File: discovery_v2.py

package info (click to toggle)
python-watson-developer-cloud 9.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,204 kB
  • sloc: python: 39,056; makefile: 7
file content (14405 lines) | stat: -rw-r--r-- 605,445 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
# coding: utf-8

# (C) Copyright IBM Corp. 2019, 2024.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# IBM OpenAPI SDK Code Generator Version: 3.97.0-0e90eab1-20241120-170029
"""
IBM Watson® Discovery is a cognitive search and content analytics engine that you can
add to applications to identify patterns, trends and actionable insights to drive better
decision-making. Securely unify structured and unstructured data with pre-enriched
content, and use a simplified query language to eliminate the need for manual filtering of
results.

API Version: 2.0
See: https://cloud.ibm.com/docs/discovery-data
"""

from datetime import datetime
from enum import Enum
from os.path import basename
from typing import BinaryIO, Dict, List, Optional
import json
import sys

from ibm_cloud_sdk_core import BaseService, DetailedResponse
from ibm_cloud_sdk_core.authenticators.authenticator import Authenticator
from ibm_cloud_sdk_core.get_authenticator import get_authenticator_from_environment
from ibm_cloud_sdk_core.utils import convert_list, convert_model, datetime_to_string, string_to_datetime

from .common import get_sdk_headers

##############################################################################
# Service
##############################################################################


class DiscoveryV2(BaseService):
    """The Discovery V2 service."""

    DEFAULT_SERVICE_URL = 'https://api.us-south.discovery.watson.cloud.ibm.com'
    DEFAULT_SERVICE_NAME = 'discovery'

    def __init__(
        self,
        version: str,
        authenticator: Authenticator = None,
        service_name: str = DEFAULT_SERVICE_NAME,
    ) -> None:
        """
        Construct a new client for the Discovery service.

        :param str version: Release date of the version of the API you want to use.
               Specify dates in YYYY-MM-DD format. The current version is `2023-03-31`.

        :param Authenticator authenticator: The authenticator specifies the authentication mechanism.
               Get up to date information from https://github.com/IBM/python-sdk-core/blob/main/README.md
               about initializing the authenticator of your choice.
        """
        if version is None:
            raise ValueError('version must be provided')

        if not authenticator:
            authenticator = get_authenticator_from_environment(service_name)
        BaseService.__init__(self,
                             service_url=self.DEFAULT_SERVICE_URL,
                             authenticator=authenticator)
        self.version = version
        self.configure_service(service_name)

    #########################
    # Projects
    #########################

    def list_projects(
        self,
        **kwargs,
    ) -> DetailedResponse:
        """
        List projects.

        Lists existing projects for this instance.

        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `ListProjectsResponse` object
        """

        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='list_projects',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        url = '/v2/projects'
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def create_project(
        self,
        name: str,
        type: str,
        *,
        default_query_parameters: Optional['DefaultQueryParams'] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Create a project.

        Create a new project for this instance.

        :param str name: The human readable name of this project.
        :param str type: The type of project.
               The `content_intelligence` type is a *Document Retrieval for Contracts*
               project and the `other` type is a *Custom* project.
               The `content_mining` and `content_intelligence` types are available with
               Premium plan managed deployments and installed deployments only.
               The Intelligent Document Processing (IDP) project type is available from
               IBM Cloud-managed instances only.
        :param DefaultQueryParams default_query_parameters: (optional) Default
               query parameters for this project.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `ProjectDetails` object
        """

        if name is None:
            raise ValueError('name must be provided')
        if type is None:
            raise ValueError('type must be provided')
        if default_query_parameters is not None:
            default_query_parameters = convert_model(default_query_parameters)
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='create_project',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        data = {
            'name': name,
            'type': type,
            'default_query_parameters': default_query_parameters,
        }
        data = {k: v for (k, v) in data.items() if v is not None}
        data = json.dumps(data)
        headers['content-type'] = 'application/json'

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        url = '/v2/projects'
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            data=data,
        )

        response = self.send(request, **kwargs)
        return response

    def get_project(
        self,
        project_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Get project.

        Get details on the specified project.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `ProjectDetails` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='get_project',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id']
        path_param_values = self.encode_path_vars(project_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}'.format(**path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def update_project(
        self,
        project_id: str,
        *,
        name: Optional[str] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Update a project.

        Update the specified project's name.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str name: (optional) The new name to give this project.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `ProjectDetails` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='update_project',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        data = {
            'name': name,
        }
        data = {k: v for (k, v) in data.items() if v is not None}
        data = json.dumps(data)
        headers['content-type'] = 'application/json'

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id']
        path_param_values = self.encode_path_vars(project_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}'.format(**path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            data=data,
        )

        response = self.send(request, **kwargs)
        return response

    def delete_project(
        self,
        project_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Delete a project.

        Deletes the specified project.
        **Important:** Deleting a project deletes everything that is part of the specified
        project, including all collections.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='delete_project',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']

        path_param_keys = ['project_id']
        path_param_values = self.encode_path_vars(project_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}'.format(**path_param_dict)
        request = self.prepare_request(
            method='DELETE',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def list_fields(
        self,
        project_id: str,
        *,
        collection_ids: Optional[List[str]] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        List fields.

        Gets a list of the unique fields (and their types) stored in the specified
        collections.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param List[str] collection_ids: (optional) Comma separated list of the
               collection IDs. If this parameter is not specified, all collections in the
               project are used.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `ListFieldsResponse` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='list_fields',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
            'collection_ids': convert_list(collection_ids),
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id']
        path_param_values = self.encode_path_vars(project_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/fields'.format(**path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    #########################
    # Collections
    #########################

    def list_collections(
        self,
        project_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        List collections.

        Lists existing collections for the specified project.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `ListCollectionsResponse` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='list_collections',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id']
        path_param_values = self.encode_path_vars(project_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/collections'.format(**path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def create_collection(
        self,
        project_id: str,
        name: str,
        *,
        description: Optional[str] = None,
        language: Optional[str] = None,
        ocr_enabled: Optional[bool] = None,
        enrichments: Optional[List['CollectionEnrichment']] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Create a collection.

        Create a new collection in the specified project.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str name: The name of the collection.
        :param str description: (optional) A description of the collection.
        :param str language: (optional) The language of the collection. For a list
               of supported languages, see the [product
               documentation](/docs/discovery-data?topic=discovery-data-language-support).
        :param bool ocr_enabled: (optional) If set to `true`, optical character
               recognition (OCR) is enabled. For more information, see [Optical character
               recognition](/docs/discovery-data?topic=discovery-data-collections#ocr).
        :param List[CollectionEnrichment] enrichments: (optional) An array of
               enrichments that are applied to this collection. To get a list of
               enrichments that are available for a project, use the [List
               enrichments](#listenrichments) method.
               If no enrichments are specified when the collection is created, the default
               enrichments for the project type are applied. For more information about
               project default settings, see the [product
               documentation](/docs/discovery-data?topic=discovery-data-project-defaults).
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `CollectionDetails` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if name is None:
            raise ValueError('name must be provided')
        if enrichments is not None:
            enrichments = [convert_model(x) for x in enrichments]
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='create_collection',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        data = {
            'name': name,
            'description': description,
            'language': language,
            'ocr_enabled': ocr_enabled,
            'enrichments': enrichments,
        }
        data = {k: v for (k, v) in data.items() if v is not None}
        data = json.dumps(data)
        headers['content-type'] = 'application/json'

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id']
        path_param_values = self.encode_path_vars(project_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/collections'.format(**path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            data=data,
        )

        response = self.send(request, **kwargs)
        return response

    def get_collection(
        self,
        project_id: str,
        collection_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Get collection details.

        Get details about the specified collection.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str collection_id: The Universally Unique Identifier (UUID) of the
               collection.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `CollectionDetails` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not collection_id:
            raise ValueError('collection_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='get_collection',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'collection_id']
        path_param_values = self.encode_path_vars(project_id, collection_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/collections/{collection_id}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def update_collection(
        self,
        project_id: str,
        collection_id: str,
        *,
        name: Optional[str] = None,
        description: Optional[str] = None,
        ocr_enabled: Optional[bool] = None,
        enrichments: Optional[List['CollectionEnrichment']] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Update a collection.

        Updates the specified collection's name, description, enrichments, and
        configuration.
        If you apply normalization rules to data in an existing collection, you must
        initiate reprocessing of the collection. To do so, from the *Manage fields* page
        in the product user interface, temporarily change the data type of a field to
        enable the reprocess button. Change the data type of the field back to its
        original value, and then click **Apply changes and reprocess**.
        To remove a configuration that applies JSON normalization operations as part of
        the conversion phase of ingestion, specify an empty `json_normalizations` object
        (`[]`) in the request.
        To remove a configuration that applies JSON normalization operations after
        enrichments are applied, specify an empty `normalizations` object (`[]`) in the
        request.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str collection_id: The Universally Unique Identifier (UUID) of the
               collection.
        :param str name: (optional) The new name of the collection.
        :param str description: (optional) The new description of the collection.
        :param bool ocr_enabled: (optional) If set to `true`, optical character
               recognition (OCR) is enabled. For more information, see [Optical character
               recognition](/docs/discovery-data?topic=discovery-data-collections#ocr).
        :param List[CollectionEnrichment] enrichments: (optional) An array of
               enrichments that are applied to this collection.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `CollectionDetails` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not collection_id:
            raise ValueError('collection_id must be provided')
        if enrichments is not None:
            enrichments = [convert_model(x) for x in enrichments]
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='update_collection',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        data = {
            'name': name,
            'description': description,
            'ocr_enabled': ocr_enabled,
            'enrichments': enrichments,
        }
        data = {k: v for (k, v) in data.items() if v is not None}
        data = json.dumps(data)
        headers['content-type'] = 'application/json'

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'collection_id']
        path_param_values = self.encode_path_vars(project_id, collection_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/collections/{collection_id}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            data=data,
        )

        response = self.send(request, **kwargs)
        return response

    def delete_collection(
        self,
        project_id: str,
        collection_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Delete a collection.

