File: mesh.py

package info (click to toggle)
python-vispy 0.6.6-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 21,240 kB
  • sloc: python: 57,407; javascript: 6,810; makefile: 63; sh: 5
file content (540 lines) | stat: -rw-r--r-- 17,581 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------

""" A MeshVisual Visual that uses the new shader Function.
"""

from __future__ import division

import numpy as np

from .visual import Visual
from .shaders import Function, FunctionChain
from ..gloo import VertexBuffer, IndexBuffer
from ..geometry import MeshData
from ..color import Color, get_colormap
from ..ext.six import string_types

# Shaders for lit rendering (using phong shading)
shading_vertex_template = """
varying vec3 v_normal_vec;
varying vec3 v_light_vec;
varying vec3 v_eye_vec;

varying vec4 v_ambientk;
varying vec4 v_light_color;
varying vec4 v_base_color;

void main() {
    v_ambientk = $ambientk;
    v_light_color = $light_color;
    v_base_color = $color_transform($base_color);


    vec4 pos_scene = $visual2scene($to_vec4($position));
    vec4 normal_scene = $visual2scene(vec4($normal, 1.0));
    vec4 origin_scene = $visual2scene(vec4(0.0, 0.0, 0.0, 1.0));

    normal_scene /= normal_scene.w;
    origin_scene /= origin_scene.w;

    vec3 normal = normalize(normal_scene.xyz - origin_scene.xyz);
    v_normal_vec = normal; //VARYING COPY

    vec4 pos_front = $scene2doc(pos_scene);
    pos_front.z += 0.01;
    pos_front = $doc2scene(pos_front);
    pos_front /= pos_front.w;

    vec4 pos_back = $scene2doc(pos_scene);
    pos_back.z -= 0.01;
    pos_back = $doc2scene(pos_back);
    pos_back /= pos_back.w;

    vec3 eye = normalize(pos_front.xyz - pos_back.xyz);
    v_eye_vec = eye; //VARYING COPY

    vec3 light = normalize($light_dir.xyz);
    v_light_vec = light; //VARYING COPY

    gl_Position = $transform($to_vec4($position));
}
"""

shading_fragment_template = """
varying vec3 v_normal_vec;
varying vec3 v_light_vec;
varying vec3 v_eye_vec;

varying vec4 v_ambientk;
varying vec4 v_light_color;
varying vec4 v_base_color;

void main() {
    //DIFFUSE
    float diffusek = dot(v_light_vec, v_normal_vec);
    // clamp, because 0 < theta < pi/2
    diffusek  = clamp(diffusek, 0.0, 1.0);
    vec4 diffuse_color = v_light_color * diffusek;

    //SPECULAR
    //reflect light wrt normal for the reflected ray, then
    //find the angle made with the eye
    float speculark = 0.0;
    if ($shininess > 0.) {
        speculark = dot(reflect(v_light_vec, v_normal_vec), v_eye_vec);
        speculark = clamp(speculark, 0.0, 1.0);
        //raise to the material's shininess, multiply with a
        //small factor for spread
        speculark = 20.0 * pow(speculark, 1.0 / $shininess);
    }
    vec4 specular_color = v_light_color * speculark;
    gl_FragColor = v_base_color * (v_ambientk + diffuse_color) + specular_color;
}
"""  # noqa

# Shader code for non lighted rendering
vertex_template = """
varying vec4 v_base_color;

void main() {
    v_base_color = $color_transform($base_color);
    gl_Position = $transform($to_vec4($position));
}
"""

fragment_template = """
varying vec4 v_base_color;
void main() {
    gl_FragColor = v_base_color;
}
"""


# Functions that can be used as is (don't have template variables)
# Consider these stored in a central location in vispy ...

vec3to4 = Function("""
vec4 vec3to4(vec3 xyz) {
    return vec4(xyz, 1.0);
}
""")

vec2to4 = Function("""
vec4 vec2to4(vec2 xyz) {
    return vec4(xyz, 0.0, 1.0);
}
""")


_null_color_transform = 'vec4 pass(vec4 color) { return color; }'
_clim = 'float cmap(float val) { return (val - $cmin) / ($cmax - $cmin); }'


