1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
// ----------------------------------------------------------------------------
// Copyright (c) 2014, Nicolas P. Rougier. All Rights Reserved.
// Distributed under the (new) BSD License.
// ----------------------------------------------------------------------------
// Constants
// ------------------------------------
const float M_PI = 3.14159265358979323846;
const float M_SQRT2 = 1.41421356237309504880;
// Uniforms
// ------------------------------------
// Line antialias area (usually 1 pixel)
uniform float u_antialias;
// Cartesian limits
uniform vec4 u_limits1;
// Projected limits
uniform vec4 u_limits2;
// Major grid steps
uniform vec2 u_major_grid_step;
// Minor grid steps
uniform vec2 u_minor_grid_step;
// Major grid line width (1.50 pixel)
uniform float u_major_grid_width;
// Minor grid line width (0.75 pixel)
uniform float u_minor_grid_width;
// Major grid line color
uniform vec4 u_major_grid_color;
// Minor grid line color
uniform vec4 u_minor_grid_color;
// Varyings
// ------------------------------------
// Texture coordinates (from (-0.5,-0.5) to (+0.5,+0.5)
varying vec2 v_texcoord;
// Quad size (pixels)
varying vec2 v_size;
// Functions
// ------------------------------------
// Hammer forward transform
// ------------------------------------
vec2 transform_forward(vec2 P)
{
const float B = 2.0;
float longitude = P.x;
float latitude = P.y;
float cos_lat = cos(latitude);
float sin_lat = sin(latitude);
float cos_lon = cos(longitude/B);
float sin_lon = sin(longitude/B);
float d = sqrt(1.0 + cos_lat * cos_lon);
float x = (B * M_SQRT2 * cos_lat * sin_lon) / d;
float y = (M_SQRT2 * sin_lat) / d;
return vec2(x,y);
}
// Hammer inverse transform
// ------------------------------------
vec2 transform_inverse(vec2 P)
{
const float B = 2.0;
float x = P.x;
float y = P.y;
float z = 1.0 - (x*x/16.0) - (y*y/4.0);
if (z < 0.0) discard;
z = sqrt(z);
float lon = 2.0*atan( (z*x),(2.0*(2.0*z*z - 1.0)));
float lat = asin(z*y);
return vec2(lon,lat);
}
/*
// Forward transform (polar)
// ------------------------------------
vec2 transform_forward(vec2 P)
{
float x = P.x * cos(P.y);
float y = P.x * sin(P.y);
return vec2(x,y);
}
// Inverse transform (polar)
// ------------------------------------
vec2 transform_inverse(vec2 P)
{
float rho = length(P);
float theta = atan(P.y,P.x);
if( theta < 0.0 )
theta = 2.0*M_PI+theta;
return vec2(rho,theta);
}
*/
// [-0.5,-0.5]x[0.5,0.5] -> [xmin,xmax]x[ymin,ymax]
// ------------------------------------------------
vec2 scale_forward(vec2 P, vec4 limits)
{
// limits = xmin,xmax,ymin,ymax
P += vec2(.5,.5);
P *= vec2(limits[1] - limits[0], limits[3]-limits[2]);
P += vec2(limits[0], limits[2]);
return P;
}
// [xmin,xmax]x[ymin,ymax] -> [-0.5,-0.5]x[0.5,0.5]
// ------------------------------------------------
vec2 scale_inverse(vec2 P, vec4 limits)
{
// limits = xmin,xmax,ymin,ymax
P -= vec2(limits[0], limits[2]);
P /= vec2(limits[1]-limits[0], limits[3]-limits[2]);
return P - vec2(.5,.5);
}
// Antialias stroke alpha coeff
float stroke_alpha(float distance, float linewidth, float antialias)
{
float t = linewidth/2.0 - antialias;
float signed_distance = distance;
float border_distance = abs(signed_distance) - t;
float alpha = border_distance/antialias;
alpha = exp(-alpha*alpha);
if( border_distance > (linewidth/2.0 + antialias) )
return 0.0;
else if( border_distance < 0.0 )
return 1.0;
else
return alpha;
}
// Compute the nearest tick from a (normalized) t value
float get_tick(float t, float vmin, float vmax, float step)
{
float first_tick = floor((vmin + step/2.0)/step) * step;
float last_tick = floor((vmax - step/2.0)/step) * step;
float tick = vmin + t*(vmax-vmin);
if (tick < (vmin + (first_tick-vmin)/2.0))
return vmin;
if (tick > (last_tick + (vmax-last_tick)/2.0))
return vmax;
tick += step/2.0;
tick = floor(tick/step)*step;
return min(max(vmin,tick),vmax);
}
void main()
{
vec2 NP1 = v_texcoord;
vec2 P1 = scale_forward(NP1, u_limits1);
vec2 P2 = transform_inverse(P1);
// Test if we are within limits but we do not discard yet because we want
// to draw border. Discarding would mean half of the exterior not drawn.
bvec2 outside = bvec2(false);
if( P2.x < u_limits2[0] ) outside.x = true;
if( P2.x > u_limits2[1] ) outside.x = true;
if( P2.y < u_limits2[2] ) outside.y = true;
if( P2.y > u_limits2[3] ) outside.y = true;
vec2 NP2 = scale_inverse(P2,u_limits2);
vec2 P;
float tick;
tick = get_tick(NP2.x+.5, u_limits2[0], u_limits2[1], u_major_grid_step[0]);
P = transform_forward(vec2(tick,P2.y));
P = scale_inverse(P, u_limits1);
float Mx = length(v_size * (NP1 - P));
tick = get_tick(NP2.x+.5, u_limits2[0], u_limits2[1], u_minor_grid_step[0]);
P = transform_forward(vec2(tick,P2.y));
P = scale_inverse(P, u_limits1);
float mx = length(v_size * (NP1 - P));
tick = get_tick(NP2.y+.5, u_limits2[2], u_limits2[3], u_major_grid_step[1]);
P = transform_forward(vec2(P2.x,tick));
P = scale_inverse(P, u_limits1);
float My = length(v_size * (NP1 - P));
tick = get_tick(NP2.y+.5, u_limits2[2], u_limits2[3], u_minor_grid_step[1]);
P = transform_forward(vec2(P2.x,tick));
P = scale_inverse(P, u_limits1);
float my = length(v_size * (NP1 - P));
float M = min(Mx,My);
float m = min(mx,my);
// Here we take care of "finishing" the border lines
if( outside.x && outside.y ) {
if (Mx > 0.5*(u_major_grid_width + u_antialias)) {
discard;
} else if (My > 0.5*(u_major_grid_width + u_antialias)) {
discard;
} else {
M = max(Mx,My);
}
} else if( outside.x ) {
if (Mx > 0.5*(u_major_grid_width + u_antialias)) {
discard;
} else {
M = m = Mx;
}
} else if( outside.y ) {
if (My > 0.5*(u_major_grid_width + u_antialias)) {
discard;
} else {
M = m = My;
}
}
// Mix major/minor colors to get dominant color
vec4 color = u_major_grid_color;
float alpha1 = stroke_alpha( M, u_major_grid_width, u_antialias);
float alpha2 = stroke_alpha( m, u_minor_grid_width, u_antialias);
float alpha = alpha1;
if( alpha2 > alpha1*1.5 )
{
alpha = alpha2;
color = u_minor_grid_color;
}
// For the same price you could project a texture
// vec4 texcolor = texture2D(u_texture, vec2(NP2.x, 1.0-NP2.y));
// gl_FragColor = mix(texcolor, color, alpha);
gl_FragColor = vec4(color.rgb, color.a*alpha);
}
|