File: markers.py

package info (click to toggle)
python-vispy 0.6.6-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 21,240 kB
  • sloc: python: 57,407; javascript: 6,810; makefile: 63; sh: 5
file content (639 lines) | stat: -rw-r--r-- 21,119 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------
"""
Marker Visual and shader definitions.
"""

import numpy as np

from ..color import ColorArray
from ..gloo import VertexBuffer, _check_valid
from .shaders import Function, Variable
from .visual import Visual


vert = """
uniform float u_antialias;
uniform float u_px_scale;
uniform float u_scale;

attribute vec3 a_position;
attribute vec4 a_fg_color;
attribute vec4 a_bg_color;
attribute float a_edgewidth;
attribute float a_size;

varying vec4 v_fg_color;
varying vec4 v_bg_color;
varying float v_edgewidth;
varying float v_antialias;

void main (void) {
    $v_size = a_size * u_px_scale * u_scale;
    v_edgewidth = a_edgewidth * float(u_px_scale);
    v_antialias = u_antialias;
    v_fg_color  = a_fg_color;
    v_bg_color  = a_bg_color;
    gl_Position = $transform(vec4(a_position,1.0));
    float edgewidth = max(v_edgewidth, 1.0);
    gl_PointSize = ($v_size) + 4.*(edgewidth + 1.5*v_antialias);
}
"""


frag = """#version 120
varying vec4 v_fg_color;
varying vec4 v_bg_color;
varying float v_edgewidth;
varying float v_antialias;

void main()
{
    // Discard plotting marker body and edge if zero-size
    if ($v_size <= 0.)
        discard;

    float edgewidth = max(v_edgewidth, 1.0);
    float edgealphafactor = min(v_edgewidth, 1.0);

    float size = $v_size + 4.*(edgewidth + 1.5*v_antialias);
    // factor 6 for acute edge angles that need room as for star marker

    // The marker function needs to be linked with this shader
    float r = $marker(gl_PointCoord, size);

    // it takes into account an antialising layer
    // of size v_antialias inside the edge
    // r:
    // [-e/2-a, -e/2+a] antialising face-edge
    // [-e/2+a, e/2-a] core edge (center 0, diameter e-2a = 2t)
    // [e/2-a, e/2+a] antialising edge-background
    float t = 0.5*v_edgewidth - v_antialias;
    float d = abs(r) - t;

    vec4 edgecolor = vec4(v_fg_color.rgb, edgealphafactor*v_fg_color.a);

    if (r > 0.5*v_edgewidth + v_antialias)
    {
        // out of the marker (beyond the outer edge of the edge
        // including transition zone due to antialiasing)
        discard;
    }
    else if (d < 0.0)
    {
        // inside the width of the edge
        // (core, out of the transition zone for antialiasing)
        gl_FragColor = edgecolor;
    }
    else
    {
        if (v_edgewidth == 0.)
        {// no edge
            if (r > -v_antialias)
            {
                float alpha = 1.0 + r/v_antialias;
                alpha = exp(-alpha*alpha);
                gl_FragColor = vec4(v_bg_color.rgb, alpha*v_bg_color.a);
            }
            else
            {
                gl_FragColor = v_bg_color;
            }
        }
        else
        {
            float alpha = d/v_antialias;
            alpha = exp(-alpha*alpha);
            if (r > 0.)
            {
                // outer part of the edge: fade out into the background...
                gl_FragColor = vec4(edgecolor.rgb, alpha*edgecolor.a);
            }
            else
            {
                gl_FragColor = mix(v_bg_color, edgecolor, alpha);
            }
        }
    }
}
"""

disc = """
float disc(vec2 pointcoord, float size)
{
    float r = length((pointcoord.xy - vec2(0.5,0.5))*size);
    r -= $v_size/2.;
    return r;
}
"""


arrow = """
const float sqrt2 = sqrt(2.);
float rect(vec2 pointcoord, float size)
{
    float half_size = $v_size/2.;
    float ady = abs(pointcoord.y -.5)*size;
    float dx = (pointcoord.x -.5)*size;
    float r1 = abs(dx) + ady - half_size;
    float r2 = dx + 0.25*$v_size + ady - half_size;
    float r = max(r1,-r2);
    return r/sqrt2;//account for slanted edge and correct for width
}
"""


ring = """
float ring(vec2 pointcoord, float size)
{
    float r1 = length((pointcoord.xy - vec2(0.5,0.5))*size) - $v_size/2.;
    float r2 = length((pointcoord.xy - vec2(0.5,0.5))*size) - $v_size/4.;
    float r = max(r1,-r2);
    return r;
}
"""

