File: array_list.py

package info (click to toggle)
python-vispy 0.6.6-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 21,240 kB
  • sloc: python: 57,407; javascript: 6,810; makefile: 63; sh: 5
file content (415 lines) | stat: -rw-r--r-- 14,134 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# Copyright (c) 2014, Nicolas P. Rougier. All rights reserved.
# Distributed under the terms of the new BSD License.
# -----------------------------------------------------------------------------
"""
An ArrayList is a strongly typed list whose type can be anything that can be
interpreted as a numpy data type.

Example
-------

>>> L = ArrayList( [[0], [1,2], [3,4,5], [6,7,8,9]] )
>>> print L
[ [0] [1 2] [3 4 5] [6 7 8 9] ]
>>> print L.data
[0 1 2 3 4 5 6 7 8 9]

You can add several items at once by specifying common or individual size: a
single scalar means all items are the same size while a list of sizes is used
to specify individual item sizes.

Example
-------

>>> L = ArrayList( np.arange(10), [3,3,4])
>>> print L
[ [0 1 2] [3 4 5] [6 7 8 9] ]
>>> print L.data
[0 1 2 3 4 5 6 7 8 9]
"""
import numpy as np


class ArrayList(object):

    """
    An ArrayList is a strongly typed list whose type can be anything that can
    be interpreted as a numpy data type.
    """

    def __init__(self, data=None, itemsize=None, dtype=float,
                 sizeable=True, writeable=True):
        """ Create a new buffer using given data and sizes or dtype

        Parameters
        ----------

        data : array_like
            An array, any object exposing the array interface, an object
            whose __array__ method returns an array, or any (nested) sequence.

        itemsize:  int or 1-D array
            If `itemsize is an integer, N, the array will be divided
            into elements of size N. If such partition is not possible,
            an error is raised.

            If `itemsize` is 1-D array, the array will be divided into
            elements whose succesive sizes will be picked from itemsize.
            If the sum of itemsize values is different from array size,
            an error is raised.

        dtype: np.dtype
            Any object that can be interpreted as a numpy data type.

        sizeable : boolean
            Indicate whether item can be appended/inserted/deleted

        writeable : boolean
            Indicate whether content can be changed
        """

        self._sizeable = sizeable
        self._writeable = writeable

        if data is not None:
            if isinstance(data, (list, tuple)):
                if isinstance(data[0], (list, tuple)):
                    itemsize = [len(sublist) for sublist in data]
                    data = [item for sublist in data for item in sublist]
            self._data = np.array(data, copy=False)
            self._size = self._data.size

            # Default is one group with all data inside
            _itemsize = np.ones(1) * self._data.size

            # Check item sizes and get items count
            if itemsize is not None:
                if isinstance(itemsize, int):
                    if (self._size % itemsize) != 0:
                        raise ValueError("Cannot partition data as requested")
                    self._count = self._size // itemsize
                    _itemsize = np.ones(
                        self._count, dtype=int) * (self._size // self._count)
                else:
                    _itemsize = np.array(itemsize, copy=False)
                    self._count = len(itemsize)
                    if _itemsize.sum() != self._size:
                        raise ValueError("Cannot partition data as requested")
            else:
                self._count = 1

            # Store items
            self._items = np.zeros((self._count, 2), int)
            C = _itemsize.cumsum()
            self._items[1:, 0] += C[:-1]
            self._items[0:, 1] += C

        else:
            self._data = np.zeros(1, dtype=dtype)
            self._items = np.zeros((1, 2), dtype=int)
            self._size = 0
            self._count = 0

    @property
    def data(self):
        """ The array's elements, in memory. """
        return self._data[:self._size]

    @property
    def size(self):
        """ Number of base elements, in memory. """
        return self._size

    @property
    def itemsize(self):
        """ Individual item sizes """
        return self._items[:self._count, 1] - self._items[:self._count, 0]

