1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
from visual import *
from random import random
# Bruce Sherwood; revised by Jonathan Brandmeyer
N = 3
Ntotal = N*N*N
scolor = (1,0.5,0)
bcolor = (0,0.58,0.69)
springs = []
atoms = []
m = 1.
k = 1.
L = 1.
R = 0.3*L
Rs = 0.9*R # end of spring is Rs from center of atom
def getn(N, nx, ny, nz):
# find nth atom given nx, ny, nz
return (ny)*(N**2)+(nx)*N+(nz)
def makespring(natom1, natom2, radius):
# make spring from nnth atom to iith atom
if natom1 > natom2:
r12 = atoms[natom2].pos-atoms[natom1].pos
dir = norm(r12)
springs.append( helix(pos=atoms[natom1].pos+Rs*dir,
axis=(L-2*Rs)*dir,
radius = radius, color=scolor, thickness = 0.04)) #, shininess=0.9))
springs[-1].atom1 = atoms[natom1]
springs[-1].atom2 = atoms[natom2]
angle = springs[-1].axis.diff_angle( vector(0,1,0))
# avoid pathologies if too near the y axis (default "up")
if angle < 0.1 or angle > pi-0.1:
springs[-1].up = vector(-1,0,0)
def crystal(N=3, delta=1.0, R=None, sradius=None):
if R == None:
R = 0.2*delta
if sradius == None:
sradius = R/5.
xmin = -(N-1.0)/2.
ymin = xmin
zmin = xmin
natom = 0
for ny in range(N):
y = ymin+ny*delta
hue = (ny)/(N+1.0)
c = color.hsv_to_rgb((hue,1.0,1.0))
for nx in range(N):
x = xmin+nx*delta
for nz in range(N):
z = zmin+nz*delta
atoms.append(sphere(pos=(x,y,z), radius=R, color=bcolor))
atoms[-1].p = vector()
atoms[-1].near = range(6)
atoms[-1].wallpos = range(6)
atoms[-1].natom = natom
atoms[-1].indices = (nx,ny,nz)
natom = natom+1
for a in atoms:
natom1 = a.natom
nx, ny, nz = a.indices
if nx == 0: # left
# if this neighbor is the wall, save location:
a.near[0] = None
a.wallpos[0] = a.pos-vector(L,0,0)
else:
natom2 = getn(N,nx-1,ny,nz)
a.near[0] = natom2
makespring(natom1, natom2, sradius)
if nx == N-1: # right
a.near[1] = None
a.wallpos[1] = a.pos+vector(L,0,0)
else:
natom2 = getn(N,nx+1,ny,nz)
a.near[1] = natom2
makespring(natom1, natom2, sradius)
if ny == 0: # down
a.near[2] = None
a.wallpos[2] = a.pos-vector(0,L,0)
else:
natom2 = getn(N,nx,ny-1,nz)
a.near[2] = natom2
makespring(natom1, natom2, sradius)
if ny == N-1: # up
a.near[3] = None
a.wallpos[3] = a.pos+vector(0,L,0)
else:
natom2 = getn(N,nx,ny+1,nz)
a.near[3] = natom2
makespring(natom1, natom2, sradius)
if nz == 0: # back
a.near[4] = None
a.wallpos[4] = a.pos-vector(0,0,L)
else:
natom2 = getn(N,nx,ny,nz-1)
a.near[4] = natom2
makespring(natom1, natom2, sradius)
if nz == N-1: # front
a.near[5] = None
a.wallpos[5] = a.pos+vector(0,0,L)
else:
natom2 = getn(N,nx,ny,nz+1)
a.near[5] = natom2
makespring(natom1, natom2, sradius)
a.near = tuple(a.near)
a.wallpos = tuple( a.wallpos)
# Nearpos is a list of references to the nearest neighbors' positions,
# taking into account wall effects.
a.nearpos = []
for i in range(6):
natom = a.near[i]
if natom == None: # if this nearest neighbor is the wall
a.nearpos.append( a.wallpos[i])
else:
a.nearpos.append(atoms[natom].pos)
return atoms
sradius = R/3.
vrange = 0.2*L*sqrt(k/m)
dt = 0.02*(2.*pi*sqrt(m/k))
scene.visible = False
atoms = crystal(N=N, delta=L, R=R, sradius=sradius)
scene.visible = True
scene.autoscale = False
ptotal = vector()
for a in atoms:
px = m*(-vrange/2+vrange*random())
py = m*(-vrange/2+vrange*random())
pz = m*(-vrange/2+vrange*random())
a.p = vector(px,py,pz)
ptotal = ptotal+a.p
for a in atoms:
a.p = a.p-ptotal/(N**2)
# Convert to tuples for faster indexing access. We aren't growing any more of them.
springs = tuple(springs)
atoms = tuple(atoms)
# Evaluate a couple of constants outside the loop
k_dt = k * dt
dt_m = dt / m
while 1:
rate(100)
for a in atoms:
r = vector_array(a.nearpos) - a.pos
a.p += k_dt *(r.norm()*(r.mag()-L)).sum()
for a in atoms:
a.pos += a.p * dt_m
for s in springs:
p1 = s.atom1.pos
r12 = s.atom2.pos-p1
dir = r12.norm()
s.pos = p1+Rs*dir
s.axis = (r12.mag-2*Rs)*dir
|