1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
#ifndef VPYTHON_UTIL_VECTOR_HPP
#define VPYTHON_UTIL_VECTOR_HPP
// Copyright (c) 2000, 2001, 2002, 2003 by David Scherer and others.
// Copyright (c) 2004 by Jonathan Brandmeyer and others.
// See the file license.txt for complete license terms.
// See the file authors.txt for a complete list of contributors.
#include "wrap_gl.hpp"
#include <boost/python/numeric.hpp>
#include <iosfwd>
#include <cmath>
#include <cassert>
#include <sstream>
#include "util/thread.hpp"
namespace cvisual {
class vector
{
public:
double x;
double y;
double z;
public:
explicit vector( double a = 0.0, double b = 0.0, double c = 0.0) throw()
: x(a), y(b), z(c) {}
inline explicit vector( const double* v)
: x(v[0]), y(v[1]), z(v[2]) {}
// Overloaded binary +, -, *, and /
inline vector
operator+( const vector& v) const throw()
{ return vector( x+v.x, y+v.y, z+v.z); }
inline vector
operator-( const vector& v) const throw()
{ return vector( x-v.x, y-v.y, z-v.z); }
inline vector
operator*( const double s) const throw()
{ return vector( s*x, s*y, s*z); }
// Element-wise multiplication used in frame.cpp; not exposed to users
inline vector
operator*( const vector& v) const throw()
{ return vector( x*v.x, y*v.y, z*v.z); }
inline vector
operator/( const double s) const throw()
{ return vector( x/s, y/s, z/s); }
// This operator describes a strict weak ordering as defined by the STL.
bool
stl_cmp( const vector& v) const;
inline bool
operator==( const vector& v) const throw()
{ return (v.x == this->x && v.y == this->y && v.z == this->z); }
inline bool
operator!=( const vector& v) const throw()
{ return !(v == *this); }
// Overloaded uniary !, probably bad coding practice.
inline bool
operator!( void) const throw()
{ return !x && !y && !z; }
bool nonzero() const throw() { return x || y || z; }
// Overloaded assignment: +=, -=, *=, /=
inline const vector&
operator+=( const vector& v) throw()
{ x=x+v.x; y=y+v.y; z=z+v.z; return *this; }
inline const vector&
operator-=( const vector& v) throw()
{ x=x-v.x; y=y-v.y; z=z-v.z; return *this; }
inline const vector&
operator*=( const double s) throw()
{ x=x*s; y=y*s; z=z*s; return *this; }
inline const vector&
operator/=( const double s) throw()
{ x=x/s; y=y/s; z=z/s; return *this; }
inline vector
operator-() const throw()
{ return vector( -x, -y, -z); }
// return the magnitude of this vector
inline double
mag( void) const throw()
{ return std::sqrt( x*x + y*y + z*z); }
// This is a magnitude algorithm that is intended to be stable at values
// greater than 1e154 (or so). It is much slower since it uses sin, cos,
// and atan to get the result.
double
stable_mag(void) const;
// return the square of the this vector's magnitude
inline double
mag2( void) const throw()
{ return (x*x + y*y + z*z); }
// return the unit vector of this vector
vector
norm( void) const throw();
inline void
set_mag( double m) throw()
{ *this = norm()*m; }
inline void
set_mag2( double m2) throw()
{ *this = norm()*std::sqrt(m2); }
// Pythonic function to provide a "representation" of this object.
// object.__repr__() should return a string that, were it executed as python
// code, should regenerate the object.
std::string
repr() const;
// return the dot product of this vector and another
inline double
dot( const vector& v) const throw()
{ return ( v.x * this->x + v.y * this->y + v.z * this->z); }
// Return the cross product of this vector and another.
vector
cross( const vector& v) const throw();
// Return the scalar triple product
double
dot_b_cross_c( const vector& b, const vector& c) const throw();
// Return the vector triple product
vector
cross_b_cross_c( const vector& b, const vector& c) const throw();
// Scalar projection of this to v
double
comp( const vector& v) const throw();
// Vector projection of this to v
vector
proj( const vector& v) const throw();
// Returns the angular difference between two vectors, in radians, between 0 and pi.