    @property
    def dtype(self):
        """ Describes the format of the elements in the buffer. """
        return self._data.dtype

    def reserve(self, capacity):
        """ Set current capacity of the underlying array"""

        if capacity >= self._data.size:
            capacity = int(2 ** np.ceil(np.log2(capacity)))
            self._data = np.resize(self._data, capacity)

    def __len__(self):
        """ x.__len__() <==> len(x) """
        return self._count

    def __str__(self):
        s = '[ '
        for item in self:
            s += str(item) + ' '
        s += ']'
        return s

    def __getitem__(self, key):
        """ x.__getitem__(y) <==> x[y] """

        if isinstance(key, int):
            if key < 0:
                key += len(self)
            if key < 0 or key >= len(self):
                raise IndexError("Tuple index out of range")
            dstart = self._items[key][0]
            dstop = self._items[key][1]
            return self._data[dstart:dstop]

        elif isinstance(key, slice):
            istart, istop, step = key.indices(len(self))
            if istart > istop:
                istart, istop = istop, istart
            dstart = self._items[istart][0]
            if istart == istop:
                dstop = dstart
            else:
                dstop = self._items[istop - 1][1]
            return self._data[dstart:dstop]

        elif isinstance(key, str):
            return self._data[key][:self._size]

        elif key is Ellipsis:
            return self.data

        else:
            raise TypeError("List indices must be integers")

    def __setitem__(self, key, data):
        """ x.__setitem__(i, y) <==> x[i]=y """

        if not self._writeable:
            raise AttributeError("List is not writeable")

        if isinstance(key, (int, slice)):
            if isinstance(key, int):
                if key < 0:
                    key += len(self)
                if key < 0 or key > len(self):
                    raise IndexError("List assignment index out of range")
                dstart = self._items[key][0]
                dstop = self._items[key][1]
                istart = key
            elif isinstance(key, slice):
                istart, istop, step = key.indices(len(self))
                if istart == istop:
                    return
                if istart > istop:
                    istart, istop = istop, istart
                if istart > len(self) or istop > len(self):
                    raise IndexError("Can only assign iterable")
                dstart = self._items[istart][0]
                if istart == istop:
                    dstop = dstart
                else:
                    dstop = self._items[istop - 1][1]

            if hasattr(data, "__len__"):
                if len(data) == dstop - dstart:  # or len(data) == 1:
                    self._data[dstart:dstop] = data
                else:
                    self.__delitem__(key)
                    self.insert(istart, data)
            else:  # we assume len(data) = 1
                if dstop - dstart == 1:
                    self._data[dstart:dstop] = data
                else:
                    self.__delitem__(key)
                    self.insert(istart, data)

        elif key is Ellipsis:
            self.data[...] = data

        elif isinstance(key, str):
            self._data[key][:self._size] = data

        else:
            raise TypeError("List assignment indices must be integers")

    def __delitem__(self, key):
        """ x.__delitem__(y) <==> del x[y] """

        if not self._sizeable:
            raise AttributeError("List is not sizeable")

        # Deleting a single item
        if isinstance(key, int):
            if key < 0:
                key += len(self)
            if key < 0 or key > len(self):
                raise IndexError("List deletion index out of range")
            istart, istop = key, key + 1
            dstart, dstop = self._items[key]

        # Deleting several items
        elif isinstance(key, slice):
            istart, istop, step = key.indices(len(self))
            if istart > istop:
                istart, istop = istop, istart
            if istart == istop:
                return
            dstart = self._items[istart][0]
            dstop = self._items[istop - 1][1]

        elif key is Ellipsis:
            istart = 0
            istop = len(self)
            dstart = 0
            dstop = self.size
        # Error
        else:
            raise TypeError("List deletion indices must be integers")

        # Remove data
        size = self._size - (dstop - dstart)
        self._data[
            dstart:dstart + self._size - dstop] = self._data[dstop:self._size]
        self._size -= dstop - dstart