        Deletes the specified collection from the project. All documents stored in the
        specified collection and not shared is also deleted.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str collection_id: The Universally Unique Identifier (UUID) of the
               collection.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not collection_id:
            raise ValueError('collection_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='delete_collection',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']

        path_param_keys = ['project_id', 'collection_id']
        path_param_values = self.encode_path_vars(project_id, collection_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/collections/{collection_id}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='DELETE',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    #########################
    # Documents
    #########################

    def list_documents(
        self,
        project_id: str,
        collection_id: str,
        *,
        count: Optional[int] = None,
        status: Optional[str] = None,
        has_notices: Optional[bool] = None,
        is_parent: Optional[bool] = None,
        parent_document_id: Optional[str] = None,
        sha256: Optional[str] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        List documents.

        Lists the documents in the specified collection. The list includes only the
        document ID of each document and returns information for up to 10,000 documents.
        **Note**: This method is available only from Cloud Pak for Data version 4.0.9 and
        later installed instances, and from IBM Cloud-managed instances.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str collection_id: The Universally Unique Identifier (UUID) of the
               collection.
        :param int count: (optional) The maximum number of documents to return. Up
               to 1,000 documents are returned by default. The maximum number allowed is
               10,000.
        :param str status: (optional) Filters the documents to include only
               documents with the specified ingestion status. The options include:
               * `available`: Ingestion is finished and the document is indexed.
               * `failed`: Ingestion is finished, but the document is not indexed because
               of an error.
               * `pending`: The document is uploaded, but the ingestion process is not
               started.
               * `processing`: Ingestion is in progress.
               You can specify one status value or add a comma-separated list of more than
               one status value. For example, `available,failed`.
        :param bool has_notices: (optional) If set to `true`, only documents that
               have notices, meaning documents for which warnings or errors were generated
               during the ingestion, are returned. If set to `false`, only documents that
               don't have notices are returned. If unspecified, no filter based on notices
               is applied.
               Notice details are not available in the result, but you can use the [Query
               collection notices](#querycollectionnotices) method to find details by
               adding the parameter `query=notices.document_id:{document-id}`.
        :param bool is_parent: (optional) If set to `true`, only parent documents,
               meaning documents that were split during the ingestion process and resulted
               in two or more child documents, are returned. If set to `false`, only child
               documents are returned. If unspecified, no filter based on the parent or
               child relationship is applied.
               CSV files, for example, are split into separate documents per line and JSON
               files are split into separate documents per object.
        :param str parent_document_id: (optional) Filters the documents to include
               only child documents that were generated when the specified parent document
               was processed.
        :param str sha256: (optional) Filters the documents to include only
               documents with the specified SHA-256 hash. Format the hash as a hexadecimal
               string.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `ListDocumentsResponse` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not collection_id:
            raise ValueError('collection_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='list_documents',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
            'count': count,
            'status': status,
            'has_notices': has_notices,
            'is_parent': is_parent,
            'parent_document_id': parent_document_id,
            'sha256': sha256,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'collection_id']
        path_param_values = self.encode_path_vars(project_id, collection_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/collections/{collection_id}/documents'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def add_document(
        self,
        project_id: str,
        collection_id: str,
        *,
        file: Optional[BinaryIO] = None,
        filename: Optional[str] = None,
        file_content_type: Optional[str] = None,
        metadata: Optional[str] = None,
        x_watson_discovery_force: Optional[bool] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Add a document.

        Add a document to a collection with optional metadata.
        Returns immediately after the system has accepted the document for processing.
        Use this method to upload a file to the collection. You cannot use this method to
        crawl an external data source.
         * For a list of supported file types, see the [product
        documentation](/docs/discovery-data?topic=discovery-data-collections#supportedfiletypes).
         * You must provide document content, metadata, or both. If the request is missing
        both document content and metadata, it is rejected.
          * You can set the **Content-Type** parameter on the **file** part to indicate
        the media type of the document. If the **Content-Type** parameter is missing or is
        one of the generic media types (for example, `application/octet-stream`), then the
        service attempts to automatically detect the document's media type.
         *  If the document is uploaded to a collection that shares its data with another
        collection, the **X-Watson-Discovery-Force** header must be set to `true`.
         * In curl requests only, you can assign an ID to a document that you add by
        appending the ID to the endpoint
        (`/v2/projects/{project_id}/collections/{collection_id}/documents/{document_id}`).
        If a document already exists with the specified ID, it is replaced.
        For more information about how certain file types and field names are handled when
        a file is added to a collection, see the [product
        documentation](/docs/discovery-data?topic=discovery-data-index-overview#field-name-limits).

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str collection_id: The Universally Unique Identifier (UUID) of the
               collection.
        :param BinaryIO file: (optional) **Add a document**: The content of the
               document to ingest. For the supported file types and maximum supported file
               size limits when adding a document, see [the
               documentation](/docs/discovery-data?topic=discovery-data-collections#supportedfiletypes).
               **Analyze a document**: The content of the document to analyze but not
               ingest. Only the `application/json` content type is supported by the
               Analyze API. For maximum supported file size limits, see [the product
               documentation](/docs/discovery-data?topic=discovery-data-analyzeapi#analyzeapi-limits).
        :param str filename: (optional) The filename for file.
        :param str file_content_type: (optional) The content type of file.
        :param str metadata: (optional) Add information about the file that you
               want to include in the response.
               The maximum supported metadata file size is 1 MB. Metadata parts larger
               than 1 MB are rejected.
               Example:
                ```
                {
                 "filename": "favorites2.json",
                 "file_type": "json"
                }.
        :param bool x_watson_discovery_force: (optional) When `true`, the uploaded
               document is added to the collection even if the data for that collection is
               shared with other collections.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `DocumentAccepted` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not collection_id:
            raise ValueError('collection_id must be provided')
        headers = {
            'X-Watson-Discovery-Force': x_watson_discovery_force,
        }
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='add_document',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        form_data = []
        if file:
            if not filename and hasattr(file, 'name'):
                filename = basename(file.name)
            if not filename:
                raise ValueError('filename must be provided')
            form_data.append(('file', (filename, file, file_content_type or
                                       'application/octet-stream')))
        if metadata:
            form_data.append(('metadata', (None, metadata, 'text/plain')))

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'collection_id']
        path_param_values = self.encode_path_vars(project_id, collection_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/collections/{collection_id}/documents'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            files=form_data,
        )

        response = self.send(request, **kwargs)
        return response

    def get_document(
        self,
        project_id: str,
        collection_id: str,
        document_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Get document details.

        Get details about a specific document, whether the document is added by uploading
        a file or by crawling an external data source.
        **Note**: This method is available only from Cloud Pak for Data version 4.0.9 and
        later installed instances, and from IBM Cloud-managed instances.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str collection_id: The Universally Unique Identifier (UUID) of the
               collection.
        :param str document_id: The ID of the document.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `DocumentDetails` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not collection_id:
            raise ValueError('collection_id must be provided')
        if not document_id:
            raise ValueError('document_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='get_document',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'collection_id', 'document_id']
        path_param_values = self.encode_path_vars(project_id, collection_id,
                                                  document_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/collections/{collection_id}/documents/{document_id}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def update_document(
        self,
        project_id: str,
        collection_id: str,
        document_id: str,
        *,
        file: Optional[BinaryIO] = None,
        filename: Optional[str] = None,
        file_content_type: Optional[str] = None,
        metadata: Optional[str] = None,
        x_watson_discovery_force: Optional[bool] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Update a document.