clobber = """
const float sqrt3 = sqrt(3.);
float clobber(vec2 pointcoord, float size)
{
    const float PI = 3.14159265358979323846264;
    const float t1 = -PI/2;
    float circle_radius = 0.32 * $v_size;
    float center_shift = 0.36/sqrt3 * $v_size;
    //total size (horizontal) = 2*circle_radius + sqrt3*center_shirt = $v_size
    vec2  c1 = vec2(cos(t1),sin(t1))*center_shift;
    const float t2 = t1+2*PI/3;
    vec2  c2 = vec2(cos(t2),sin(t2))*center_shift;
    const float t3 = t2+2*PI/3;
    vec2  c3 = vec2(cos(t3),sin(t3))*center_shift;
    //xy is shift to center marker vertically
    vec2 xy = (pointcoord.xy-vec2(0.5,0.5))*size + vec2(0.,-0.25*center_shift);
    float r1 = length(xy - c1) - circle_radius;
    float r2 = length(xy - c2) - circle_radius;
    float r3 = length(xy - c3) - circle_radius;
    float r = min(min(r1,r2),r3);
    return r;
}
"""


square = """
float square(vec2 pointcoord, float size)
{
    float r = max(abs(pointcoord.x -.5)*size, abs(pointcoord.y -.5)*size);
    r -= $v_size/2.;
    return r;
}
"""

x_ = """
float x_(vec2 pointcoord, float size)
{
    vec2 rotcoord = vec2((pointcoord.x + pointcoord.y - 1.) / sqrt(2.),
                         (pointcoord.y - pointcoord.x) / sqrt(2.));
    //vbar
    float r1 = abs(rotcoord.x)*size - $v_size/6.;
    float r2 = abs(rotcoord.y)*size - $v_size/2.;
    float vbar = max(r1,r2);
    //hbar
    float r3 = abs(rotcoord.y)*size - $v_size/6.;
    float r4 = abs(rotcoord.x)*size - $v_size/2.;
    float hbar = max(r3,r4);
    return min(vbar, hbar);
}
"""


diamond = """
float diamond(vec2 pointcoord, float size)
{
    float r = abs(pointcoord.x -.5)*size + abs(pointcoord.y -.5)*size;
    r -= $v_size/2.;
    return r / sqrt(2.);//account for slanted edge and correct for width
}
"""


vbar = """
float vbar(vec2 pointcoord, float size)
{
    float r1 = abs(pointcoord.x - 0.5)*size - $v_size/6.;
    float r3 = abs(pointcoord.y - 0.5)*size - $v_size/2.;
    float r = max(r1,r3);
    return r;
}
"""

hbar = """
float rect(vec2 pointcoord, float size)
{
    float r2 = abs(pointcoord.y - 0.5)*size - $v_size/6.;
    float r3 = abs(pointcoord.x - 0.5)*size - $v_size/2.;
    float r = max(r2,r3);
    return r;
}
"""

cross = """
float cross(vec2 pointcoord, float size)
{
    //vbar
    float r1 = abs(pointcoord.x - 0.5)*size - $v_size/6.;
    float r2 = abs(pointcoord.y - 0.5)*size - $v_size/2.;
    float vbar = max(r1,r2);
    //hbar
    float r3 = abs(pointcoord.y - 0.5)*size - $v_size/6.;
    float r4 = abs(pointcoord.x - 0.5)*size - $v_size/2.;
    float hbar = max(r3,r4);
    return min(vbar, hbar);
}
"""


tailed_arrow = """
const float sqrt2 = sqrt(2.);
float rect(vec2 pointcoord, float size)
{
    float half_size = $v_size/2.;
    float ady = abs(pointcoord.y -.5)*size;
    float dx = (pointcoord.x -.5)*size;
    float r1 = abs(dx) + ady - half_size;
    float r2 = dx + 0.25*$v_size + ady - half_size;
    float arrow = max(r1,-r2);
    //hbar
    float upper_bottom_edges = ady - $v_size/8./sqrt2;
    float left_edge = -dx - half_size;
    float right_edge = dx + ady - half_size;
    float hbar = max(upper_bottom_edges, left_edge);
    float scale = 1.; //rescaling for slanted edge
    if (right_edge >= hbar)
    {
        hbar = right_edge;
        scale = sqrt2;
    }
    if (arrow <= hbar)
    {
        return arrow / sqrt2;//account for slanted edge and correct for width
    }
    else
    {
        return hbar / scale;
    }
}
"""