        # Remove corresponding items
        size = self._count - istop
        self._items[istart:istart + size] = self._items[istop:istop + size]

        # Update other items
        size = dstop - dstart
        self._items[istart:istop + size + 1] -= size, size
        self._count -= istop - istart

    def insert(self, index, data, itemsize=None):
        """ Insert data before index

        Parameters
        ----------

        index : int
            Index before which data will be inserted.

        data : array_like
            An array, any object exposing the array interface, an object
            whose __array__ method returns an array, or any (nested) sequence.

        itemsize:  int or 1-D array
            If `itemsize is an integer, N, the array will be divided
            into elements of size N. If such partition is not possible,
            an error is raised.

            If `itemsize` is 1-D array, the array will be divided into
            elements whose succesive sizes will be picked from itemsize.
            If the sum of itemsize values is different from array size,
            an error is raised.
        """

        if not self._sizeable:
            raise AttributeError("List is not sizeable")

        if isinstance(data, (list, tuple)) and isinstance(data[0], (list, tuple)):  # noqa
            itemsize = [len(sublist) for sublist in data]
            data = [item for sublist in data for item in sublist]

        data = np.array(data, copy=False).ravel()
        size = data.size

        # Check item size and get item number
        if itemsize is not None:
            if isinstance(itemsize, int):
                if (size % itemsize) != 0:
                    raise ValueError("Cannot partition data as requested")
                _count = size // itemsize
                _itemsize = np.ones(_count, dtype=int) * (size // _count)
            else:
                _itemsize = np.array(itemsize, copy=False)
                _count = len(itemsize)
                if _itemsize.sum() != size:
                    raise ValueError("Cannot partition data as requested")
        else:
            _count = 1

        # Check if data array is big enough and resize it if necessary
        if self._size + size >= self._data.size:
            capacity = int(2 ** np.ceil(np.log2(self._size + size)))
            self._data = np.resize(self._data, capacity)

        # Check if item array is big enough and resize it if necessary
        if self._count + _count >= len(self._items):
            capacity = int(2 ** np.ceil(np.log2(self._count + _count)))
            self._items = np.resize(self._items, (capacity, 2))

        # Check index
        if index < 0:
            index += len(self)
        if index < 0 or index > len(self):
            raise IndexError("List insertion index out of range")

        # Inserting
        if index < self._count:
            istart = index
            dstart = self._items[istart][0]
            dstop = self._items[istart][1]
            # Move data
            Z = self._data[dstart:self._size]
            self._data[dstart + size:self._size + size] = Z
            # Update moved items
            items = self._items[istart:self._count] + size
            self._items[istart + _count:self._count + _count] = items

        # Appending
        else:
            dstart = self._size
            istart = self._count

        # Only one item (faster)
        if _count == 1:
            # Store data
            self._data[dstart:dstart + size] = data
            self._size += size
            # Store data location (= item)
            self._items[istart][0] = dstart
            self._items[istart][1] = dstart + size
            self._count += 1

        # Several items
        else:
            # Store data
            dstop = dstart + size
            self._data[dstart:dstop] = data
            self._size += size

            # Store items
            items = np.ones((_count, 2), int) * dstart
            C = _itemsize.cumsum()
            items[1:, 0] += C[:-1]
            items[0:, 1] += C
            istop = istart + _count
            self._items[istart:istop] = items
            self._count += _count

    def append(self, data, itemsize=None):
        """
        Append data to the end.

        Parameters
        ----------

        data : array_like
            An array, any object exposing the array interface, an object
            whose __array__ method returns an array, or any (nested) sequence.

        itemsize:  int or 1-D array
            If `itemsize is an integer, N, the array will be divided
            into elements of size N. If such partition is not possible,
            an error is raised.

            If `itemsize` is 1-D array, the array will be divided into
            elements whose succesive sizes will be picked from itemsize.
            If the sum of itemsize values is different from array size,
            an error is raised.
        """

        self.insert(len(self), data, itemsize)