        Replace an existing document or add a document with a specified document ID.
        Starts ingesting a document with optional metadata.
        Use this method to upload a file to a collection. You cannot use this method to
        crawl an external data source.
        If the document is uploaded to a collection that shares its data with another
        collection, the **X-Watson-Discovery-Force** header must be set to `true`.
        **Notes:**
         * Uploading a new document with this method automatically replaces any existing
        document stored with the same document ID.
         * If an uploaded document is split into child documents during ingestion, all
        existing child documents are overwritten, even if the updated version of the
        document has fewer child documents.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str collection_id: The Universally Unique Identifier (UUID) of the
               collection.
        :param str document_id: The ID of the document.
        :param BinaryIO file: (optional) **Add a document**: The content of the
               document to ingest. For the supported file types and maximum supported file
               size limits when adding a document, see [the
               documentation](/docs/discovery-data?topic=discovery-data-collections#supportedfiletypes).
               **Analyze a document**: The content of the document to analyze but not
               ingest. Only the `application/json` content type is supported by the
               Analyze API. For maximum supported file size limits, see [the product
               documentation](/docs/discovery-data?topic=discovery-data-analyzeapi#analyzeapi-limits).
        :param str filename: (optional) The filename for file.
        :param str file_content_type: (optional) The content type of file.
        :param str metadata: (optional) Add information about the file that you
               want to include in the response.
               The maximum supported metadata file size is 1 MB. Metadata parts larger
               than 1 MB are rejected.
               Example:
                ```
                {
                 "filename": "favorites2.json",
                 "file_type": "json"
                }.
        :param bool x_watson_discovery_force: (optional) When `true`, the uploaded
               document is added to the collection even if the data for that collection is
               shared with other collections.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `DocumentAccepted` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not collection_id:
            raise ValueError('collection_id must be provided')
        if not document_id:
            raise ValueError('document_id must be provided')
        headers = {
            'X-Watson-Discovery-Force': x_watson_discovery_force,
        }
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='update_document',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        form_data = []
        if file:
            if not filename and hasattr(file, 'name'):
                filename = basename(file.name)
            if not filename:
                raise ValueError('filename must be provided')
            form_data.append(('file', (filename, file, file_content_type or
                                       'application/octet-stream')))
        if metadata:
            form_data.append(('metadata', (None, metadata, 'text/plain')))

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'collection_id', 'document_id']
        path_param_values = self.encode_path_vars(project_id, collection_id,
                                                  document_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/collections/{collection_id}/documents/{document_id}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            files=form_data,
        )

        response = self.send(request, **kwargs)
        return response

    def delete_document(
        self,
        project_id: str,
        collection_id: str,
        document_id: str,
        *,
        x_watson_discovery_force: Optional[bool] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Delete a document.

        Deletes the document with the document ID that you specify from the collection.
        Removes uploaded documents from the collection permanently. If you delete a
        document that was added by crawling an external data source, the document will be
        added again with the next scheduled crawl of the data source. The delete function
        removes the document from the collection, not from the external data source.
        **Note:** Files such as CSV or JSON files generate subdocuments when they are
        added to a collection. If you delete a subdocument, and then repeat the action
        that created it, the deleted document is added back in to your collection. To
        remove subdocuments that are generated by an uploaded file, delete the original
        document instead. You can get the document ID of the original document from the
        `parent_document_id` of the subdocument result.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str collection_id: The Universally Unique Identifier (UUID) of the
               collection.
        :param str document_id: The ID of the document.
        :param bool x_watson_discovery_force: (optional) When `true`, the uploaded
               document is added to the collection even if the data for that collection is
               shared with other collections.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `DeleteDocumentResponse` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not collection_id:
            raise ValueError('collection_id must be provided')
        if not document_id:
            raise ValueError('document_id must be provided')
        headers = {
            'X-Watson-Discovery-Force': x_watson_discovery_force,
        }
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='delete_document',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'collection_id', 'document_id']
        path_param_values = self.encode_path_vars(project_id, collection_id,
                                                  document_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/collections/{collection_id}/documents/{document_id}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='DELETE',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    #########################
    # Queries
    #########################

    def query(
        self,
        project_id: str,
        *,
        collection_ids: Optional[List[str]] = None,
        filter: Optional[str] = None,
        query: Optional[str] = None,
        natural_language_query: Optional[str] = None,
        aggregation: Optional[str] = None,
        count: Optional[int] = None,
        return_: Optional[List[str]] = None,
        offset: Optional[int] = None,
        sort: Optional[str] = None,
        highlight: Optional[bool] = None,
        spelling_suggestions: Optional[bool] = None,
        table_results: Optional['QueryLargeTableResults'] = None,
        suggested_refinements: Optional[
            'QueryLargeSuggestedRefinements'] = None,
        passages: Optional['QueryLargePassages'] = None,
        similar: Optional['QueryLargeSimilar'] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Query a project.

        Search your data by submitting queries that are written in natural language or
        formatted in the Discovery Query Language. For more information, see the
        [Discovery
        documentation](/docs/discovery-data?topic=discovery-data-query-concepts). The
        default query parameters differ by project type. For more information about the
        project default settings, see the [Discovery
        documentation](/docs/discovery-data?topic=discovery-data-query-defaults). See [the
        Projects API documentation](#create-project) for details about how to set custom
        default query settings.
        The length of the UTF-8 encoding of the POST body cannot exceed 10,000 bytes,
        which is roughly equivalent to 10,000 characters in English.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param List[str] collection_ids: (optional) A comma-separated list of
               collection IDs to be queried against.
        :param str filter: (optional) Searches for documents that match the
               Discovery Query Language criteria that is specified as input. Filter calls
               are cached and are faster than query calls because the results are not
               ordered by relevance. When used with the **aggregation**, **query**, or
               **natural_language_query** parameters, the **filter** parameter runs first.
               This parameter is useful for limiting results to those that contain
               specific metadata values.
        :param str query: (optional) A query search that is written in the
               Discovery Query Language and returns all matching documents in your data
               set with full enrichments and full text, and with the most relevant
               documents listed first. Use a query search when you want to find the most
               relevant search results. You can use this parameter or the
               **natural_language_query** parameter to specify the query input, but not
               both.
        :param str natural_language_query: (optional) A natural language query that
               returns relevant documents by using training data and natural language
               understanding. You can use this parameter or the **query** parameter to
               specify the query input, but not both. To filter the results based on
               criteria you specify, include the **filter** parameter in the request.
        :param str aggregation: (optional) An aggregation search that returns an
               exact answer by combining query search with filters. Useful for
               applications to build lists, tables, and time series. For more information
               about the supported types of aggregations, see the [Discovery
               documentation](/docs/discovery-data?topic=discovery-data-query-aggregations).
        :param int count: (optional) Number of results to return.
        :param List[str] return_: (optional) A list of the fields in the document
               hierarchy to return. You can specify both root-level (`text`) and nested
               (`extracted_metadata.filename`) fields. If this parameter is an empty list,
               then all fields are returned.
        :param int offset: (optional) The number of query results to skip at the
               beginning. Consider that the `count` is set to 10 (the default value) and
               the total number of results that are returned is 100. In this case, the
               following examples show the returned results for different `offset` values:
                * If `offset` is set to 95, it returns the last 5 results.
                * If `offset` is set to 10, it returns the second batch of 10 results.
                * If `offset` is set to 100 or more, it returns empty results.
        :param str sort: (optional) A comma-separated list of fields in the
               document to sort on. You can optionally specify a sort direction by
               prefixing the field with `-` for descending or `+` for ascending. Ascending
               is the default sort direction if no prefix is specified.
        :param bool highlight: (optional) When `true`, a highlight field is
               returned for each result that contains fields that match the query. The
               matching query terms are emphasized with surrounding `<em></em>` tags. This
               parameter is ignored if **passages.enabled** and **passages.per_document**
               are `true`, in which case passages are returned for each document instead
               of highlights.
        :param bool spelling_suggestions: (optional) When `true` and the
               **natural_language_query** parameter is used, the
               **natural_language_query** parameter is spell checked. The most likely
               correction is returned in the **suggested_query** field of the response (if
               one exists).
        :param QueryLargeTableResults table_results: (optional) Configuration for
               table retrieval.
        :param QueryLargeSuggestedRefinements suggested_refinements: (optional)
               Configuration for suggested refinements.
               **Note**: The **suggested_refinements** parameter that identified dynamic
               facets from the data is deprecated.
        :param QueryLargePassages passages: (optional) Configuration for passage
               retrieval.
        :param QueryLargeSimilar similar: (optional) Finds results from documents
               that are similar to documents of interest. Use this parameter to add a
               *More like these* function to your search. You can include this parameter
               with or without a **query**, **filter** or **natural_language_query**
               parameter.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `QueryResponse` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if table_results is not None:
            table_results = convert_model(table_results)
        if suggested_refinements is not None:
            suggested_refinements = convert_model(suggested_refinements)
        if passages is not None:
            passages = convert_model(passages)
        if similar is not None:
            similar = convert_model(similar)
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='query',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        data = {
            'collection_ids': collection_ids,
            'filter': filter,
            'query': query,
            'natural_language_query': natural_language_query,
            'aggregation': aggregation,
            'count': count,
            'return': return_,
            'offset': offset,
            'sort': sort,
            'highlight': highlight,
            'spelling_suggestions': spelling_suggestions,
            'table_results': table_results,
            'suggested_refinements': suggested_refinements,
            'passages': passages,
            'similar': similar,
        }
        data = {k: v for (k, v) in data.items() if v is not None}
        data = json.dumps(data)
        headers['content-type'] = 'application/json'

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id']
        path_param_values = self.encode_path_vars(project_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/query'.format(**path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            data=data,
        )

        response = self.send(request, **kwargs)
        return response

    def get_autocompletion(
        self,
        project_id: str,
        prefix: str,
        *,
        collection_ids: Optional[List[str]] = None,
        field: Optional[str] = None,
        count: Optional[int] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Get Autocomplete Suggestions.

