1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
|
# -*- coding: utf-8 -*-
from __future__ import division, print_function
from itertools import permutations
import numpy as np
from collections import OrderedDict
class Triangulation(object):
"""Constrained delaunay triangulation
Implementation based on [1]_.
Parameters
----------
pts : array
Nx2 array of points.
edges : array
Nx2 array of edges (dtype=int).
Notes
-----
* Delaunay legalization is not yet implemented. This produces a proper
triangulation, but adding legalisation would produce fewer thin
triangles.
* The pts and edges arrays may be modified.
References
----------
.. [1] Domiter, V. and Žalik, B. Sweep‐line algorithm for constrained
Delaunay triangulation
"""
def __init__(self, pts, edges):
self.pts = pts[:, :2].astype(np.float32)
self.edges = edges
if self.pts.ndim != 2 or self.pts.shape[1] != 2:
raise TypeError('pts argument must be ndarray of shape (N, 2).')
if self.edges.ndim != 2 or self.edges.shape[1] != 2:
raise TypeError('edges argument must be ndarray of shape (N, 2).')
# described in initialize()
self._front = None
self.tris = OrderedDict()
self._edges_lookup = {}
def _normalize(self):
# Clean up data (not discussed in original publication)
# (i) Split intersecting edges. Every edge that intersects another
# edge or point is split. This extends self.pts and self.edges.
self._split_intersecting_edges()
# (ii) Merge identical points. If any two points are found to be equal,
# the second is removed and the edge table is updated accordingly.
self._merge_duplicate_points()
# (iii) Remove duplicate edges
# TODO
def _initialize(self):
self._normalize()
# Initialization (sec. 3.3)
# sort points by y, then x
flat_shape = self.pts.shape[0] * self.pts.shape[1]
pts = self.pts.reshape(flat_shape).view([('x', np.float32),
('y', np.float32)])
order = np.argsort(pts, order=('y', 'x'))
pts = pts[order]
# update edges to match new point order
invorder = np.argsort(order)
self.edges = invorder[self.edges]
self.pts = pts.view(np.float32).reshape(len(pts), 2)
# make artificial points P-1 and P-2
xmax = self.pts[:, 0].max()
xmin = self.pts[:, 0].min()
ymax = self.pts[:, 1].max()
ymin = self.pts[:, 1].min()
xa = (xmax-xmin) * 0.3
ya = (ymax-ymin) * 0.3
p1 = (xmin - xa, ymin - ya)
p2 = (xmax + xa, ymin - ya)
# prepend artificial points to point list
newpts = np.empty((self.pts.shape[0]+2, 2), dtype=float)
newpts[0] = p1
newpts[1] = p2
newpts[2:] = self.pts
self.pts = newpts
self.edges += 2
# find topmost point in each edge
self._tops = self.edges.max(axis=1)
self._bottoms = self.edges.min(axis=1)
# inintialize sweep front
# values in this list are indexes into self.pts
self._front = [0, 2, 1]
# empty triangle list.
# This will contain [(a, b, c), ...] where a,b,c are indexes into
# self.pts
self.tris = OrderedDict()
# For each triangle, maps (a, b): c
# This is used to look up the thrid point in a triangle, given any
# edge. Since each edge has two triangles, they are independently
# stored as (a, b): c and (b, a): d
self._edges_lookup = {}
def triangulate(self):
"""Do the triangulation."""
self._initialize()
pts = self.pts
front = self._front
# Begin sweep (sec. 3.4)
for i in range(3, pts.shape[0]):
pi = pts[i]