triangle_up = """
float rect(vec2 pointcoord, float size)
{
    float height = $v_size*sqrt(3.)/2.;
    float bottom = ((pointcoord.y - 0.5)*size - height/2.);
    float rotated_y = sqrt(3.)/2. * (pointcoord.x - 0.5) * size
              - 0.5 * ((pointcoord.y - 0.5)*size - height/6.) + height/6.;
    float right_edge = (rotated_y - height/2.);
    float cc_rotated_y = -sqrt(3.)/2. * (pointcoord.x - 0.5)*size
              - 0.5 * ((pointcoord.y - 0.5)*size - height/6.) + height/6.;
    float left_edge = (cc_rotated_y - height/2.);
    float slanted_edges = max(right_edge, left_edge);
    return max(slanted_edges, bottom);
}
"""

triangle_down = """
float rect(vec2 pointcoord, float size)
{
    float height = -$v_size*sqrt(3.)/2.;
    float bottom = -((pointcoord.y - 0.5)*size - height/2.);
    float rotated_y = sqrt(3.)/2. * (pointcoord.x - 0.5) * size
                - 0.5 * ((pointcoord.y - 0.5)*size - height/6.) + height/6.;
    float right_edge = -(rotated_y - height/2.);
    float cc_rotated_y = -sqrt(3.)/2. * (pointcoord.x - 0.5)*size
                - 0.5 * ((pointcoord.y - 0.5)*size - height/6.) + height/6.;
    float left_edge = -(cc_rotated_y - height/2.);
    float slanted_edges = max(right_edge, left_edge);
    return max(slanted_edges, bottom);
}
"""


star = """
float rect(vec2 pointcoord, float size)
{
    float star = -10000.;
    const float PI2_5 = 3.141592653589*2./5.;
    const float PI2_20 = 3.141592653589/10.;  //PI*2/20
    // downwards shift to that the marker center is halfway vertically
    // between the top of the upward spike (y = -v_size/2.)
    // and the bottom of one of two downward spikes
    // (y = +v_size/2.*cos(2.*pi/10.) approx +v_size/2.*0.8)
    // center is at -v_size/2.*0.1
    float shift_y = -0.05*$v_size;
    // first spike upwards,
    // rotate spike by 72 deg four times to complete the star
    for (int i = 0; i <= 4; i++)
    {
        //if not the first spike, rotate it upwards
        float x = (pointcoord.x - 0.5)*size;
        float y = (pointcoord.y - 0.5)*size;
        float spike_rot_angle = float(i) * PI2_5;
        float cosangle = cos(spike_rot_angle);
        float sinangle = sin(spike_rot_angle);
        float spike_x = x;
        float spike_y = y + shift_y;
        if (i > 0)
        {
            spike_x = cosangle * x - sinangle * (y + shift_y);
            spike_y = sinangle * x + cosangle * (y + shift_y);
        }
        // in the frame where the spike is upwards:
        // rotate 18 deg the zone x < 0 around the top of the star
        // (point whose coords are -s/2, 0 where s is the size of the marker)
        // compute y coordonates as well because
        // we do a second rotation to put the spike at its final position
        float rot_center_y = -$v_size/2.;
        float rot18x = cos(PI2_20) * spike_x
                            - sin(PI2_20) * (spike_y - rot_center_y);
        //rotate -18 deg the zone x > 0 arount the top of the star
        float rot_18x = cos(PI2_20) * spike_x
                            + sin(PI2_20) * (spike_y - rot_center_y);
        float bottom = spike_y - $v_size/10.;
        //                     max(left edge, right edge)
        float spike = max(bottom, max(rot18x, -rot_18x));
        if (i == 0)
        {// first spike, skip the rotation
            star = spike;
        }
        else // i > 0
        {
            star = min(star, spike);
        }
    }
    return star;
}
"""