        Returns completion query suggestions for the specified prefix.
        Suggested words are based on terms from the project documents. Suggestions are not
        based on terms from the project's search history, and the project does not learn
        from previous user choices.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str prefix: The prefix to use for autocompletion. For example, the
               prefix `Ho` could autocomplete to `hot`, `housing`, or `how`.
        :param List[str] collection_ids: (optional) Comma separated list of the
               collection IDs. If this parameter is not specified, all collections in the
               project are used.
        :param str field: (optional) The field in the result documents that
               autocompletion suggestions are identified from.
        :param int count: (optional) The number of autocompletion suggestions to
               return.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `Completions` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not prefix:
            raise ValueError('prefix must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='get_autocompletion',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
            'prefix': prefix,
            'collection_ids': convert_list(collection_ids),
            'field': field,
            'count': count,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id']
        path_param_values = self.encode_path_vars(project_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/autocompletion'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def query_collection_notices(
        self,
        project_id: str,
        collection_id: str,
        *,
        filter: Optional[str] = None,
        query: Optional[str] = None,
        natural_language_query: Optional[str] = None,
        count: Optional[int] = None,
        offset: Optional[int] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Query collection notices.

        Finds collection-level notices (errors and warnings) that are generated when
        documents are ingested.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str collection_id: The Universally Unique Identifier (UUID) of the
               collection.
        :param str filter: (optional) Searches for documents that match the
               Discovery Query Language criteria that is specified as input. Filter calls
               are cached and are faster than query calls because the results are not
               ordered by relevance. When used with the `aggregation`, `query`, or
               `natural_language_query` parameters, the `filter` parameter runs first.
               This parameter is useful for limiting results to those that contain
               specific metadata values.
        :param str query: (optional) A query search that is written in the
               Discovery Query Language and returns all matching documents in your data
               set with full enrichments and full text, and with the most relevant
               documents listed first. You can use this parameter or the
               **natural_language_query** parameter to specify the query input, but not
               both.
        :param str natural_language_query: (optional) A natural language query that
               returns relevant documents by using natural language understanding. You can
               use this parameter or the **query** parameter to specify the query input,
               but not both. To filter the results based on criteria you specify, include
               the **filter** parameter in the request.
        :param int count: (optional) Number of results to return. The maximum for
               the **count** and **offset** values together in any one query is
               **10,000**.
        :param int offset: (optional) The number of query results to skip at the
               beginning. For example, if the total number of results that are returned is
               10 and the offset is 8, it returns the last two results. The maximum for
               the **count** and **offset** values together in any one query is **10000**.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `QueryNoticesResponse` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not collection_id:
            raise ValueError('collection_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='query_collection_notices',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
            'filter': filter,
            'query': query,
            'natural_language_query': natural_language_query,
            'count': count,
            'offset': offset,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'collection_id']
        path_param_values = self.encode_path_vars(project_id, collection_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/collections/{collection_id}/notices'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def query_notices(
        self,
        project_id: str,
        *,
        filter: Optional[str] = None,
        query: Optional[str] = None,
        natural_language_query: Optional[str] = None,
        count: Optional[int] = None,
        offset: Optional[int] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Query project notices.

        Finds project-level notices (errors and warnings). Currently, project-level
        notices are generated by relevancy training.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str filter: (optional) Searches for documents that match the
               Discovery Query Language criteria that is specified as input. Filter calls
               are cached and are faster than query calls because the results are not
               ordered by relevance. When used with the `aggregation`, `query`, or
               `natural_language_query` parameters, the `filter` parameter runs first.
               This parameter is useful for limiting results to those that contain
               specific metadata values.
        :param str query: (optional) A query search that is written in the
               Discovery Query Language and returns all matching documents in your data
               set with full enrichments and full text, and with the most relevant
               documents listed first. You can use this parameter or the
               **natural_language_query** parameter to specify the query input, but not
               both.
        :param str natural_language_query: (optional) A natural language query that
               returns relevant documents by using natural language understanding. You can
               use this parameter or the **query** parameter to specify the query input,
               but not both. To filter the results based on criteria you specify, include
               the **filter** parameter in the request.
        :param int count: (optional) Number of results to return. The maximum for
               the **count** and **offset** values together in any one query is
               **10,000**.
        :param int offset: (optional) The number of query results to skip at the
               beginning. For example, if the total number of results that are returned is
               10 and the offset is 8, it returns the last two results. The maximum for
               the **count** and **offset** values together in any one query is **10000**.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `QueryNoticesResponse` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='query_notices',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
            'filter': filter,
            'query': query,
            'natural_language_query': natural_language_query,
            'count': count,
            'offset': offset,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id']
        path_param_values = self.encode_path_vars(project_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/notices'.format(**path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    #########################
    # Query modifications
    #########################

    def get_stopword_list(
        self,
        project_id: str,
        collection_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Get a custom stop words list.

        Returns the custom stop words list that is used by the collection. For information
        about the default stop words lists that are applied to queries, see [the product
        documentation](/docs/discovery-data?topic=discovery-data-stopwords).

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str collection_id: The Universally Unique Identifier (UUID) of the
               collection.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `StopWordList` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not collection_id:
            raise ValueError('collection_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='get_stopword_list',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'collection_id']
        path_param_values = self.encode_path_vars(project_id, collection_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/collections/{collection_id}/stopwords'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def create_stopword_list(
        self,
        project_id: str,
        collection_id: str,
        *,
        stopwords: Optional[List[str]] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Create a custom stop words list.

        Adds a list of custom stop words. Stop words are words that you want the service
        to ignore when they occur in a query because they're not useful in distinguishing
        the semantic meaning of the query. The stop words list cannot contain more than 1
        million characters.
        A default stop words list is used by all collections. The default list is applied
        both at indexing time and at query time. A custom stop words list that you add is
        used at query time only.
        The custom stop words list augments the default stop words list; you cannot remove
        stop words. For information about the default stop words lists per language, see
        [the product documentation](/docs/discovery-data?topic=discovery-data-stopwords).

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str collection_id: The Universally Unique Identifier (UUID) of the
               collection.
        :param List[str] stopwords: (optional) List of stop words.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `StopWordList` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not collection_id:
            raise ValueError('collection_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='create_stopword_list',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        data = {
            'stopwords': stopwords,
        }
        data = {k: v for (k, v) in data.items() if v is not None}
        data = json.dumps(data)
        headers['content-type'] = 'application/json'

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'collection_id']
        path_param_values = self.encode_path_vars(project_id, collection_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/collections/{collection_id}/stopwords'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            data=data,
        )

        response = self.send(request, **kwargs)
        return response

    def delete_stopword_list(
        self,
        project_id: str,
        collection_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Delete a custom stop words list.

        Deletes a custom stop words list to stop using it in queries against the
        collection. After a custom stop words list is deleted, the default stop words list
        is used.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str collection_id: The Universally Unique Identifier (UUID) of the
               collection.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not collection_id:
            raise ValueError('collection_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='delete_stopword_list',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']

        path_param_keys = ['project_id', 'collection_id']
        path_param_values = self.encode_path_vars(project_id, collection_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/collections/{collection_id}/stopwords'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='DELETE',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def list_expansions(
        self,
        project_id: str,
        collection_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Get the expansion list.

        Returns the current expansion list for the specified collection. If an expansion
        list is not specified, an empty expansions array is returned.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str collection_id: The Universally Unique Identifier (UUID) of the
               collection.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `Expansions` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not collection_id:
            raise ValueError('collection_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='list_expansions',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'collection_id']
        path_param_values = self.encode_path_vars(project_id, collection_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/collections/{collection_id}/expansions'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def create_expansions(
        self,
        project_id: str,
        collection_id: str,
        expansions: List['Expansion'],
        **kwargs,
    ) -> DetailedResponse:
        """
        Create or update an expansion list.

        Creates or replaces the expansion list for this collection. An expansion list
        introduces alternative wording for key terms that are mentioned in your
        collection. By identifying synonyms or common misspellings, you expand the scope
        of a query beyond exact matches. The maximum number of expanded terms allowed per
        collection is 5,000.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str collection_id: The Universally Unique Identifier (UUID) of the
               collection.
        :param List[Expansion] expansions: An array of query expansion definitions.
                Each object in the **expansions** array represents a term or set of terms
               that will be expanded into other terms. Each expansion object can be
               configured as `bidirectional` or `unidirectional`.
               * **Bidirectional**: Each entry in the `expanded_terms` list expands to
               include all expanded terms. For example, a query for `ibm` expands to `ibm
               OR international business machines OR big blue`.
               * **Unidirectional**: The terms in `input_terms` in the query are replaced
               by the terms in `expanded_terms`. For example, a query for the often
               misused term `on premise` is converted to `on premises OR on-premises` and
               does not contain the original term. If you want an input term to be
               included in the query, then repeat the input term in the expanded terms
               list.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `Expansions` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not collection_id:
            raise ValueError('collection_id must be provided')
        if expansions is None:
            raise ValueError('expansions must be provided')
        expansions = [convert_model(x) for x in expansions]
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='create_expansions',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        data = {
            'expansions': expansions,
        }
        data = {k: v for (k, v) in data.items() if v is not None}
        data = json.dumps(data)
        headers['content-type'] = 'application/json'

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'collection_id']
        path_param_values = self.encode_path_vars(project_id, collection_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/collections/{collection_id}/expansions'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            data=data,
        )

        response = self.send(request, **kwargs)
        return response

    def delete_expansions(
        self,
        project_id: str,
        collection_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Delete the expansion list.

