1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
#ifndef VPYTHON_UTIL_TMATRIX_HPP
#define VPYTHON_UTIL_TMATRIX_HPP
// Copyright (c) 2000, 2001, 2002, 2003 by David Scherer and others.
// Copyright (c) 2004 by Jonathan Brandmeyer and others.
// See the file license.txt for complete license terms.
// See the file authors.txt for a complete list of contributors.
#include "util/vector.hpp"
#include <cstring>
namespace cvisual {
struct vertex
{
double x;
double y;
double z;
double w;
inline vertex( double _x=0, double _y=0, double _z=0, double _w=1.0)
: x(_x), y(_y), z(_z), w(_w) {}
explicit inline vertex( const vector& v, double _w = 1.0)
: x( v.x), y(v.y), z(v.z), w(_w) {}
vector project() const
{ double w_i = 1.0/w; return vector( x*w_i, y*w_i, z*w_i); }
inline void
gl_render() const
{ glVertex4d( x, y, z, w); }
double& operator[] (int i) { return (&x)[i]; }
double operator[] (int i) const { return (&x)[i]; }
};
/** A double-precision 3D affine transformation matrix. */
class tmatrix
{
private:
/** This is a double-precision matrix in _COLUMN MAJOR ORDER_. User's beware.
It is in this order since that is what OpenGL uses internally - thus
eliminating a reformatting penalty.
*/
double M[4][4];
friend void inverse( tmatrix& ret, const tmatrix& arg);
public:
/** Returns the address of the first element in the matrix. Ideally, this
* function should not exist.
*/
inline const double* matrix_addr() const { return M[0]; }
/** Create a new tmatrix, initialized to the identity matrix. */
inline tmatrix() throw() { ident(); }
/** Make a deep copy of t. */
inline tmatrix( const tmatrix& t ) throw()
{ std::memcpy(M, t.M, sizeof(M)); }
/** Initialize this matrix to A * B */
inline tmatrix( const tmatrix& A, const tmatrix& B ) throw()
{ *this = A * B; }
/** Returns the identity matrix. */
static const tmatrix& identity() throw();
/** Sets this matrix to the identity and returns an rvalue reference to self. */
inline const tmatrix&
ident( void) throw()
{
x_column();
y_column();
z_column();
w_column();
w_row();
return *this;
}
/** Address an individual element of the tmatrix. The internal format of
the matrix may be anything, so use this function to reliably get the
individual elements.
*/
inline const double&
operator()( size_t row, size_t column) const
{ return M[column][row]; }
/** Address an individual element of the tmatrix. The internal format of
the matrix may be anything, so use this function to reliably get the
individual elements.
*/
inline double&
operator()( size_t row, size_t column)
{ return M[column][row]; }
/** Sets the first column to v */
inline void x_column( const vector& v) throw()
{
M[0][0] = v.x;
M[0][1] = v.y;
M[0][2] = v.z;
}
/** Sets the second column to v */
inline void y_column( const vector& v) throw()
{
M[1][0] = v.x;
M[1][1] = v.y;
M[1][2] = v.z;
}
/** Sets the third column to v */
inline void z_column( const vector& v) throw()
{
M[2][0] = v.x;
M[2][1] = v.y;
M[2][2] = v.z;
}
/** Sets the fourth column to v */
inline void w_column( const vector& v) throw()
{
M[3][0] = v.x;
M[3][1] = v.y;
M[3][2] = v.z;
}
/** Sets the first column to x, y, z */
inline void x_column( double x=1, double y=0, double z=0) throw()
{
M[0][0] = x;
M[0][1] = y;
M[0][2] = z;
}
/** Sets the second column to x, y, z */
inline void y_column( double x=0, double y=1, double z=0) throw()
{
M[1][0] = x;
M[1][1] = y;
M[1][2] = z;
}
/** Sets the third column to x, y, z */
inline void z_column( double x=0, double y=0, double z=1) throw()
{
M[2][0] = x;
M[2][1] = y;
M[2][2] = z;
}
/** Sets the fourth column to x, y, z */
inline void w_column(double x=0, double y=0, double z=0) throw()
{
M[3][0] = x;
M[3][1] = y;
M[3][2] = z;
}
/** Sets the bottom row to x, y, z, w */
inline void w_row(double x=0, double y=0, double z=0, double w=1) throw()
{
M[0][3]=x;
M[1][3]=y;
M[2][3]=z;
M[3][3]=w;
}
/** Projects v using the current tmatrix values. */
vertex project(const vector& v) const throw();
/** An alias for operator*= */
void concat(const tmatrix& A, const tmatrix& B) throw();
// Right-multiply this matrix by a scaling matrix.
void scale( const vector& v, const double w = 1);
// Right multiply the matrix by a translation matrix
void translate( const vector& v );
/** Postcondition: *this == *this * other */
const tmatrix&
operator*=( const tmatrix& other);
/** Multiply this matrix by another one. */
tmatrix
operator*( const tmatrix& other) const;
void invert_ortho(const tmatrix& A) throw();
/** M^-1 * [x y z w] */
vector times_inv( const vector& v, double w = 1.0) const throw();
/** multiplication by a vector [x y z 0] */
vector times_v( const vector& v) const throw();
/** multiplication by a point [x y z 1] */
vector operator*( const vector& v) const throw();
/** multiplication by an arbirary vertex [x y z w] */
vertex operator*( const vertex& v) const throw();
/** multiplication by [0 0 0 1] **/
vector origin() const throw();
/** Overwrites the currently active matrix in OpenGL with this one. */
inline void
gl_load(void) const
{ glLoadMatrixd( M[0]); }
/** Multiplies the active OpenGL matrix by this one. */
inline void
gl_mult(void) const
{ glMultMatrixd( M[0]); }
/** Initialize this tmatrix with the contents of the OpenGL modelview,
* texture, color, or projection matricies.
* @return *this.
*/
tmatrix& gl_modelview_get();
tmatrix& gl_texture_get();
tmatrix& gl_color_get();
tmatrix& gl_projection_get();
/**
* Dump this matrix to a formatted string.
*/
std::string to_string() const;
};
// Compute the inverse of arg, and store it in ret.
void inverse( tmatrix& ret, const tmatrix& arg);
// Returns a rotation matrix to perform rotations about an axis passing through
// the origin through an angle in the direction specified by the Right Hand Rule.
tmatrix rotation( double angle, const vector& axis);
// Returns a rotation matrix to perform rotations about an axis passing through
// origin in the direction axis as specified by the Right Hand Rule.
tmatrix rotation( double angle, const vector& axis, const vector& origin);
// Pushes its constructor argument onto the active OpenGL matrix stack, and
// multiplies the active matrix by the new one when constructed, and pops it off
// when destructed.
class gl_matrix_stackguard
{
private:
// Avoid calls that are nonsensical for this class.
gl_matrix_stackguard( const gl_matrix_stackguard&);
const gl_matrix_stackguard&
operator=( const gl_matrix_stackguard&);
public:
// A stackguard that only performs a push onto the matrix stack.
// Postcondition: the stack is one matrix taller, but identical to before.
inline gl_matrix_stackguard() { glPushMatrix(); }
gl_matrix_stackguard( const tmatrix&);
inline ~gl_matrix_stackguard() { glPopMatrix(); }
};
} // !namespace cvisual
#endif // !VPYTHON_UTIL_TMATRIX_HPP
|