# First, triangulate from front to new point
# This applies to both "point events" (3.4.1)
# and "edge events" (3.4.2).
# get index along front that intersects pts[i]
idx = 0
while pts[front[idx+1], 0] <= pi[0]:
idx += 1
pl = pts[front[idx]]
# "(i) middle case"
if pi[0] > pl[0]:
# Add a single triangle connecting pi,pl,pr
self._add_tri(front[idx], front[idx+1], i)
front.insert(idx+1, i)
# "(ii) left case"
else:
# Add triangles connecting pi,pl,ps and pi,pl,pr
self._add_tri(front[idx], front[idx+1], i)
self._add_tri(front[idx-1], front[idx], i)
front[idx] = i
# Continue adding triangles to smooth out front
# (heuristics shown in figs. 9, 10)
for direction in -1, 1:
while True:
# Find point connected to pi
ind0 = front.index(i)
ind1 = ind0 + direction
ind2 = ind1 + direction
if ind2 < 0 or ind2 >= len(front):
break
# measure angle made with front
p1 = pts[front[ind1]]
p2 = pts[front[ind2]]
err = np.geterr()
np.seterr(invalid='ignore')
try:
angle = np.arccos(self._cosine(pi, p1, p2))
finally:
np.seterr(**err)
# if angle is < pi/2, make new triangle
if angle > np.pi/2. or np.isnan(angle):
break
assert (i != front[ind1] and
front[ind1] != front[ind2] and
front[ind2] != i)
self._add_tri(i, front[ind1], front[ind2])
front.pop(ind1)
# "edge event" (sec. 3.4.2)
# remove any triangles cut by completed edges and re-fill
# the holes.
if i in self._tops:
for j in self._bottoms[self._tops == i]:
# Make sure edge (j, i) is present in mesh
# because edge event may have created a new front list
self._edge_event(i, j)
front = self._front
self._finalize()
self.tris = np.array(list(self.tris.keys()), dtype=int)
def _finalize(self):
# Finalize (sec. 3.5)
# (i) Add bordering triangles to fill hull
front = list(OrderedDict.fromkeys(self._front))
idx = len(front) - 2
k = 1
while k < idx-1:
# if edges lie in counterclockwise direction, then signed area
# is positive
if self._iscounterclockwise(front[k], front[k+1], front[k+2]):
self._add_tri(front[k], front[k+1], front[k+2])
front.pop(k+1)
idx -= 1
continue
k += 1
# (ii) Remove all triangles not inside the hull
# (not described in article)
tris = [] # triangles to check
tri_state = {} # 0 for outside, 1 for inside
# find a starting triangle
for t in self.tris:
if 0 in t or 1 in t:
tri_state[t] = 0
tris.append(t)
break
while tris:
next_tris = []
for t in tris:
v = tri_state[t]
for i in (0, 1, 2):
edge = (t[i], t[(i + 1) % 3])
pt = t[(i + 2) % 3]
t2 = self._adjacent_tri(edge, pt)
if t2 is None:
continue
t2a = t2[1:3] + t2[0:1]
t2b = t2[2:3] + t2[0:2]
if t2 in tri_state or t2a in tri_state or t2b in tri_state:
continue
if self._is_constraining_edge(edge):
tri_state[t2] = 1 - v
else:
tri_state[t2] = v
next_tris.append(t2)
tris = next_tris
for t, v in tri_state.items():
if v == 0:
self._remove_tri(*t)
def _edge_event(self, i, j):
"""Force edge (i, j) to be present in mesh.
This works by removing intersected triangles and filling holes up to
the cutting edge.
"""
front_index = self._front.index(i)
front = self._front
# First just see whether this edge is already present
# (this is not in the published algorithm)
if (i, j) in self._edges_lookup or (j, i) in self._edges_lookup:
return
# traverse in two different modes:
# 1. If cutting edge is below front, traverse through triangles. These
# must be removed and the resulting hole re-filled. (fig. 12)
# 2. If cutting edge is above the front, then follow the front until
# crossing under again. (fig. 13)
# We must be able to switch back and forth between these
# modes (fig. 14)
# Collect points that draw the open polygons on either side of the
# cutting edge. Note that our use of 'upper' and 'lower' is not strict;
# in some cases the two may be swapped.
upper_polygon = [i]
lower_polygon = [i]
# Keep track of which section of the front must be replaced
# and with what it should be replaced
front_holes = [] # contains indexes for sections of front to remove
next_tri = None # next triangle to cut (already set if in mode 1)
last_edge = None # or last triangle edge crossed (if in mode 1)
# Which direction to traverse front
front_dir = 1 if self.pts[j][0] > self.pts[i][0] else -1
# Initialize search state
if self._edge_below_front((i, j), front_index):
mode = 1 # follow triangles
tri = self._find_cut_triangle((i, j))
last_edge = self._edge_opposite_point(tri, i)
next_tri = self._adjacent_tri(last_edge, i)
assert next_tri is not None
self._remove_tri(*tri)
# todo: does this work? can we count on last_edge to be clockwise
# around point i?
lower_polygon.append(last_edge[1])
upper_polygon.append(last_edge[0])
else:
mode = 2 # follow front
# Loop until we reach point j
while True:
if mode == 1:
# crossing from one triangle into another
if j in next_tri:
# reached endpoint!
# update front / polygons
upper_polygon.append(j)
lower_polygon.append(j)
self._remove_tri(*next_tri)
break
else:
# next triangle does not contain the end point; we will
# cut one of the two far edges.
tri_edges = self._edges_in_tri_except(next_tri, last_edge)
# select the edge that is cut
last_edge = self._intersected_edge(tri_edges, (i, j))
last_tri = next_tri
next_tri = self._adjacent_tri(last_edge, last_tri)
self._remove_tri(*last_tri)
# Crossing an edge adds one point to one of the polygons
if lower_polygon[-1] == last_edge[0]:
upper_polygon.append(last_edge[1])
elif lower_polygon[-1] == last_edge[1]:
upper_polygon.append(last_edge[0])
elif upper_polygon[-1] == last_edge[0]:
lower_polygon.append(last_edge[1])
elif upper_polygon[-1] == last_edge[1]:
lower_polygon.append(last_edge[0])
else:
raise RuntimeError("Something went wrong..")
# If we crossed the front, go to mode 2
x = self._edge_in_front(last_edge)
if x >= 0: # crossing over front
mode = 2
next_tri = None
# where did we cross the front?
# nearest to new point
front_index = x + (1 if front_dir == -1 else 0)
# Select the correct polygon to be lower_polygon
# (because mode 2 requires this).
# We know that last_edge is in the front, and
# front[front_index] is the point _above_ the front.
# So if this point is currently the last element in
# lower_polygon, then the polys must be swapped.
if lower_polygon[-1] == front[front_index]:
tmp = lower_polygon, upper_polygon
upper_polygon, lower_polygon = tmp
else:
assert upper_polygon[-1] == front[front_index]
else:
assert next_tri is not None
else: # mode == 2
# At each iteration, we require:
# * front_index is the starting index of the edge _preceding_
# the edge that will be handled in this iteration
# * lower_polygon is the polygon to which points should be
# added while traversing the front
front_index += front_dir
next_edge = (front[front_index], front[front_index+front_dir])
assert front_index >= 0
if front[front_index] == j:
# found endpoint!
lower_polygon.append(j)
upper_polygon.append(j)
break
# Add point to lower_polygon.
# The conditional is because there are cases where the
# point was already added if we just crossed from mode 1.
if lower_polygon[-1] != front[front_index]:
lower_polygon.append(front[front_index])
front_holes.append(front_index)
if self._edges_intersect((i, j), next_edge):
# crossing over front into triangle
mode = 1
last_edge = next_edge
# we are crossing the front, so this edge only has one
# triangle.
next_tri = self._tri_from_edge(last_edge)
upper_polygon.append(front[front_index+front_dir])
# (iii) triangluate empty areas
for polygon in [lower_polygon, upper_polygon]:
dist = self._distances_from_line((i, j), polygon)
while len(polygon) > 2:
ind = np.argmax(dist)
self._add_tri(polygon[ind], polygon[ind-1],
polygon[ind+1])
polygon.pop(ind)
dist.pop(ind)
# update front by removing points in the holes (places where front
# passes below the cut edge)
front_holes.sort(reverse=True)
for i in front_holes:
front.pop(i)
def _find_cut_triangle(self, edge):
"""
Return the triangle that has edge[0] as one of its vertices and is
bisected by edge.
Return None if no triangle is found.
"""
edges = [] # opposite edge for each triangle attached to edge[0]
for tri in self.tris:
if edge[0] in tri:
edges.append(self._edge_opposite_point(tri, edge[0]))
for oedge in edges:
o1 = self._orientation(edge, oedge[0])
o2 = self._orientation(edge, oedge[1])
if o1 != o2:
return (edge[0], oedge[0], oedge[1])
return None
def _edge_in_front(self, edge):
"""Return the index where *edge* appears in the current front.
If the edge is not in the front, return -1
"""
e = (list(edge), list(edge)[::-1])
for i in range(len(self._front)-1):
if self._front[i:i+2] in e:
return i
return -1
def _edge_opposite_point(self, tri, i):
"""Given a triangle, return the edge that is opposite point i.
Vertexes are returned in the same orientation as in tri.
"""
ind = tri.index(i)
return (tri[(ind+1) % 3], tri[(ind+2) % 3])
def _adjacent_tri(self, edge, i):
"""Given a triangle formed by edge and i, return the triangle that shares
edge. *i* may be either a point or the entire triangle.