        Removes the expansion information for this collection. To disable query expansion
        for a collection, delete the expansion list.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str collection_id: The Universally Unique Identifier (UUID) of the
               collection.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not collection_id:
            raise ValueError('collection_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='delete_expansions',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']

        path_param_keys = ['project_id', 'collection_id']
        path_param_values = self.encode_path_vars(project_id, collection_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/collections/{collection_id}/expansions'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='DELETE',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    #########################
    # Component settings
    #########################

    def get_component_settings(
        self,
        project_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        List component settings.

        Returns default configuration settings for components.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `ComponentSettingsResponse` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='get_component_settings',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id']
        path_param_values = self.encode_path_vars(project_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/component_settings'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    #########################
    # Training data
    #########################

    def list_training_queries(
        self,
        project_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        List training queries.

        List the training queries for the specified project.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `TrainingQuerySet` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='list_training_queries',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id']
        path_param_values = self.encode_path_vars(project_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/training_data/queries'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def delete_training_queries(
        self,
        project_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Delete training queries.

        Removes all training queries for the specified project.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='delete_training_queries',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']

        path_param_keys = ['project_id']
        path_param_values = self.encode_path_vars(project_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/training_data/queries'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='DELETE',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def create_training_query(
        self,
        project_id: str,
        natural_language_query: str,
        examples: List['TrainingExample'],
        *,
        filter: Optional[str] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Create a training query.

        Add a query to the training data for this project. The query can contain a filter
        and natural language query.
        **Note**: You cannot apply relevancy training to a `content_mining` project type.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str natural_language_query: The natural text query that is used as
               the training query.
        :param List[TrainingExample] examples: Array of training examples.
        :param str filter: (optional) The filter used on the collection before the
               **natural_language_query** is applied. Only specify a filter if the
               documents that you consider to be most relevant are not included in the top
               100 results when you submit test queries. If you specify a filter during
               training, apply the same filter to queries that are submitted at runtime
               for optimal ranking results.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `TrainingQuery` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if natural_language_query is None:
            raise ValueError('natural_language_query must be provided')
        if examples is None:
            raise ValueError('examples must be provided')
        examples = [convert_model(x) for x in examples]
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='create_training_query',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        data = {
            'natural_language_query': natural_language_query,
            'examples': examples,
            'filter': filter,
        }
        data = {k: v for (k, v) in data.items() if v is not None}
        data = json.dumps(data)
        headers['content-type'] = 'application/json'

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id']
        path_param_values = self.encode_path_vars(project_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/training_data/queries'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            data=data,
        )

        response = self.send(request, **kwargs)
        return response

    def get_training_query(
        self,
        project_id: str,
        query_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Get a training data query.

        Get details for a specific training data query, including the query string and all
        examples.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str query_id: The ID of the query used for training.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `TrainingQuery` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not query_id:
            raise ValueError('query_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='get_training_query',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'query_id']
        path_param_values = self.encode_path_vars(project_id, query_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/training_data/queries/{query_id}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def update_training_query(
        self,
        project_id: str,
        query_id: str,
        natural_language_query: str,
        examples: List['TrainingExample'],
        *,
        filter: Optional[str] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Update a training query.

        Updates an existing training query and its examples. You must resubmit all of the
        examples with the update request.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str query_id: The ID of the query used for training.
        :param str natural_language_query: The natural text query that is used as
               the training query.
        :param List[TrainingExample] examples: Array of training examples.
        :param str filter: (optional) The filter used on the collection before the
               **natural_language_query** is applied. Only specify a filter if the
               documents that you consider to be most relevant are not included in the top
               100 results when you submit test queries. If you specify a filter during
               training, apply the same filter to queries that are submitted at runtime
               for optimal ranking results.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `TrainingQuery` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not query_id:
            raise ValueError('query_id must be provided')
        if natural_language_query is None:
            raise ValueError('natural_language_query must be provided')
        if examples is None:
            raise ValueError('examples must be provided')
        examples = [convert_model(x) for x in examples]
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='update_training_query',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        data = {
            'natural_language_query': natural_language_query,
            'examples': examples,
            'filter': filter,
        }
        data = {k: v for (k, v) in data.items() if v is not None}
        data = json.dumps(data)
        headers['content-type'] = 'application/json'

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'query_id']
        path_param_values = self.encode_path_vars(project_id, query_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/training_data/queries/{query_id}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            data=data,
        )

        response = self.send(request, **kwargs)
        return response

    def delete_training_query(
        self,
        project_id: str,
        query_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Delete a training data query.

        Removes details from a training data query, including the query string and all
        examples.
        To delete an example, use the *Update a training query* method and omit the
        example that you want to delete from the example set.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str query_id: The ID of the query used for training.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not query_id:
            raise ValueError('query_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='delete_training_query',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']

        path_param_keys = ['project_id', 'query_id']
        path_param_values = self.encode_path_vars(project_id, query_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/training_data/queries/{query_id}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='DELETE',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    #########################
    # Enrichments
    #########################

    def list_enrichments(
        self,
        project_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        List enrichments.

        Lists the enrichments available to this project. The *Part of Speech* and
        *Sentiment of Phrases* enrichments might be listed, but are reserved for internal
        use only.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `Enrichments` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='list_enrichments',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id']
        path_param_values = self.encode_path_vars(project_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/enrichments'.format(**path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def create_enrichment(
        self,
        project_id: str,
        enrichment: 'CreateEnrichment',
        *,
        file: Optional[BinaryIO] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Create an enrichment.

        Create an enrichment for use with the specified project. To apply the enrichment
        to a collection in the project, use the [Collections
        API](/apidocs/discovery-data#createcollection).

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param CreateEnrichment enrichment: Information about a specific
               enrichment.
        :param BinaryIO file: (optional) The enrichment file to upload. Expected
               file types per enrichment are as follows:
               * CSV for `dictionary` and `sentence_classifier` (the training data CSV
               file to upload).
               * PEAR for `uima_annotator` and `rule_based` (Explorer)
               * ZIP for `watson_knowledge_studio_model` and `rule_based` (Studio Advanced
               Rule Editor).
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `Enrichment` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if enrichment is None:
            raise ValueError('enrichment must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='create_enrichment',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        form_data = []
        form_data.append(
            ('enrichment', (None, json.dumps(enrichment), 'application/json')))
        if file:
            form_data.append(('file', (None, file, 'application/octet-stream')))

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id']
        path_param_values = self.encode_path_vars(project_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/enrichments'.format(**path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            files=form_data,
        )

        response = self.send(request, **kwargs)
        return response

    def get_enrichment(
        self,
        project_id: str,
        enrichment_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Get enrichment.

        Get details about a specific enrichment.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str enrichment_id: The Universally Unique Identifier (UUID) of the
               enrichment.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `Enrichment` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not enrichment_id:
            raise ValueError('enrichment_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='get_enrichment',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'enrichment_id']
        path_param_values = self.encode_path_vars(project_id, enrichment_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/enrichments/{enrichment_id}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def update_enrichment(
        self,
        project_id: str,
        enrichment_id: str,
        name: str,
        *,
        description: Optional[str] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Update an enrichment.

        Updates an existing enrichment's name and description.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str enrichment_id: The Universally Unique Identifier (UUID) of the
               enrichment.
        :param str name: A new name for the enrichment.
        :param str description: (optional) A new description for the enrichment.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `Enrichment` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not enrichment_id:
            raise ValueError('enrichment_id must be provided')
        if name is None:
            raise ValueError('name must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='update_enrichment',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        data = {
            'name': name,
            'description': description,
        }
        data = {k: v for (k, v) in data.items() if v is not None}
        data = json.dumps(data)
        headers['content-type'] = 'application/json'

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'enrichment_id']
        path_param_values = self.encode_path_vars(project_id, enrichment_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/enrichments/{enrichment_id}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            data=data,
        )

        response = self.send(request, **kwargs)
        return response

    def delete_enrichment(
        self,
        project_id: str,
        enrichment_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Delete an enrichment.

        Deletes an existing enrichment from the specified project.
        **Note:** Only enrichments that have been manually created can be deleted.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str enrichment_id: The Universally Unique Identifier (UUID) of the
               enrichment.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not enrichment_id:
            raise ValueError('enrichment_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='delete_enrichment',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']

        path_param_keys = ['project_id', 'enrichment_id']
        path_param_values = self.encode_path_vars(project_id, enrichment_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/enrichments/{enrichment_id}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='DELETE',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    #########################
    # Batches
    #########################

    def list_batches(
        self,
        project_id: str,
        collection_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        List batches.

        A batch is a set of documents that are ready for enrichment by an external
        application. After you apply a webhook enrichment to a collection, and then
        process or upload documents to the collection, Discovery creates a batch with a
        unique **batch_id**.
         To start, you must register your external application as a **webhook** type by
        using the [Create enrichment API](/apidocs/discovery-data#createenrichment)
        method.
        Use the List batches API to get the following:
         * Notified batches that are not yet pulled by the external enrichment
        application.
         * Batches that are pulled, but not yet pushed to Discovery by the external
        enrichment application.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str collection_id: The Universally Unique Identifier (UUID) of the
               collection.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `ListBatchesResponse` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not collection_id:
            raise ValueError('collection_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='list_batches',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'collection_id']
        path_param_values = self.encode_path_vars(project_id, collection_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/collections/{collection_id}/batches'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def pull_batches(
        self,
        project_id: str,
        collection_id: str,
        batch_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Pull batches.

