File: transform.py

package info (click to toggle)
python-vispy 0.6.6-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 21,240 kB
  • sloc: python: 57,407; javascript: 6,810; makefile: 63; sh: 5
file content (229 lines) | stat: -rw-r--r-- 6,948 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# Copyright (c) 2014, Nicolas P. Rougier. All rights reserved.
# Distributed under the terms of the new BSD License.
# -----------------------------------------------------------------------------
import re
import math
import numpy as np

# ------------------------------------------------------------------ Matrix ---


class Matrix(object):

    def __init__(self, a=1, b=0, c=0, d=1, e=0, f=0):
        self._matrix = np.array([[a, c, e],
                                 [b, d, f],
                                 [0, 0, 1]], dtype=float)

    @property
    def matrix(self):
        return self._matrix

    def __array__(self, *args):
        return self._matrix

    def __repr__(self):
        a, c, e = self._matrix[0]
        b, d, f = self._matrix[1]
        return "Matrix(%g,%g,%g,%g,%g,%g)" % (a, b, c, d, e, f)


# ---------------------------------------------------------------- Identity ---
class Identity(Matrix):

    def __init__(self):
        Matrix.__init__(self)
        self._matrix[...] = ([[1, 0, 0],
                              [0, 1, 0],
                              [0, 0, 1]])

    def __repr__(self):
        return "Identity()"


# --------------------------------------------------------------- Translate ---
class Translate(Matrix):

    """
    Translation is equivalent to the matrix [1 0 0 1 tx ty], where tx and ty
    are the distances to translate coordinates in X and Y, respectively.
    """

    def __init__(self, x, y=0):
        Matrix.__init__(self)
        self._x, self._y = x, y
        self._matrix[...] = ([[1, 0, x],
                              [0, 1, y],
                              [0, 0, 1]])

    def __repr__(self):
        return "Translate(%g,%g)" % (self._x, self._y)


# ------------------------------------------------------------------- Scale ---
class Scale(Matrix):

    """
    Scaling is equivalent to the matrix [sx 0 0 sy 0 0]. One unit in the X and
    Y directions in the new coordinate system equals sx and sy units in the
    previous coordinate system, respectively.
    """

    def __init__(self, x, y=0):
        Matrix.__init__(self)
        self._x = x
        self._y = y or x
        self._matrix[...] = ([[x, 0, 0],
                              [0, y, 0],
                              [0, 0, 1]])

    def __repr__(self):
        return "Scale(%g,%g)" % (self._x, self._y)


# ------------------------------------------------------------------- Scale ---
class Rotate(Matrix):

    """
    Rotation about the origin is equivalent to the matrix [cos(a) sin(a)
    -sin(a) cos(a) 0 0], which has the effect of rotating the coordinate system
    axes by angle a.
    """

    def __init__(self, angle, x=0, y=0):
        Matrix.__init__(self)
        self._angle = angle
        self._x = x
        self._y = y

        angle = math.pi * angle / 180.0
        rotate = np.array([[math.cos(angle), -math.sin(angle), 0],
                           [math.sin(angle),  math.cos(angle), 0],
                           [0, 0, 1]], dtype=float)
        forward = np.array([[1, 0, x],
                            [0, 1, y],
                            [0, 0, 1]], dtype=float)
        inverse = np.array([[1, 0, -x],
                            [0, 1, -y],
                            [0, 0, 1]], dtype=float)
        self._matrix = np.dot(inverse, np.dot(rotate, forward))

    def __repr__(self):
        return "Rotate(%g,%g,%g)" % (self._angle, self._x, self._y)


# ------------------------------------------------------------------- SkewX ---
class SkewX(Matrix):

    """
    A skew transformation along the x-axis is equivalent to the matrix [1 0
    tan(a) 1 0 0], which has the effect of skewing X coordinates by angle a.
    """

    def __init__(self, angle):
        Matrix.__init__(self)
        self._angle = angle
        angle = math.pi * angle / 180.0
        self._matrix[...] = ([[1, math.tan(angle), 0],
                              [0, 1, 0],
                              [0, 0, 1]])

    def __repr__(self):
        return "SkewX(%g)" % (self._angle)


# ------------------------------------------------------------------- SkewY ---
class SkewY(Matrix):

    """
    A skew transformation along the y-axis is equivalent to the matrix [1
    tan(a) 0 1 0 0], which has the effect of skewing Y coordinates by angle a.
    """

    def __init__(self, angle):
        Matrix.__init__(self)
        self._angle = angle
        angle = math.pi * angle / 180.0
        self._matrix[...] = ([[1, 0, 0],
                              [math.tan(angle), 1, 0],
                              [0, 0, 1]])

    def __repr__(self):
        return "SkewY(%g)" % (self._angle)


# --------------------------------------------------------------- Transform ---
class Transform(object):

    """
    A Transform is defined as a list of transform definitions, which are
    applied in the order provided. The individual transform definitions are
    separated by whitespace and/or a comma.
    """

    def __init__(self, content=""):
        self._transforms = []
        if not content:
            return

        converters = {"matrix":    Matrix,
                      "scale":     Scale,
                      "rotate":    Rotate,
                      "translate": Translate,
                      "skewx":     SkewX,
                      "skewy":     SkewY}
        keys = "|".join(converters.keys())
        pattern = r"(?P<name>%s)\s*\((?P<args>[^)]*)\)" % keys

        for match in re.finditer(pattern, content):
            name = match.group("name").strip()
            args = match.group("args").strip().replace(',', ' ')
            args = [float(value) for value in args.split()]
            transform = converters[name](*args)
            self._transforms.append(transform)

    def __add__(self, other):
        T = Transform()
        T._transforms.extend(self._transforms)
        T._transforms.extend(other._transforms)
        return T

    def __radd__(self, other):
        self._transforms.extend(other._transforms)
        return self

    @property
    def matrix(self):
        M = np.eye(3)
        for transform in self._transforms:
            M = np.dot(M, transform)
        return M

    def __array__(self, *args):
        return self._matrix

    def __repr__(self):
        s = ""
        for i in range(len(self._transforms)):
            s += repr(self._transforms[i])
            if i < len(self._transforms) - 1:
                s += ", "
        return s

    @property
    def xml(self):
        return self._xml()

    def _xml(self, prefix=""):

        identity = True
        for transform in self._transforms:
            if not isinstance(transform, Identity):
                identity = False
                break
        if identity:
            return ""

        return 'transform="%s" ' % repr(self)