"""
if not np.isscalar(i):
i = [x for x in i if x not in edge][0]
try:
pt1 = self._edges_lookup[edge]
pt2 = self._edges_lookup[(edge[1], edge[0])]
except KeyError:
return None
if pt1 == i:
return (edge[1], edge[0], pt2)
elif pt2 == i:
return (edge[1], edge[0], pt1)
else:
raise RuntimeError("Edge %s and point %d do not form a triangle "
"in this mesh." % (edge, i))
def _tri_from_edge(self, edge):
"""Return the only tri that contains *edge*.
If two tris share this edge, raise an exception.
"""
edge = tuple(edge)
p1 = self._edges_lookup.get(edge, None)
p2 = self._edges_lookup.get(edge[::-1], None)
if p1 is None:
if p2 is None:
raise RuntimeError("No tris connected to edge %r" % (edge,))
return edge + (p2,)
elif p2 is None:
return edge + (p1,)
else:
raise RuntimeError("Two triangles connected to edge %r" % (edge,))
def _edges_in_tri_except(self, tri, edge):
"""Return the edges in *tri*, excluding *edge*."""
edges = [(tri[i], tri[(i+1) % 3]) for i in range(3)]
try:
edges.remove(tuple(edge))
except ValueError:
edges.remove(tuple(edge[::-1]))
return edges
def _edge_below_front(self, edge, front_index):
"""Return True if *edge* is below the current front.
One of the points in *edge* must be _on_ the front, at *front_index*.
"""
f0 = self._front[front_index-1]
f1 = self._front[front_index+1]
return (self._orientation(edge, f0) > 0 and
self._orientation(edge, f1) < 0)
def _is_constraining_edge(self, edge):
mask1 = self.edges == edge[0]
mask2 = self.edges == edge[1]
return (np.any(mask1[:, 0] & mask2[:, 1]) or
np.any(mask2[:, 0] & mask1[:, 1]))
def _intersected_edge(self, edges, cut_edge):
""" Given a list of *edges*, return the first that is intersected by
*cut_edge*.
"""
for edge in edges:
if self._edges_intersect(edge, cut_edge):
return edge
def _find_edge_intersections(self):
"""Return a dictionary containing, for each edge in self.edges, a list
of the positions at which the edge should be split.
"""
edges = self.pts[self.edges]
cuts = {} # { edge: [(intercept, point), ...], ... }
for i in range(edges.shape[0]-1):
# intersection of edge i onto all others
int1 = self._intersect_edge_arrays(edges[i:i+1], edges[i+1:])
# intersection of all edges onto edge i
int2 = self._intersect_edge_arrays(edges[i+1:], edges[i:i+1])
# select for pairs that intersect
err = np.geterr()
np.seterr(divide='ignore', invalid='ignore')
try:
mask1 = (int1 >= 0) & (int1 <= 1)
mask2 = (int2 >= 0) & (int2 <= 1)
mask3 = mask1 & mask2 # all intersections
finally:
np.seterr(**err)
# compute points of intersection
inds = np.argwhere(mask3)[:, 0]
if len(inds) == 0:
continue
h = int2[inds][:, np.newaxis]
pts = (edges[i, 0][np.newaxis, :] * (1.0 - h) +
edges[i, 1][np.newaxis, :] * h)
# record for all edges the location of cut points
edge_cuts = cuts.setdefault(i, [])
for j, ind in enumerate(inds):
if 0 < int2[ind] < 1:
edge_cuts.append((int2[ind], pts[j]))
if 0 < int1[ind] < 1:
other_cuts = cuts.setdefault(ind+i+1, [])
other_cuts.append((int1[ind], pts[j]))
# sort all cut lists by intercept, remove duplicates
for k, v in cuts.items():
v.sort(key=lambda x: x[0])
for i in range(len(v)-2, -1, -1):
if v[i][0] == v[i+1][0]:
v.pop(i+1)
return cuts
def _split_intersecting_edges(self):