# Eventually this could be de-duplicated with visuals/image.py, which does
# something similar (but takes a ``color`` instead of ``float``)
def _build_color_transform(data, cmap, clim=(0., 1.)):
    if data.ndim == 2 and data.shape[1] == 1:
        fun = Function(_clim)
        fun['cmin'] = clim[0]
        fun['cmax'] = clim[1]
        fun = FunctionChain(None, [fun, Function(cmap.glsl_map)])
    else:
        fun = Function(_null_color_transform)
    return fun


class MeshVisual(Visual):
    """Mesh visual

    Parameters
    ----------
    vertices : array-like | None
        The vertices.
    faces : array-like | None
        The faces.
    vertex_colors : array-like | None
        Colors to use for each vertex.
    face_colors : array-like | None
        Colors to use for each face.
    color : instance of Color
        The color to use.
    vertex_values : array-like | None
        The values to use for each vertex (for colormapping).
    meshdata : instance of MeshData | None
        The meshdata.
    shading : str | None
        Shading to use.
    mode : str
        The drawing mode.
    **kwargs : dict
        Keyword arguments to pass to `Visual`.
    """
    def __init__(self, vertices=None, faces=None, vertex_colors=None,
                 face_colors=None, color=(0.5, 0.5, 1, 1), vertex_values=None,
                 meshdata=None, shading=None, mode='triangles', **kwargs):

        # Function for computing phong shading
        # self._phong = Function(phong_template)

        # Visual.__init__ -> prepare_transforms() -> uses shading
        self.shading = shading

        if shading is not None:
            Visual.__init__(self, vcode=shading_vertex_template,
                            fcode=shading_fragment_template,
                            **kwargs)

        else:
            Visual.__init__(self, vcode=vertex_template,
                            fcode=fragment_template,
                            **kwargs)

        self.set_gl_state('translucent', depth_test=True,
                          cull_face=False)

        # Define buffers
        self._vertices = VertexBuffer(np.zeros((0, 3), dtype=np.float32))
        self._normals = None
        self._faces = IndexBuffer()
        self._normals = VertexBuffer(np.zeros((0, 3), dtype=np.float32))
        self._ambient_light_color = Color((0.3, 0.3, 0.3, 1.0))
        self._light_dir = (10, 5, -5)
        self._shininess = 1. / 200.
        self._cmap = get_colormap('cubehelix')
        self._clim = 'auto'

        # Uniform color
        self._color = Color(color)

        # Init
        self._bounds = None
        # Note we do not call subclass set_data -- often the signatures
        # do no match.
        MeshVisual.set_data(
            self, vertices=vertices, faces=faces, vertex_colors=vertex_colors,
            face_colors=face_colors, vertex_values=vertex_values,
            meshdata=meshdata, color=color)

        # primitive mode
        self._draw_mode = mode
        self.freeze()

    def set_data(self, vertices=None, faces=None, vertex_colors=None,
                 face_colors=None, color=None, vertex_values=None,
                 meshdata=None):
        """Set the mesh data

        Parameters
        ----------
        vertices : array-like | None
            The vertices.
        faces : array-like | None
            The faces.
        vertex_colors : array-like | None
            Colors to use for each vertex.
        face_colors : array-like | None
            Colors to use for each face.
        color : instance of Color
            The color to use.
        vertex_values : array-like | None
            Values for each vertex.
        meshdata : instance of MeshData | None
            The meshdata.
        """
        if meshdata is not None:
            self._meshdata = meshdata
        else:
            self._meshdata = MeshData(vertices=vertices, faces=faces,
                                      vertex_colors=vertex_colors,
                                      face_colors=face_colors,
                                      vertex_values=vertex_values)
        self._bounds = self._meshdata.get_bounds()
        if color is not None:
            self._color = Color(color)
        self.mesh_data_changed()

    @property
    def clim(self):
        return (self._clim if isinstance(self._clim, string_types) else
                tuple(self._clim))

