1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
|
# -*- coding: utf-8 -*-
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
from __future__ import division
import numpy as np
from ...util import transforms
from ...geometry import Rect
from ._util import arg_to_vec4, as_vec4
from .base_transform import BaseTransform
class NullTransform(BaseTransform):
""" Transform having no effect on coordinates (identity transform).
"""
glsl_map = "vec4 null_transform_map(vec4 pos) {return pos;}"
glsl_imap = "vec4 null_transform_imap(vec4 pos) {return pos;}"
Linear = True
Orthogonal = True
NonScaling = True
Isometric = True
@arg_to_vec4
def map(self, coords):
"""Map coordinates
Parameters
----------
coords : array-like
Coordinates to map.
"""
return coords
def imap(self, coords):
"""Inverse map coordinates
Parameters
----------
coords : array-like
Coordinates to inverse map.
"""
return coords
def __mul__(self, tr):
return tr
def __rmul__(self, tr):
return tr
class STTransform(BaseTransform):
""" Transform performing only scale and translate, in that order.
Parameters
----------
scale : array-like
Scale factors for X, Y, Z axes.
translate : array-like
Scale factors for X, Y, Z axes.
"""
glsl_map = """
vec4 st_transform_map(vec4 pos) {
return vec4(pos.xyz * $scale.xyz + $translate.xyz * pos.w, pos.w);
}
"""
glsl_imap = """
vec4 st_transform_imap(vec4 pos) {
return vec4((pos.xyz - $translate.xyz * pos.w) / $scale.xyz,
pos.w);
}
"""
Linear = True
Orthogonal = True
NonScaling = False
Isometric = False
def __init__(self, scale=None, translate=None):
super(STTransform, self).__init__()
self._scale = np.ones(4, dtype=np.float32)
self._translate = np.zeros(4, dtype=np.float32)
s = ((1.0, 1.0, 1.0, 1.0) if scale is None else
as_vec4(scale, default=(1., 1., 1., 1.)))
t = ((0.0, 0.0, 0.0, 0.0) if translate is None else
as_vec4(translate, default=(0., 0., 0., 0.)))
self._set_st(s, t)
self._update_shaders()
@arg_to_vec4
def map(self, coords):
"""Map coordinates
Parameters
----------
coords : array-like
Coordinates to map.
Returns
-------
coords : ndarray
Coordinates.
"""
m = np.empty(coords.shape)
m[:, :3] = (coords[:, :3] * self.scale[np.newaxis, :3] +
coords[:, 3:] * self.translate[np.newaxis, :3])
m[:, 3] = coords[:, 3]
return m
@arg_to_vec4
def imap(self, coords):
"""Invert map coordinates
Parameters
----------
coords : array-like
Coordinates to inverse map.
Returns
-------
coords : ndarray
Coordinates.
"""
m = np.empty(coords.shape)
m[:, :3] = ((coords[:, :3] -
coords[:, 3:] * self.translate[np.newaxis, :3]) /
self.scale[np.newaxis, :3])
m[:, 3] = coords[:, 3]
return m
def shader_map(self):
return self._shader_map
def shader_imap(self):
return self._shader_imap
@property
def scale(self):
return self._scale.copy()
@scale.setter
def scale(self, s):
s = as_vec4(s, default=(1, 1, 1, 1))
self._set_st(scale=s)
@property
def translate(self):
return self._translate.copy()
@translate.setter
def translate(self, t):
t = as_vec4(t, default=(0, 0, 0, 0))
self._set_st(translate=t)
def _set_st(self, scale=None, translate=None, update=True):
need_update = False
if scale is not None and not np.all(scale == self._scale):
self._scale[:] = scale
need_update = True
if translate is not None and not np.all(translate == self._translate):
self._translate[:] = translate
need_update = True
if update and need_update:
self._update_shaders()
self.update() # inform listeners there has been a change
def _update_shaders(self):
self._shader_map['scale'] = self.scale
self._shader_map['translate'] = self.translate
self._shader_imap['scale'] = self.scale
self._shader_imap['translate'] = self.translate
def move(self, move):
"""Change the translation of this transform by the amount given.
Parameters
----------
move : array-like
The values to be added to the current translation of the transform.
"""
move = as_vec4(move, default=(0, 0, 0, 0))
self.translate = self.translate + move
def zoom(self, zoom, center=(0, 0, 0), mapped=True):
"""Update the transform such that its scale factor is changed, but
the specified center point is left unchanged.