# the following two markers needs x and y sizes
rect = """
float rect(vec2 pointcoord, float size)
{
    float x_boundaries = abs(pointcoord.x - 0.5)*size - $v_size.x/2.;
    float y_boundaries = abs(pointcoord.y - 0.5)*size - $v_size.y/2.;
    return max(x_boundaries, y_boundaries);
}
"""

ellipse = """
float rect(vec2 pointcoord, float size)
{
    float x = (pointcoord.x - 0.5)*size;
    float y = (pointcoord.y - 0.5)*size;
    // normalise radial distance (for edge and antialising to remain isotropic)
    // Scaling factor is the norm of the gradient of the function defining
    // the surface taken at a well chosen point on the edge of the ellipse
    // f(x, y) = (sqrt(x^2/a^2 + y^2/b^2) = 0.5 in this case
    // where a = v_size.x and b = v_size.y)
    // The well chosen point on the edge of the ellipse should be the point
    // whose normal points towards the current point.
    // Below we choose a different point whose computation
    // is simple enough to fit here.
    float f = length(vec2(x / $v_size.x, y / $v_size.y));
    // We set the default value of the norm so that
    // - near the axes (x=0 or y=0 +/- 1 pixel), the norm is correct
    //   (the computation below is unstable near the axes)
    // - if the ellipse is a circle, the norm is correct
    // - if we are deep in the interior of the ellipse the norm
    //   is set to an arbitrary value (but is not used)
    float norm = abs(x) < 1. ? 1./$v_size.y : 1./$v_size.x;
    if (f > 1e-3 && abs($v_size.x - $v_size.y) > 1e-3
        && abs(x) > 1. && abs(y) > 1.)
    {
        // Find the point x0, y0 on the ellipse which has the same hyperbola
        // coordinate in the elliptic coordinate system linked to the ellipse
        // (finding the right 'well chosen' point is too complicated)
        // Visually it's nice, even at high eccentricities, where
        // the approximation is visible but not ugly.
        float a = $v_size.x/2.;
        float b = $v_size.y/2.;
        float C = max(a, b);
        float c = min(a, b);
        float focal_length = sqrt(C*C - c*c);
        float fl2 = focal_length*focal_length;
        float x2 = x*x;
        float y2 = y*y;
        float tmp = fl2 + x2 + y2;
        float x0 = 0;
        float y0 = 0;
        if ($v_size.x > $v_size.y)
        {
            float cos2v = 0.5 * (tmp - sqrt(tmp*tmp - 4.*fl2*x2)) / fl2;
            cos2v = fract(cos2v);
            x0 = a * sqrt(cos2v);
            // v_size.x = focal_length*cosh m where m is the ellipse coordinate
            y0 = b * sqrt(1-cos2v);
            // v_size.y = focal_length*sinh m
        }
        else // $v_size.x < $v_size.y
        {//exchange x and y axis for elliptic coordinate
            float cos2v = 0.5 * (tmp - sqrt(tmp*tmp - 4.*fl2*y2)) / fl2;
            cos2v = fract(cos2v);
            x0 = a * sqrt(1-cos2v);
            // v_size.x = focal_length*sinh m where m is the ellipse coordinate
            y0 = b * sqrt(cos2v);
            // v_size.y = focal_length*cosh m
        }
        vec2 normal = vec2(2.*x0/v_size.x/v_size.x, 2.*y0/v_size.y/v_size.y);
        norm = length(normal);
    }
    return (f - 0.5) / norm;
}
"""

_marker_dict = {
    'disc': disc,
    'arrow': arrow,
    'ring': ring,
    'clobber': clobber,
    'square': square,
    'diamond': diamond,
    'vbar': vbar,
    'hbar': hbar,
    'cross': cross,
    'tailed_arrow': tailed_arrow,
    'x': x_,
    'triangle_up': triangle_up,
    'triangle_down': triangle_down,
    'star': star,
    # aliases
    'o': disc,
    '+': cross,
    's': square,
    '-': hbar,
    '|': vbar,
    '->': tailed_arrow,
    '>': arrow,
    '^': triangle_up,
    'v': triangle_down,
    '*': star,
}
marker_types = tuple(sorted(list(_marker_dict.keys())))


class MarkersVisual(Visual):
    """ Visual displaying marker symbols.
    """
    def __init__(self, **kwargs):
        self._vbo = VertexBuffer()
        self._v_size_var = Variable('varying float v_size')
        self._symbol = None
        self._marker_fun = None
        self._data = None
        self.antialias = 1
        self.scaling = False
        Visual.__init__(self, vcode=vert, fcode=frag)
        self.shared_program.vert['v_size'] = self._v_size_var
        self.shared_program.frag['v_size'] = self._v_size_var
        self.set_gl_state(depth_test=True, blend=True,
                          blend_func=('src_alpha', 'one_minus_src_alpha'))
        self._draw_mode = 'points'
        if len(kwargs) > 0:
            self.set_data(**kwargs)
        self.freeze()

    def set_data(self, pos=None, symbol='o', size=10., edge_width=1.,
                 edge_width_rel=None, edge_color='black', face_color='white',
                 scaling=False):
        """ Set the data used to display this visual.