        Pull a batch of documents from Discovery for enrichment by an external
        application. Ensure to include the `Accept-Encoding: gzip` header in this method
        to get the file. You can also implement retry logic when calling this method to
        avoid any network errors.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str collection_id: The Universally Unique Identifier (UUID) of the
               collection.
        :param str batch_id: The Universally Unique Identifier (UUID) of the
               document batch that is being requested from Discovery.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `PullBatchesResponse` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not collection_id:
            raise ValueError('collection_id must be provided')
        if not batch_id:
            raise ValueError('batch_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='pull_batches',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'collection_id', 'batch_id']
        path_param_values = self.encode_path_vars(project_id, collection_id,
                                                  batch_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/collections/{collection_id}/batches/{batch_id}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def push_batches(
        self,
        project_id: str,
        collection_id: str,
        batch_id: str,
        *,
        file: Optional[BinaryIO] = None,
        filename: Optional[str] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Push batches.

        Push a batch of documents to Discovery after annotation by an external
        application. You can implement retry logic when calling this method to avoid any
        network errors.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str collection_id: The Universally Unique Identifier (UUID) of the
               collection.
        :param str batch_id: The Universally Unique Identifier (UUID) of the
               document batch that is being requested from Discovery.
        :param BinaryIO file: (optional) A compressed newline-delimited JSON
               (NDJSON), which is a JSON file with one row of data per line. For example,
               `{batch_id}.ndjson.gz`. For more information, see [Binary attachment in the
               push batches
               method](/docs/discovery-data?topic=discovery-data-external-enrichment#binary-attachment-push-batches).
               There is no limitation on the name of the file because Discovery does not
               use the name for processing. The list of features in the document is
               specified in the `features` object.
        :param str filename: (optional) The filename for file.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `bool` result
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not collection_id:
            raise ValueError('collection_id must be provided')
        if not batch_id:
            raise ValueError('batch_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='push_batches',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        form_data = []
        if file:
            if not filename and hasattr(file, 'name'):
                filename = basename(file.name)
            if not filename:
                raise ValueError('filename must be provided')
            form_data.append(
                ('file', (filename, file, 'application/octet-stream')))

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'collection_id', 'batch_id']
        path_param_values = self.encode_path_vars(project_id, collection_id,
                                                  batch_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/collections/{collection_id}/batches/{batch_id}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            files=form_data,
        )

        response = self.send(request, **kwargs)
        return response

    #########################
    # Document classifiers
    #########################

    def list_document_classifiers(
        self,
        project_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        List document classifiers.

        Get a list of the document classifiers in a project. Returns only the name and
        classifier ID of each document classifier.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `DocumentClassifiers` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='list_document_classifiers',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id']
        path_param_values = self.encode_path_vars(project_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/document_classifiers'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def create_document_classifier(
        self,
        project_id: str,
        training_data: BinaryIO,
        classifier: 'CreateDocumentClassifier',
        *,
        test_data: Optional[BinaryIO] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Create a document classifier.

        Create a document classifier. You can use the API to create a document classifier
        in any project type. After you create a document classifier, you can use the
        Enrichments API to create a classifier enrichment, and then the Collections API to
        apply the enrichment to a collection in the project.
        **Note:** This method is supported on installed instances (IBM Cloud Pak for Data)
        or IBM Cloud-managed Premium or Enterprise plan instances.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param BinaryIO training_data: The training data CSV file to upload. The
               CSV file must have headers. The file must include a field that contains the
               text you want to classify and a field that contains the classification
               labels that you want to use to classify your data. If you want to specify
               multiple values in a single field, use a semicolon as the value separator.
               For a sample file, see [the product
               documentation](/docs/discovery-data?topic=discovery-data-cm-doc-classifier).
        :param CreateDocumentClassifier classifier: An object that manages the
               settings and data that is required to train a document classification
               model.
        :param BinaryIO test_data: (optional) The CSV with test data to upload. The
               column values in the test file must be the same as the column values in the
               training data file. If no test data is provided, the training data is split
               into two separate groups of training and test data.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `DocumentClassifier` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if training_data is None:
            raise ValueError('training_data must be provided')
        if classifier is None:
            raise ValueError('classifier must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='create_document_classifier',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        form_data = []
        form_data.append(('training_data', (None, training_data, 'text/csv')))
        form_data.append(
            ('classifier', (None, json.dumps(classifier), 'application/json')))
        if test_data:
            form_data.append(('test_data', (None, test_data, 'text/csv')))

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id']
        path_param_values = self.encode_path_vars(project_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/document_classifiers'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            files=form_data,
        )

        response = self.send(request, **kwargs)
        return response

    def get_document_classifier(
        self,
        project_id: str,
        classifier_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Get a document classifier.

        Get details about a specific document classifier.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str classifier_id: The Universally Unique Identifier (UUID) of the
               classifier.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `DocumentClassifier` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not classifier_id:
            raise ValueError('classifier_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='get_document_classifier',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'classifier_id']
        path_param_values = self.encode_path_vars(project_id, classifier_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/document_classifiers/{classifier_id}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def update_document_classifier(
        self,
        project_id: str,
        classifier_id: str,
        classifier: 'UpdateDocumentClassifier',
        *,
        training_data: Optional[BinaryIO] = None,
        test_data: Optional[BinaryIO] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Update a document classifier.

        Update the document classifier name or description, update the training data, or
        add or update the test data.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str classifier_id: The Universally Unique Identifier (UUID) of the
               classifier.
        :param UpdateDocumentClassifier classifier: An object that contains a new
               name or description for a document classifier, updated training data, or
               new or updated test data.
        :param BinaryIO training_data: (optional) The training data CSV file to
               upload. The CSV file must have headers. The file must include a field that
               contains the text you want to classify and a field that contains the
               classification labels that you want to use to classify your data. If you
               want to specify multiple values in a single column, use a semicolon as the
               value separator. For a sample file, see [the product
               documentation](/docs/discovery-data?topic=discovery-data-cm-doc-classifier).
        :param BinaryIO test_data: (optional) The CSV with test data to upload. The
               column values in the test file must be the same as the column values in the
               training data file. If no test data is provided, the training data is split
               into two separate groups of training and test data.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `DocumentClassifier` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not classifier_id:
            raise ValueError('classifier_id must be provided')
        if classifier is None:
            raise ValueError('classifier must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='update_document_classifier',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        form_data = []
        form_data.append(
            ('classifier', (None, json.dumps(classifier), 'application/json')))
        if training_data:
            form_data.append(
                ('training_data', (None, training_data, 'text/csv')))
        if test_data:
            form_data.append(('test_data', (None, test_data, 'text/csv')))

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'classifier_id']
        path_param_values = self.encode_path_vars(project_id, classifier_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/document_classifiers/{classifier_id}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            files=form_data,
        )

        response = self.send(request, **kwargs)
        return response

    def delete_document_classifier(
        self,
        project_id: str,
        classifier_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Delete a document classifier.

        Deletes an existing document classifier from the specified project.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str classifier_id: The Universally Unique Identifier (UUID) of the
               classifier.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not classifier_id:
            raise ValueError('classifier_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='delete_document_classifier',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']

        path_param_keys = ['project_id', 'classifier_id']
        path_param_values = self.encode_path_vars(project_id, classifier_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/document_classifiers/{classifier_id}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='DELETE',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    #########################
    # Document classifier models
    #########################

    def list_document_classifier_models(
        self,
        project_id: str,
        classifier_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        List document classifier models.

        Get a list of the document classifier models in a project. Returns only the name
        and model ID of each document classifier model.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str classifier_id: The Universally Unique Identifier (UUID) of the
               classifier.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `DocumentClassifierModels` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not classifier_id:
            raise ValueError('classifier_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='list_document_classifier_models',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'classifier_id']
        path_param_values = self.encode_path_vars(project_id, classifier_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/document_classifiers/{classifier_id}/models'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def create_document_classifier_model(
        self,
        project_id: str,
        classifier_id: str,
        name: str,
        *,
        description: Optional[str] = None,
        learning_rate: Optional[float] = None,
        l1_regularization_strengths: Optional[List[float]] = None,
        l2_regularization_strengths: Optional[List[float]] = None,
        training_max_steps: Optional[int] = None,
        improvement_ratio: Optional[float] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Create a document classifier model.