Parameters
----------
zoom : array-like
Values to multiply the transform's current scale
factors.
center : array-like
The center point around which the scaling will take place.
mapped : bool
Whether *center* is expressed in mapped coordinates (True) or
unmapped coordinates (False).
"""
zoom = as_vec4(zoom, default=(1, 1, 1, 1))
center = as_vec4(center, default=(0, 0, 0, 0))
scale = self.scale * zoom
if mapped:
trans = center - (center - self.translate) * zoom
else:
trans = self.scale * (1 - zoom) * center + self.translate
self._set_st(scale=scale, translate=trans)
def as_matrix(self):
m = MatrixTransform()
m.scale(self.scale)
m.translate(self.translate)
return m
@classmethod
def from_mapping(cls, x0, x1):
""" Create an STTransform from the given mapping
See `set_mapping` for details.
Parameters
----------
x0 : array-like
Start.
x1 : array-like
End.
Returns
-------
t : instance of STTransform
The transform.
"""
t = cls()
t.set_mapping(x0, x1)
return t
def set_mapping(self, x0, x1, update=True):
"""Configure this transform such that it maps points x0 => x1
Parameters
----------
x0 : array-like, shape (2, 2) or (2, 3)
Start location.
x1 : array-like, shape (2, 2) or (2, 3)
End location.
update : bool
If False, then the update event is not emitted.
Examples
--------
For example, if we wish to map the corners of a rectangle::
>>> p1 = [[0, 0], [200, 300]]
onto a unit cube::
>>> p2 = [[-1, -1], [1, 1]]
then we can generate the transform as follows::
>>> tr = STTransform()
>>> tr.set_mapping(p1, p2)
>>> assert tr.map(p1)[:,:2] == p2 # test
"""
# if args are Rect, convert to array first
if isinstance(x0, Rect):
x0 = x0._transform_in()[:3]
if isinstance(x1, Rect):
x1 = x1._transform_in()[:3]
x0 = np.asarray(x0)
x1 = np.asarray(x1)
if (x0.ndim != 2 or x0.shape[0] != 2 or x1.ndim != 2 or
x1.shape[0] != 2):
raise TypeError("set_mapping requires array inputs of shape "
"(2, N).")
denom = x0[1] - x0[0]
mask = denom == 0
denom[mask] = 1.0
s = (x1[1] - x1[0]) / denom
s[mask] = 1.0
s[x0[1] == x0[0]] = 1.0
t = x1[0] - s * x0[0]
s = as_vec4(s, default=(1, 1, 1, 1))
t = as_vec4(t, default=(0, 0, 0, 0))
self._set_st(scale=s, translate=t, update=update)
def __mul__(self, tr):
if isinstance(tr, STTransform):
s = self.scale * tr.scale
t = self.translate + (tr.translate * self.scale)
return STTransform(scale=s, translate=t)
elif isinstance(tr, MatrixTransform):
return self.as_matrix() * tr
else:
return super(STTransform, self).__mul__(tr)
def __rmul__(self, tr):
if isinstance(tr, MatrixTransform):
return tr * self.as_matrix()
return super(STTransform, self).__rmul__(tr)
def __repr__(self):
return ("<STTransform scale=%s translate=%s at 0x%s>"
% (self.scale, self.translate, id(self)))
class MatrixTransform(BaseTransform):
"""Affine transformation class
Parameters
----------
matrix : array-like | None
4x4 array to use for the transform.
"""
glsl_map = """
vec4 affine_transform_map(vec4 pos) {
return $matrix * pos;
}
"""
glsl_imap = """
vec4 affine_transform_imap(vec4 pos) {
return $inv_matrix * pos;
}
"""
Linear = True
Orthogonal = False
NonScaling = False
Isometric = False
def __init__(self, matrix=None):
super(MatrixTransform, self).__init__()
if matrix is not None:
self.matrix = matrix
else:
self.reset()
@arg_to_vec4
def map(self, coords):
"""Map coordinates
Parameters
----------
coords : array-like
Coordinates to map.
Returns
-------
coords : ndarray
Coordinates.
"""
# looks backwards, but both matrices are transposed.
return np.dot(coords, self.matrix)
@arg_to_vec4
def imap(self, coords):
"""Inverse map coordinates
Parameters
----------
coords : array-like
Coordinates to inverse map.
Returns
-------
coords : ndarray
Coordinates.