        Parameters
        ----------
        pos : array
            The array of locations to display each symbol.
        symbol : str
            The style of symbol to draw (see Notes).
        size : float or array
            The symbol size in px.
        edge_width : float | None
            The width of the symbol outline in pixels.
        edge_width_rel : float | None
            The width as a fraction of marker size. Exactly one of
            `edge_width` and `edge_width_rel` must be supplied.
        edge_color : Color | ColorArray
            The color used to draw each symbol outline.
        face_color : Color | ColorArray
            The color used to draw each symbol interior.
        scaling : bool
            If set to True, marker scales when rezooming.

        Notes
        -----
        Allowed style strings are: disc, arrow, ring, clobber, square, diamond,
        vbar, hbar, cross, tailed_arrow, x, triangle_up, triangle_down,
        and star.
        """
        if (edge_width is not None) + (edge_width_rel is not None) != 1:
            raise ValueError('exactly one of edge_width and edge_width_rel '
                             'must be non-None')
        if edge_width is not None:
            if edge_width < 0:
                raise ValueError('edge_width cannot be negative')
        else:
            if edge_width_rel < 0:
                raise ValueError('edge_width_rel cannot be negative')
        self.symbol = symbol
        self.scaling = scaling

        edge_color = ColorArray(edge_color).rgba
        if len(edge_color) == 1:
            edge_color = edge_color[0]

        face_color = ColorArray(face_color).rgba
        if len(face_color) == 1:
            face_color = face_color[0]

        if pos is not None:
            assert (isinstance(pos, np.ndarray) and
                    pos.ndim == 2 and pos.shape[1] in (2, 3))

            n = len(pos)
            data = np.zeros(n, dtype=[('a_position', np.float32, 3),
                                      ('a_fg_color', np.float32, 4),
                                      ('a_bg_color', np.float32, 4),
                                      ('a_size', np.float32),
                                      ('a_edgewidth', np.float32)])
            data['a_fg_color'] = edge_color
            data['a_bg_color'] = face_color
            if edge_width is not None:
                data['a_edgewidth'] = edge_width
            else:
                data['a_edgewidth'] = size*edge_width_rel
            data['a_position'][:, :pos.shape[1]] = pos
            data['a_size'] = size
            self.shared_program['u_antialias'] = self.antialias  # XXX make prop
            self._data = data
            if self._symbol is not None:
                # If we have no symbol set, we skip drawing (_prepare_draw
                # returns False). This causes the GLIR queue to not flush,
                # and thus the GLIR queue fills with VBO DATA commands, resulting
                # in a "memory leak". Thus only set the VertexBuffer data if we
                # are actually going to draw.
                self._vbo.set_data(data)
                self.shared_program.bind(self._vbo)

        self.update()

    @property
    def symbol(self):
        return self._symbol

    @symbol.setter
    def symbol(self, symbol):
        if symbol == self._symbol:
            return
        if (symbol is not None and self._symbol is None and
                self._data is not None):
            # Allow user to configure symbol after a set_data call with
            # symbol=None. This can break down if the user does a consecutive
            # marker.symbol = 'disc'
            # marker.symbol = None
            # without drawing. At this point the memory leaking ensues
            # but this case is unlikely/makes no sense.
            self._vbo.set_data(self._data)
            self.shared_program.bind(self._vbo)
        self._symbol = symbol
        if symbol is None:
            self._marker_fun = None
        else:
            _check_valid('symbol', symbol, marker_types)
            self._marker_fun = Function(_marker_dict[symbol])
            self._marker_fun['v_size'] = self._v_size_var
            self.shared_program.frag['marker'] = self._marker_fun
        self.update()

    def _prepare_transforms(self, view):
        xform = view.transforms.get_transform()
        view.view_program.vert['transform'] = xform

    def _prepare_draw(self, view):
        if self._symbol is None:
            return False
        view.view_program['u_px_scale'] = view.transforms.pixel_scale
        if self.scaling:
            tr = view.transforms.get_transform('visual', 'document').simplified
            mat = tr.map(np.eye(3)) - tr.map(np.zeros((3, 3)))
            scale = np.linalg.norm(mat[:, :3])
            view.view_program['u_scale'] = scale
        else:
            view.view_program['u_scale'] = 1

    def _compute_bounds(self, axis, view):
        pos = self._data['a_position']
        if pos is None:
            return None
        if pos.shape[1] > axis:
            return (pos[:, axis].min(), pos[:, axis].max())
        else:
            return (0, 0)