    @clim.setter
    def clim(self, clim):
        if isinstance(clim, string_types):
            if clim != 'auto':
                raise ValueError('clim must be "auto" if a string')
        else:
            clim = np.array(clim, float)
            if clim.shape != (2,):
                raise ValueError('clim must have two elements')
        self._clim = clim
        self.mesh_data_changed()

    @property
    def _clim_values(self):
        if isinstance(self._clim, string_types):  # == 'auto'
            if self._meshdata.has_vertex_value():
                clim = self._meshdata.get_vertex_values()
                clim = (np.min(clim), np.max(clim))
            else:
                clim = (0, 1)
        else:
            clim = self._clim
        return clim

    @property
    def cmap(self):
        return self._cmap

    @cmap.setter
    def cmap(self, cmap):
        self._cmap = get_colormap(cmap)
        self.mesh_data_changed()

    @property
    def mode(self):
        """The triangle mode used to draw this mesh.

        Options are:

            * 'triangles': Draw one triangle for every three vertices
              (eg, [1,2,3], [4,5,6], [7,8,9)
            * 'triangle_strip': Draw one strip for every vertex excluding the
              first two (eg, [1,2,3], [2,3,4], [3,4,5])
            * 'triangle_fan': Draw each triangle from the first vertex and the
              last two vertices (eg, [1,2,3], [1,3,4], [1,4,5])
        """
        return self._draw_mode

    @mode.setter
    def mode(self, m):
        modes = ['triangles', 'triangle_strip', 'triangle_fan']
        if m not in modes:
            raise ValueError("Mesh mode must be one of %s" % ', '.join(modes))
        self._draw_mode = m

    @property
    def mesh_data(self):
        """The mesh data"""
        return self._meshdata

    @property
    def color(self):
        """The uniform color for this mesh"""
        return self._color

    @color.setter
    def color(self, c):
        """Set the uniform color of the mesh

        This value is only used if per-vertex or per-face colors are not
        specified.

        Parameters
        ----------
        c : instance of Color
            The color to use.
        """
        if c is not None:
            self._color = Color(c)
        self.mesh_data_changed()

    def mesh_data_changed(self):
        self._data_changed = True
        self.update()

    def _update_data(self):
        md = self.mesh_data
        # Update vertex/index buffers
        if self.shading == 'smooth' and not md.has_face_indexed_data():
            v = md.get_vertices()
            if v is None:
                return False
            if v.shape[-1] == 2:
                v = np.concatenate((v, np.zeros((v.shape[:-1] + (1,)))), -1)
            self._vertices.set_data(v, convert=True)
            self._normals.set_data(md.get_vertex_normals(), convert=True)
            self._faces.set_data(md.get_faces(), convert=True)
            self._index_buffer = self._faces
            if md.has_vertex_color():
                colors = md.get_vertex_colors()
                colors = colors.astype(np.float32)
            elif md.has_face_color():
                colors = md.get_face_colors()
                colors = colors.astype(np.float32)
            elif md.has_vertex_value():
                colors = md.get_vertex_values()[:, np.newaxis]
                colors = colors.astype(np.float32)
            else:
                colors = self._color.rgba
        else:
            # It might actually be slower to prefer the indexed='faces' mode.
            # It certainly adds some complexity, and I'm not sure what the
            # benefits are, or if they justify this additional complexity.
            v = md.get_vertices(indexed='faces')
            if v is None:
                return False
            if v.shape[-1] == 2:
                v = np.concatenate((v, np.zeros((v.shape[:-1] + (1,)))), -1)
            self._vertices.set_data(v, convert=True)
            if self.shading == 'smooth':
                normals = md.get_vertex_normals(indexed='faces')
                self._normals.set_data(normals, convert=True)
            elif self.shading == 'flat':
                normals = md.get_face_normals(indexed='faces')
                self._normals.set_data(normals, convert=True)
            else:
                self._normals.set_data(np.zeros((0, 3), dtype=np.float32))
            self._index_buffer = None
            if md.has_vertex_color():
                colors = md.get_vertex_colors(indexed='faces')
                colors = colors.astype(np.float32)
            elif md.has_face_color():
                colors = md.get_face_colors(indexed='faces')
                colors = colors.astype(np.float32)
            elif md.has_vertex_value():
                colors = md.get_vertex_values(indexed='faces')
                colors = colors.ravel()[:, np.newaxis]
                colors = colors.astype(np.float32)
            else:
                colors = self._color.rgba
        self.shared_program.vert['position'] = self._vertices

        self.shared_program['texture2D_LUT'] = self._cmap.texture_lut() \
            if (hasattr(self._cmap, 'texture_lut')) else None