"""
return np.dot(coords, self.inv_matrix)
def shader_map(self):
fn = super(MatrixTransform, self).shader_map()
fn['matrix'] = self.matrix # uniform mat4
return fn
def shader_imap(self):
fn = super(MatrixTransform, self).shader_imap()
fn['inv_matrix'] = self.inv_matrix # uniform mat4
return fn
@property
def matrix(self):
return self._matrix
@matrix.setter
def matrix(self, m):
self._matrix = m
self._inv_matrix = None
self.shader_map()
self.shader_imap()
self.update()
@property
def inv_matrix(self):
if self._inv_matrix is None:
self._inv_matrix = np.linalg.inv(self.matrix)
return self._inv_matrix
@arg_to_vec4
def translate(self, pos):
"""
Translate the matrix
The translation is applied *after* the transformations already present
in the matrix.
Parameters
----------
pos : arrayndarray
Position to translate by.
"""
self.matrix = np.dot(self.matrix, transforms.translate(pos[0, :3]))
def scale(self, scale, center=None):
"""
Scale the matrix about a given origin.
The scaling is applied *after* the transformations already present
in the matrix.
Parameters
----------
scale : array-like
Scale factors along x, y and z axes.
center : array-like or None
The x, y and z coordinates to scale around. If None,
(0, 0, 0) will be used.
"""
scale = transforms.scale(as_vec4(scale, default=(1, 1, 1, 1))[0, :3])
if center is not None:
center = as_vec4(center)[0, :3]
scale = np.dot(np.dot(transforms.translate(-center), scale),
transforms.translate(center))
self.matrix = np.dot(self.matrix, scale)
def rotate(self, angle, axis):
"""
Rotate the matrix by some angle about a given axis.
The rotation is applied *after* the transformations already present
in the matrix.
Parameters
----------
angle : float
The angle of rotation, in degrees.
axis : array-like
The x, y and z coordinates of the axis vector to rotate around.
"""
self.matrix = np.dot(self.matrix, transforms.rotate(angle, axis))
def set_mapping(self, points1, points2):
""" Set to a 3D transformation matrix that maps points1 onto points2.
Parameters
----------
points1 : array-like, shape (4, 3)
Four starting 3D coordinates.
points2 : array-like, shape (4, 3)
Four ending 3D coordinates.
"""
# note: need to transpose because util.functions uses opposite
# of standard linear algebra order.
self.matrix = transforms.affine_map(points1, points2).T
def set_ortho(self, l, r, b, t, n, f): # noqa
"""Set ortho transform
Parameters
----------
l : float
Left.
r : float
Right.
b : float
Bottom.
t : float
Top.
n : float
Near.
f : float
Far.
"""
self.matrix = transforms.ortho(l, r, b, t, n, f)
def reset(self):
self.matrix = np.eye(4)
def __mul__(self, tr):
if (isinstance(tr, MatrixTransform) and not
any(tr.matrix[:3, 3] != 0)):
# don't multiply if the perspective column is used
return MatrixTransform(matrix=np.dot(tr.matrix, self.matrix))
else:
return tr.__rmul__(self)
def __repr__(self):
s = "%s(matrix=[" % self.__class__.__name__
indent = " "*len(s)
s += str(list(self.matrix[0])) + ",\n"
s += indent + str(list(self.matrix[1])) + ",\n"
s += indent + str(list(self.matrix[2])) + ",\n"
s += indent + str(list(self.matrix[3])) + "] at 0x%x)" % id(self)
return s
def set_perspective(self, fov, aspect, near, far):
"""Set the perspective
Parameters
----------
fov : float
Field of view.
aspect : float
Aspect ratio.
near : float
Near location.
far : float
Far location.
"""
self.matrix = transforms.perspective(fov, aspect, near, far)
def set_frustum(self, l, r, b, t, n, f): # noqa
"""Set the frustum
Parameters
----------
l : float
Left.
r : float
Right.
b : float
Bottom.
t : float
Top.
n : float
Near.
f : float
Far.
"""
self.matrix = transforms.frustum(l, r, b, t, n, f)
#class SRTTransform(BaseTransform):
# """ Transform performing scale, rotate, and translate, in that order.
#
# This transformation allows objects to be placed arbitrarily in a scene
# much the same way MatrixTransform does. However, an incorrect order of
# operations in MatrixTransform may result in shearing the object (if scale
# is applied after rotate) or in unpredictable translation (if scale/rotate
# is applied after translation). SRTTransform avoids these problems by
# enforcing the correct order of operations.
# """
# # TODO
|