        Create a document classifier model by training a model that uses the data and
        classifier settings defined in the specified document classifier.
        **Note:** This method is supported on installed intances (IBM Cloud Pak for Data)
        or IBM Cloud-managed Premium or Enterprise plan instances.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str classifier_id: The Universally Unique Identifier (UUID) of the
               classifier.
        :param str name: The name of the document classifier model.
        :param str description: (optional) A description of the document classifier
               model.
        :param float learning_rate: (optional) A tuning parameter in an
               optimization algorithm that determines the step size at each iteration of
               the training process. It influences how much of any newly acquired
               information overrides the existing information, and therefore is said to
               represent the speed at which a machine learning model learns. The default
               value is `0.1`.
        :param List[float] l1_regularization_strengths: (optional) Avoids
               overfitting by shrinking the coefficient of less important features to
               zero, which removes some features altogether. You can specify many values
               for hyper-parameter optimization. The default value is `[0.000001]`.
        :param List[float] l2_regularization_strengths: (optional) A method you can
               apply to avoid overfitting your model on the training data. You can specify
               many values for hyper-parameter optimization. The default value is
               `[0.000001]`.
        :param int training_max_steps: (optional) Maximum number of training steps
               to complete. This setting is useful if you need the training process to
               finish in a specific time frame to fit into an automated process. The
               default value is ten million.
        :param float improvement_ratio: (optional) Stops the training run early if
               the improvement ratio is not met by the time the process reaches a certain
               point. The default value is `0.00001`.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `DocumentClassifierModel` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not classifier_id:
            raise ValueError('classifier_id must be provided')
        if name is None:
            raise ValueError('name must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='create_document_classifier_model',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        data = {
            'name': name,
            'description': description,
            'learning_rate': learning_rate,
            'l1_regularization_strengths': l1_regularization_strengths,
            'l2_regularization_strengths': l2_regularization_strengths,
            'training_max_steps': training_max_steps,
            'improvement_ratio': improvement_ratio,
        }
        data = {k: v for (k, v) in data.items() if v is not None}
        data = json.dumps(data)
        headers['content-type'] = 'application/json'

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'classifier_id']
        path_param_values = self.encode_path_vars(project_id, classifier_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/document_classifiers/{classifier_id}/models'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            data=data,
        )

        response = self.send(request, **kwargs)
        return response

    def get_document_classifier_model(
        self,
        project_id: str,
        classifier_id: str,
        model_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Get a document classifier model.

        Get details about a specific document classifier model.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str classifier_id: The Universally Unique Identifier (UUID) of the
               classifier.
        :param str model_id: The Universally Unique Identifier (UUID) of the
               classifier model.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `DocumentClassifierModel` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not classifier_id:
            raise ValueError('classifier_id must be provided')
        if not model_id:
            raise ValueError('model_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='get_document_classifier_model',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'classifier_id', 'model_id']
        path_param_values = self.encode_path_vars(project_id, classifier_id,
                                                  model_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/document_classifiers/{classifier_id}/models/{model_id}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def update_document_classifier_model(
        self,
        project_id: str,
        classifier_id: str,
        model_id: str,
        *,
        name: Optional[str] = None,
        description: Optional[str] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Update a document classifier model.

        Update the document classifier model name or description.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str classifier_id: The Universally Unique Identifier (UUID) of the
               classifier.
        :param str model_id: The Universally Unique Identifier (UUID) of the
               classifier model.
        :param str name: (optional) A new name for the enrichment.
        :param str description: (optional) A new description for the enrichment.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `DocumentClassifierModel` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not classifier_id:
            raise ValueError('classifier_id must be provided')
        if not model_id:
            raise ValueError('model_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='update_document_classifier_model',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        data = {
            'name': name,
            'description': description,
        }
        data = {k: v for (k, v) in data.items() if v is not None}
        data = json.dumps(data)
        headers['content-type'] = 'application/json'

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'classifier_id', 'model_id']
        path_param_values = self.encode_path_vars(project_id, classifier_id,
                                                  model_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/document_classifiers/{classifier_id}/models/{model_id}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            data=data,
        )

        response = self.send(request, **kwargs)
        return response

    def delete_document_classifier_model(
        self,
        project_id: str,
        classifier_id: str,
        model_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Delete a document classifier model.

        Deletes an existing document classifier model from the specified project.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str classifier_id: The Universally Unique Identifier (UUID) of the
               classifier.
        :param str model_id: The Universally Unique Identifier (UUID) of the
               classifier model.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not classifier_id:
            raise ValueError('classifier_id must be provided')
        if not model_id:
            raise ValueError('model_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='delete_document_classifier_model',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']

        path_param_keys = ['project_id', 'classifier_id', 'model_id']
        path_param_values = self.encode_path_vars(project_id, classifier_id,
                                                  model_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/document_classifiers/{classifier_id}/models/{model_id}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='DELETE',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    #########################
    # Analyze
    #########################

    def analyze_document(
        self,
        project_id: str,
        collection_id: str,
        *,
        file: Optional[BinaryIO] = None,
        filename: Optional[str] = None,
        file_content_type: Optional[str] = None,
        metadata: Optional[str] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Analyze a document.

        Process a document and return it for realtime use. Supports JSON files only.
        The file is not stored in the collection, but is processed according to the
        collection's configuration settings. To get results, enrichments must be applied
        to a field in the collection that also exists in the file that you want to
        analyze. For example, to analyze text in a `Quote` field, you must apply
        enrichments to the `Quote` field in the collection configuration. Then, when you
        analyze the file, the text in the `Quote` field is analyzed and results are
        written to a field named `enriched_Quote`.
        Submit a request against only one collection at a time. Remember, the documents in
        the collection are not significant. It is the enrichments that are defined for the
        collection that matter. If you submit requests to several collections, then
        several models are initiated at the same time, which can cause request failures.
        **Note:** This method is supported with Enterprise plan deployments and installed
        deployments only.

        :param str project_id: The Universally Unique Identifier (UUID) of the
               project. This information can be found from the *Integrate and Deploy* page
               in Discovery.
        :param str collection_id: The Universally Unique Identifier (UUID) of the
               collection.
        :param BinaryIO file: (optional) **Add a document**: The content of the
               document to ingest. For the supported file types and maximum supported file
               size limits when adding a document, see [the
               documentation](/docs/discovery-data?topic=discovery-data-collections#supportedfiletypes).
               **Analyze a document**: The content of the document to analyze but not
               ingest. Only the `application/json` content type is supported by the
               Analyze API. For maximum supported file size limits, see [the product
               documentation](/docs/discovery-data?topic=discovery-data-analyzeapi#analyzeapi-limits).
        :param str filename: (optional) The filename for file.
        :param str file_content_type: (optional) The content type of file.
        :param str metadata: (optional) Add information about the file that you
               want to include in the response.
               The maximum supported metadata file size is 1 MB. Metadata parts larger
               than 1 MB are rejected.
               Example:
                ```
                {
                 "filename": "favorites2.json",
                 "file_type": "json"
                }.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `AnalyzedDocument` object
        """

        if not project_id:
            raise ValueError('project_id must be provided')
        if not collection_id:
            raise ValueError('collection_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='analyze_document',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
        }

        form_data = []
        if file:
            if not filename and hasattr(file, 'name'):
                filename = basename(file.name)
            if not filename:
                raise ValueError('filename must be provided')
            form_data.append(('file', (filename, file, file_content_type or
                                       'application/octet-stream')))
        if metadata:
            form_data.append(('metadata', (None, metadata, 'text/plain')))

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['project_id', 'collection_id']
        path_param_values = self.encode_path_vars(project_id, collection_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v2/projects/{project_id}/collections/{collection_id}/analyze'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            files=form_data,
        )

        response = self.send(request, **kwargs)
        return response

    #########################
    # User data
    #########################

    def delete_user_data(
        self,
        customer_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Delete labeled data.

        Deletes all data associated with a specified customer ID. The method has no effect
        if no data is associated with the customer ID.
        You associate a customer ID with data by passing the **X-Watson-Metadata** header
        with a request that passes data. For more information about personal data and
        customer IDs, see [Information
        security](/docs/discovery-data?topic=discovery-data-information-security#information-security).
        **Note:** This method is only supported on IBM Cloud instances of Discovery.

        :param str customer_id: The customer ID for which all data is to be
               deleted.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not customer_id:
            raise ValueError('customer_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V2',
            operation_id='delete_user_data',
        )
        headers.update(sdk_headers)

        params = {
            'version': self.version,
            'customer_id': customer_id,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']

        url = '/v2/user_data'
        request = self.prepare_request(
            method='DELETE',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response


class AddDocumentEnums:
    """
    Enums for add_document parameters.
    """

    class FileContentType(str, Enum):
        """
        The content type of file.
        """

        APPLICATION_JSON = 'application/json'
        APPLICATION_MSWORD = 'application/msword'
        APPLICATION_VND_OPENXMLFORMATS_OFFICEDOCUMENT_WORDPROCESSINGML_DOCUMENT = 'application/vnd.openxmlformats-officedocument.wordprocessingml.document'
        APPLICATION_PDF = 'application/pdf'
        TEXT_HTML = 'text/html'
        APPLICATION_XHTML_XML = 'application/xhtml+xml'


class UpdateDocumentEnums:
    """
    Enums for update_document parameters.
    """

    class FileContentType(str, Enum):
        """
        The content type of file.
        """

        APPLICATION_JSON = 'application/json'
        APPLICATION_MSWORD = 'application/msword'
        APPLICATION_VND_OPENXMLFORMATS_OFFICEDOCUMENT_WORDPROCESSINGML_DOCUMENT = 'application/vnd.openxmlformats-officedocument.wordprocessingml.document'
        APPLICATION_PDF = 'application/pdf'
        TEXT_HTML = 'text/html'
        APPLICATION_XHTML_XML = 'application/xhtml+xml'


class AnalyzeDocumentEnums:
    """
    Enums for analyze_document parameters.
    """

    class FileContentType(str, Enum):
        """
        The content type of file.
        """

        APPLICATION_JSON = 'application/json'
        APPLICATION_MSWORD = 'application/msword'
        APPLICATION_VND_OPENXMLFORMATS_OFFICEDOCUMENT_WORDPROCESSINGML_DOCUMENT = 'application/vnd.openxmlformats-officedocument.wordprocessingml.document'
        APPLICATION_PDF = 'application/pdf'
        TEXT_HTML = 'text/html'
        APPLICATION_XHTML_XML = 'application/xhtml+xml'


##############################################################################
# Models
##############################################################################


class AnalyzedDocument:
    """
    An object that contains the converted document and any identified enrichments.
    Root-level fields from the original file are returned also.