        # Position input handling
        if v.shape[-1] == 2:
            self.shared_program.vert['to_vec4'] = vec2to4
        elif v.shape[-1] == 3:
            self.shared_program.vert['to_vec4'] = vec3to4
        else:
            raise TypeError("Vertex data must have shape (...,2) or (...,3).")

        # Shading and colors
        #
        # If non-lit shading is used, then just pass the colors
        # Otherwise, the shader uses a base_color to represent the underlying
        # color, which is then lit with the lighting model
        self.shared_program.vert['color_transform'] = \
            _build_color_transform(colors, self._cmap, self._clim_values)
        if colors.ndim == 1:
            self.shared_program.vert['base_color'] = colors
        else:
            self.shared_program.vert['base_color'] = VertexBuffer(colors)
        if self.shading is not None:
            # Normal data comes via vertex shader
            if self._normals.size > 0:
                normals = self._normals
            else:
                normals = (1., 0., 0.)

            self.shared_program.vert['normal'] = normals

            # Additional phong properties
            self.shared_program.vert['light_dir'] = self._light_dir
            self.shared_program.vert['light_color'] = (1.0, 1.0, 1.0, 1.0)
            self.shared_program.vert['ambientk'] = \
                self._ambient_light_color.rgba
            self.shared_program.frag['shininess'] = self._shininess

        self._data_changed = False

    @property
    def shininess(self):
        """The shininess"""
        return self._shininess

    @shininess.setter
    def shininess(self, shine):
        """Set the shininess

        Parameters
        ----------
        shine : float
            The shininess to use.
        """
        self._shininess = float(shine)
        self.mesh_data_changed()

    @property
    def ambient_light_color(self):
        """The ambient light color"""
        return self._ambient_light_color

    @ambient_light_color.setter
    def ambient_light_color(self, ambient):
        """Set the ambient light

        Parameters
        ----------
        color : instance of Color
            The color to use.
        """
        self._ambient_light_color = Color(ambient)
        self.mesh_data_changed()

    @property
    def light_dir(self):
        """The light direction"""
        return self._light_dir

    @light_dir.setter
    def light_dir(self, direction):
        """Set the light direction

        Parameters
        ----------
        direction : ndarray, shape (3,)
            The light direction.
        """
        direction = np.array(direction, float).ravel()
        if direction.size != 3 or not np.isfinite(direction).all():
            raise ValueError('Invalid direction %s' % direction)
        self._light_dir = tuple(direction)
        self.mesh_data_changed()

    @property
    def shading(self):
        """ The shading method used.
        """
        return self._shading

    @shading.setter
    def shading(self, value):
        assert value in (None, 'flat', 'smooth')
        self._shading = value

    def _prepare_draw(self, view):
        if self._data_changed:
            if self._update_data() is False:
                return False
            self._data_changed = False

    def draw(self, *args, **kwds):
        Visual.draw(self, *args, **kwds)

    @staticmethod
    def _prepare_transforms(view):
        tr = view.transforms.get_transform()
        view.view_program.vert['transform'] = tr  # .simplified

        if view.shading is not None:
            visual2scene = view.transforms.get_transform('visual', 'scene')
            scene2doc = view.transforms.get_transform('scene', 'document')
            doc2scene = view.transforms.get_transform('document', 'scene')
            view.shared_program.vert['visual2scene'] = visual2scene
            view.shared_program.vert['scene2doc'] = scene2doc
            view.shared_program.vert['doc2scene'] = doc2scene

    def _compute_bounds(self, axis, view):
        if self._bounds is None:
            return None
        if axis >= len(self._bounds):
            return (0, 0)
        else:
            return self._bounds[axis]