# we can do all intersections at once, but this has excessive memory
# overhead.
# measure intersection point between all pairs of edges
all_cuts = self._find_edge_intersections()
# cut edges at each intersection
add_pts = []
add_edges = []
for edge, cuts in all_cuts.items():
if len(cuts) == 0:
continue
# add new points
pt_offset = self.pts.shape[0] + len(add_pts)
new_pts = [x[1] for x in cuts]
add_pts.extend(new_pts)
# list of point indexes for all new edges
pt_indexes = list(range(pt_offset, pt_offset + len(cuts)))
pt_indexes.append(self.edges[edge, 1])
# modify original edge
self.edges[edge, 1] = pt_indexes[0]
# add new edges
new_edges = [[pt_indexes[i-1], pt_indexes[i]]
for i in range(1, len(pt_indexes))]
add_edges.extend(new_edges)
if add_pts:
add_pts = np.array(add_pts, dtype=self.pts.dtype)
self.pts = np.append(self.pts, add_pts, axis=0)
if add_edges:
add_edges = np.array(add_edges, dtype=self.edges.dtype)
self.edges = np.append(self.edges, add_edges, axis=0)
def _merge_duplicate_points(self):
# generate a list of all pairs (i,j) of identical points
dups = []
for i in range(self.pts.shape[0]-1):
test_pt = self.pts[i:i+1]
comp_pts = self.pts[i+1:]
eq = test_pt == comp_pts
eq = eq[:, 0] & eq[:, 1]
for j in np.argwhere(eq)[:, 0]:
dups.append((i, i+1+j))
dups_arr = np.array(dups)
# remove duplicate points
pt_mask = np.ones(self.pts.shape[0], dtype=bool)
for i, inds in enumerate(dups_arr):
# remove j from points
# (note we pull the index from the original dups instead of
# dups_arr because the indexes in pt_mask do not change)
pt_mask[dups[i][1]] = False
i, j = inds
# rewrite edges to use i instead of j
self.edges[self.edges == j] = i
# decrement all point indexes > j
self.edges[self.edges > j] -= 1
dups_arr[dups_arr > j] -= 1
self.pts = self.pts[pt_mask]
# remove zero-length edges
mask = self.edges[:, 0] != self.edges[:, 1]
self.edges = self.edges[mask]
def _distances_from_line(self, edge, points):
# Distance of a set of points from a given line
e1 = self.pts[edge[0]]
e2 = self.pts[edge[1]]
distances = []
for i in points:
p = self.pts[i]
proj = self._projection(e1, p, e2)
distances.append(((p - proj)**2).sum()**0.5)
assert distances[0] == 0 and distances[-1] == 0
return distances
def _projection(self, a, b, c):
"""Return projection of (a,b) onto (a,c)
Arguments are point locations, not indexes.
"""
ab = b - a
ac = c - a
return a + ((ab*ac).sum() / (ac*ac).sum()) * ac
def _cosine(self, A, B, C):
# Cosine of angle ABC
a = ((C - B)**2).sum()
b = ((C - A)**2).sum()
c = ((B - A)**2).sum()
d = (a + c - b) / ((4 * a * c)**0.5)
return d
def _iscounterclockwise(self, a, b, c):
# Check if the points lie in counter-clockwise order or not
A = self.pts[a]
B = self.pts[b]
C = self.pts[c]
return np.cross(B-A, C-B) > 0
def _edges_intersect(self, edge1, edge2):
"""
Return 1 if edges intersect completely (endpoints excluded)
"""
h12 = self._intersect_edge_arrays(self.pts[np.array(edge1)],
self.pts[np.array(edge2)])
h21 = self._intersect_edge_arrays(self.pts[np.array(edge2)],
self.pts[np.array(edge1)])
err = np.geterr()
np.seterr(divide='ignore', invalid='ignore')
try:
out = (0 < h12 < 1) and (0 < h21 < 1)
finally:
np.seterr(**err)
return out
def _intersect_edge_arrays(self, lines1, lines2):
"""Return the intercepts of all lines defined in *lines1* as they
intersect all lines in *lines2*.
Arguments are of shape (..., 2, 2), where axes are:
0: number of lines
1: two points per line
2: x,y pair per point
Lines are compared elementwise across the arrays (lines1[i] is compared
against lines2[i]). If one of the arrays has N=1, then that line is
compared against all lines in the other array.
Returns an array of shape (N,) where each value indicates the intercept
relative to the defined line segment. A value of 0 indicates
intersection at the first endpoint, and a value of 1 indicates
intersection at the second endpoint. Values between 1 and 0 are on the
segment, whereas values outside 1 and 0 are off of the segment.