double
diff_angle( const vector& v) const throw();
// Scale this vector to another, by elementwise multiplication
inline vector
scale( const vector& v) const throw()
{ return vector( this->x*v.x, this->y*v.y, this->z*v.z); }
// Inversely scale this vector to another, by elementwise division
inline vector
scale_inv( const vector& v) const throw()
{ return vector( x/v.x, y/v.y, z/v.z); }
vector
rotate( double angle, vector axis = vector(0,0,1)) throw();
// Last ditch direct read/write access to the private variables
inline double
get_x( void) const throw() { return x; }
inline void
set_x( double s) throw() { this->x = s; }
inline double
get_y( void) const throw() { return y; }
inline void
set_y( double s) throw() { this->y = s; }
inline double
get_z( void) const throw() { return z; }
inline void
set_z( double s) throw() { this->z = s; }
// zero the state of the vector. Potentially useful for reusing a temporary.
inline void
clear( void) { x=0.0; y=0.0; z=0.0; }
inline int
py_len() { return 3; }
double py_getitem( int i) const;
void py_setitem(int i, double value);
inline double&
operator[]( size_t ref)
{
assert( ref < 3);
switch (ref) {
case 0:
return x;
case 1:
return y;
case 2:
return z;
default:
assert( true == false);
}
}
inline const double&
operator[]( size_t ref) const
{
assert( ref < 3);
switch (ref) {
case 0:
return x;
case 1:
return y;
case 2:
return z;
}
}
inline vector
fabs() const
{ return vector( std::fabs(x), std::fabs(y), std::fabs(z)); }
inline void
gl_render() const
{ glVertex3dv( &x); }
inline void
gl_normal() const
{ glNormal3dv( &x); }
inline double
sum() const
{ return x + y + z; }
};
// Free functions for mag, mag2, dot, unit, cross, and tripleproducts.
// All of these functions merely call their class-member variants to save code.
inline double
mag( const vector& v)
{ return v.mag(); }
inline double
mag2( const vector& v)
{ return v.mag2(); }
inline vector
norm( const vector& v)
{ return v.norm(); }
inline double
dot( const vector& v1, const vector& v2)
{ return v1.dot( v2); }
inline vector
cross( const vector& v1, const vector& v2)
{ return v1.cross( v2); }
inline double
a_dot_b_cross_c( const vector& a, const vector& b, const vector& c)
{ return a.dot_b_cross_c( b, c); }
inline vector
a_cross_b_cross_c( const vector& a, const vector& b, const vector& c)
{ return a.cross_b_cross_c( b, c); }
// Scalar projection of v1 -> v2
inline double
comp( const vector& v1, const vector& v2)
{ return v1.comp( v2); }
// Vector projection of v1 to v2
inline vector
proj( const vector& v1, const vector& v2)
{ return v1.proj( v2); }
// Returns the angular difference between two vectors, in radians, from 0 - pi.
inline double
diff_angle( const vector& v1, const vector& v2)
{ return v1.diff_angle( v2); }
inline vector
rotate( vector v, double angle, const vector axis = vector( 0,0,1))
{ return v.rotate( angle, axis); }
// Definitions of the global functions for operator *, with a vector on the RHS,
// and scalar on the LHS.
inline vector
operator*( const double& s, const vector& v)
{
return vector( s*v.x, s*v.y, s*v.z);
}
} // !namespace cvisual
// We should not need to place this in namespace std, but GCC's Koenig L/U fails
// if we don't.
namespace std {
// Insertion operator. Example output: <xxxx, yyyy, zzzz>
// Based on "The C++ Standard Library", N. M. Josuttis, section 13.12.1
template<typename char_T, typename traits>
basic_ostream<char_T, traits>&
operator<<( basic_ostream<char_T, traits>& stream, const cvisual::vector& v)
{
basic_ostringstream<char_T, traits> s;
s.copyfmt( stream);
s.width( 0);
s << "<" << v.x << ", " << v.y << ", " << v.z << ">";
stream << s.str();
return stream;
}
} // !namespace std
namespace cvisual {
typedef vector shared_vector;
} // !namespace cvisual
#endif // !VPYTHON_UTIL_VECTOR_HPP
|