 50),
'smooth1': (0, 255, 0, 50),
'fill_hull': (255, 255, 0, 50),
'edge_event': (100, 100, 255, 100),
}[source]
tpts = self.pts[np.array(tri)]
path = pg.arrayToQPath(tpts[:, 0], tpts[:, 1])
shape = pg.QtGui.QGraphicsPathItem(path)
shape.setPen(pg.mkPen(255, 255, 255, 100))
brush = pg.mkBrush(color)
shape.setBrush(brush)
self.win.addItem(shape)
self.tri_shapes[tri] = shape
self.draw_state()
def undraw_tri(self, tri):
shape = self.tri_shapes.pop(tri)
self.win.removeItem(shape)
self.draw_state()
def add_tri(self, *args, **kwargs):
Triangulation._add_tri(self, *args, **kwargs)
self.draw_tri(list(self.tris.keys())[-1],
source=kwargs.get('source', None))
def remove_tri(self, *args, **kwargs):
k = Triangulation._remove_tri(self, *args, **kwargs)
self.undraw_tri(k)
def edge_event(self, *args, **kwargs):
self.draw_state()
Triangulation._edge_event(self, *args, **kwargs)
self.draw_state()
if __name__ == '__main__':
import pyqtgraph as pg
app = pg.mkQApp()
#user input data - points and constraining edges
#
# Test 1
#
pts = [(0, 0),
(10, 0),
(10, 10),
(20, 10),
(20, 20),
(25, 20),
(25, 25),
(20, 25),
(20, 20),
(10, 17),
(5, 25),
(9, 30),
(6, 15),
(15, 12.5),
(0, 5)]
num_pts = len(pts)
edges = [(i, (i+1) % num_pts) for i in range(num_pts)]
pts += [(21, 21),
(24, 21),
(24, 24),
(21, 24)]
edges += [(num_pts, num_pts + 1),
(num_pts + 1, num_pts + 2),
(num_pts + 2, num_pts + 3),
(num_pts + 3, num_pts)]
pts = np.array(pts, dtype=float)
edges = np.array(edges, dtype=int)
#t = DebugTriangulation(pts, edges, interval=-1, skip=19570)
#t.triangulate()
# make lines that are entirely vertical / horizontal
np.random.seed(1)
N = 100
pts = [[0, 0]]
for i in range(N - 1):
p = pts[-1][:]
p[i % 2] += np.random.normal()
pts.append(p)
pts = np.array(pts)
edges = np.zeros((N, 2), dtype=int)
edges[:, 0] = np.arange(N)
edges[:, 1] = np.arange(1, N + 1) % N
t = DebugTriangulation(pts, edges)
t.triangulate()
|