"""
# vector for each line in lines1
l1 = lines1[..., 1, :] - lines1[..., 0, :]
# vector for each line in lines2
l2 = lines2[..., 1, :] - lines2[..., 0, :]
# vector between first point of each line
diff = lines1[..., 0, :] - lines2[..., 0, :]
p = l1.copy()[..., ::-1] # vectors perpendicular to l1
p[..., 0] *= -1
f = (l2 * p).sum(axis=-1) # l2 dot p
# tempting, but bad idea!
err = np.geterr()
np.seterr(divide='ignore', invalid='ignore')
try:
h = (diff * p).sum(axis=-1) / f # diff dot p / f
finally:
np.seterr(**err)
return h
def _orientation(self, edge, point):
""" Returns +1 if edge[0]->point is clockwise from edge[0]->edge[1],
-1 if counterclockwise, and 0 if parallel.
"""
v1 = self.pts[point] - self.pts[edge[0]]
v2 = self.pts[edge[1]] - self.pts[edge[0]]
c = np.cross(v1, v2) # positive if v1 is CW from v2
return 1 if c > 0 else (-1 if c < 0 else 0)
def _add_tri(self, a, b, c):
# sanity check
assert a != b and b != c and c != a
# ignore flat tris
pa = self.pts[a]
pb = self.pts[b]
pc = self.pts[c]
if np.all(pa == pb) or np.all(pb == pc) or np.all(pc == pa):
return
# check this tri is unique
for t in permutations((a, b, c)):
if t in self.tris:
raise Exception("Cannot add %s; already have %s" %
((a, b, c), t))
# TODO: should add to edges_lookup after legalization??
if self._iscounterclockwise(a, b, c):
assert (a, b) not in self._edges_lookup
assert (b, c) not in self._edges_lookup
assert (c, a) not in self._edges_lookup
self._edges_lookup[(a, b)] = c
self._edges_lookup[(b, c)] = a
self._edges_lookup[(c, a)] = b
else:
assert (b, a) not in self._edges_lookup
assert (c, b) not in self._edges_lookup
assert (a, c) not in self._edges_lookup
self._edges_lookup[(b, a)] = c
self._edges_lookup[(c, b)] = a
self._edges_lookup[(a, c)] = b
tri = (a, b, c)
self.tris[tri] = None
def _remove_tri(self, a, b, c):
for k in permutations((a, b, c)):
if k in self.tris:
break
del self.tris[k]
(a, b, c) = k
if self._edges_lookup.get((a, b), -1) == c:
del self._edges_lookup[(a, b)]
del self._edges_lookup[(b, c)]
del self._edges_lookup[(c, a)]
elif self._edges_lookup.get((b, a), -1) == c:
del self._edges_lookup[(b, a)]
del self._edges_lookup[(a, c)]
del self._edges_lookup[(c, b)]
else:
raise RuntimeError("Lost edges_lookup for tri (%d, %d, %d)" %
(a, b, c))
return k
def _triangulate_python(vertices_2d, segments):
segments = segments.reshape(len(segments) // 2, 2)
T = Triangulation(vertices_2d, segments)
T.triangulate()
vertices_2d = T.pts
triangles = T.tris.ravel()
return vertices_2d, triangles
def _triangulate_cpp(vertices_2d, segments):
import triangle
T = triangle.triangulate({'vertices': vertices_2d,
'segments': segments}, "p")
vertices_2d = T["vertices"]
triangles = T["triangles"]
return vertices_2d, triangles
def triangulate(vertices):
"""Triangulate a set of vertices
Parameters
----------
vertices : array-like
The vertices.
Returns
-------
vertices : array-like
The vertices.
tringles : array-like
The triangles.
"""
n = len(vertices)
vertices = np.asarray(vertices)
zmean = vertices[:, 2].mean()
vertices_2d = vertices[:, :2]
segments = np.repeat(np.arange(n + 1), 2)[1:-1]
segments[-2:] = n - 1, 0
try:
import triangle # noqa: F401
except (ImportError, AssertionError):
vertices_2d, triangles = _triangulate_python(vertices_2d, segments)
else:
segments_2d = segments.reshape((-1, 2))
vertices_2d, triangles = _triangulate_cpp(vertices_2d, segments_2d)
vertices = np.empty((len(vertices_2d), 3))
vertices[:, :2] = vertices_2d
vertices[:, 2] = zmean
return vertices, triangles
|