    :param List[Notice] notices: (optional) Array of notices that are triggered when
          the files are processed.
    :param AnalyzedResult result: (optional) Result of the document analysis.
    """

    def __init__(
        self,
        *,
        notices: Optional[List['Notice']] = None,
        result: Optional['AnalyzedResult'] = None,
    ) -> None:
        """
        Initialize a AnalyzedDocument object.

        :param List[Notice] notices: (optional) Array of notices that are triggered
               when the files are processed.
        :param AnalyzedResult result: (optional) Result of the document analysis.
        """
        self.notices = notices
        self.result = result

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'AnalyzedDocument':
        """Initialize a AnalyzedDocument object from a json dictionary."""
        args = {}
        if (notices := _dict.get('notices')) is not None:
            args['notices'] = [Notice.from_dict(v) for v in notices]
        if (result := _dict.get('result')) is not None:
            args['result'] = AnalyzedResult.from_dict(result)
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a AnalyzedDocument object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'notices') and self.notices is not None:
            notices_list = []
            for v in self.notices:
                if isinstance(v, dict):
                    notices_list.append(v)
                else:
                    notices_list.append(v.to_dict())
            _dict['notices'] = notices_list
        if hasattr(self, 'result') and self.result is not None:
            if isinstance(self.result, dict):
                _dict['result'] = self.result
            else:
                _dict['result'] = self.result.to_dict()
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this AnalyzedDocument object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'AnalyzedDocument') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'AnalyzedDocument') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class AnalyzedResult:
    """
    Result of the document analysis.

    :param dict metadata: (optional) Metadata that was specified with the request.

    This type supports additional properties of type object. The remaining key-value
    pairs.
    """

    # The set of defined properties for the class
    _properties = frozenset(['metadata'])

    def __init__(
        self,
        *,
        metadata: Optional[dict] = None,
        **kwargs: Optional[object],
    ) -> None:
        """
        Initialize a AnalyzedResult object.

        :param dict metadata: (optional) Metadata that was specified with the
               request.
        :param object **kwargs: (optional) The remaining key-value pairs.
        """
        self.metadata = metadata
        for k, v in kwargs.items():
            if k not in AnalyzedResult._properties:
                if not isinstance(v, object):
                    raise ValueError(
                        'Value for additional property {} must be of type object'
                        .format(k))
                setattr(self, k, v)
            else:
                raise ValueError(
                    'Property {} cannot be specified as an additional property'.
                    format(k))

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'AnalyzedResult':
        """Initialize a AnalyzedResult object from a json dictionary."""
        args = {}
        if (metadata := _dict.get('metadata')) is not None:
            args['metadata'] = metadata
        for k, v in _dict.items():
            if k not in cls._properties:
                if not isinstance(v, object):
                    raise ValueError(
                        'Value for additional property {} must be of type object'
                        .format(k))
                args[k] = v
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a AnalyzedResult object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'metadata') and self.metadata is not None:
            _dict['metadata'] = self.metadata
        for k in [
                _k for _k in vars(self).keys()
                if _k not in AnalyzedResult._properties
        ]:
            _dict[k] = getattr(self, k)
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def get_properties(self) -> Dict:
        """Return the additional properties from this instance of AnalyzedResult in the form of a dict."""
        _dict = {}
        for k in [
                _k for _k in vars(self).keys()
                if _k not in AnalyzedResult._properties
        ]:
            _dict[k] = getattr(self, k)
        return _dict

    def set_properties(self, _dict: dict):
        """Set a dictionary of additional properties in this instance of AnalyzedResult"""
        for k in [
                _k for _k in vars(self).keys()
                if _k not in AnalyzedResult._properties
        ]:
            delattr(self, k)
        for k, v in _dict.items():
            if k not in AnalyzedResult._properties:
                if not isinstance(v, object):
                    raise ValueError(
                        'Value for additional property {} must be of type object'
                        .format(k))
                setattr(self, k, v)
            else:
                raise ValueError(
                    'Property {} cannot be specified as an additional property'.
                    format(k))

    def __str__(self) -> str:
        """Return a `str` version of this AnalyzedResult object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'AnalyzedResult') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'AnalyzedResult') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class BatchDetails:
    """
    A batch is a set of documents that are ready for enrichment by an external
    application. After you apply a webhook enrichment to a collection, and then process or
    upload documents to the collection, Discovery creates a batch with a unique
    **batch_id**.

    :param str batch_id: (optional) The Universally Unique Identifier (UUID) for a
          batch of documents.
    :param datetime created: (optional) The date and time (RFC3339) that the batch
          was created.
    :param str enrichment_id: (optional) The Universally Unique Identifier (UUID)
          for the external enrichment.
    """

    def __init__(
        self,
        *,
        batch_id: Optional[str] = None,
        created: Optional[datetime] = None,
        enrichment_id: Optional[str] = None,
    ) -> None:
        """
        Initialize a BatchDetails object.

        :param str enrichment_id: (optional) The Universally Unique Identifier
               (UUID) for the external enrichment.
        """
        self.batch_id = batch_id
        self.created = created
        self.enrichment_id = enrichment_id

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'BatchDetails':
        """Initialize a BatchDetails object from a json dictionary."""
        args = {}
        if (batch_id := _dict.get('batch_id')) is not None:
            args['batch_id'] = batch_id
        if (created := _dict.get('created')) is not None:
            args['created'] = string_to_datetime(created)
        if (enrichment_id := _dict.get('enrichment_id')) is not None:
            args['enrichment_id'] = enrichment_id
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a BatchDetails object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'batch_id') and getattr(self, 'batch_id') is not None:
            _dict['batch_id'] = getattr(self, 'batch_id')
        if hasattr(self, 'created') and getattr(self, 'created') is not None:
            _dict['created'] = datetime_to_string(getattr(self, 'created'))
        if hasattr(self, 'enrichment_id') and self.enrichment_id is not None:
            _dict['enrichment_id'] = self.enrichment_id
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this BatchDetails object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'BatchDetails') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'BatchDetails') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class ClassifierFederatedModel:
    """
    An object with details for creating federated document classifier models.

    :param str field: Name of the field that contains the values from which multiple
          classifier models are defined. For example, you can specify a field that lists
          product lines to create a separate model per product line.
    """

    def __init__(
        self,
        field: str,
    ) -> None:
        """
        Initialize a ClassifierFederatedModel object.

        :param str field: Name of the field that contains the values from which
               multiple classifier models are defined. For example, you can specify a
               field that lists product lines to create a separate model per product line.
        """
        self.field = field

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'ClassifierFederatedModel':
        """Initialize a ClassifierFederatedModel object from a json dictionary."""
        args = {}
        if (field := _dict.get('field')) is not None:
            args['field'] = field
        else:
            raise ValueError(
                'Required property \'field\' not present in ClassifierFederatedModel JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a ClassifierFederatedModel object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'field') and self.field is not None:
            _dict['field'] = self.field
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this ClassifierFederatedModel object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'ClassifierFederatedModel') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'ClassifierFederatedModel') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class ClassifierModelEvaluation:
    """
    An object that contains information about a trained document classifier model.

    :param ModelEvaluationMicroAverage micro_average: A micro-average aggregates the
          contributions of all classes to compute the average metric. Classes refers to
          the classification labels that are specified in the **answer_field**.
    :param ModelEvaluationMacroAverage macro_average: A macro-average computes
          metric independently for each class and then takes the average. Class refers to
          the classification label that is specified in the **answer_field**.
    :param List[PerClassModelEvaluation] per_class: An array of evaluation metrics,
          one set of metrics for each class, where class refers to the classification
          label that is specified in the **answer_field**.
    """

    def __init__(
        self,
        micro_average: 'ModelEvaluationMicroAverage',
        macro_average: 'ModelEvaluationMacroAverage',
        per_class: List['PerClassModelEvaluation'],
    ) -> None:
        """
        Initialize a ClassifierModelEvaluation object.

        :param ModelEvaluationMicroAverage micro_average: A micro-average
               aggregates the contributions of all classes to compute the average metric.
               Classes refers to the classification labels that are specified in the
               **answer_field**.
        :param ModelEvaluationMacroAverage macro_average: A macro-average computes
               metric independently for each class and then takes the average. Class
               refers to the classification label that is specified in the
               **answer_field**.
        :param List[PerClassModelEvaluation] per_class: An array of evaluation
               metrics, one set of metrics for each class, where class refers to the
               classification label that is specified in the **answer_field**.
        """
        self.micro_average = micro_average
        self.macro_average = macro_average
        self.per_class = per_class

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'ClassifierModelEvaluation':
        """Initialize a ClassifierModelEvaluation object from a json dictionary."""
        args = {}
        if (micro_average := _dict.get('micro_average')) is not None:
            args['micro_average'] = ModelEvaluationMicroAverage.from_dict(
                micro_average)
        else:
            raise ValueError(
                'Required property \'micro_average\' not present in ClassifierModelEvaluation JSON'
            )
        if (macro_average := _dict.get('macro_average')) is not None:
            args['macro_average'] = ModelEvaluationMacroAverage.from_dict(
                macro_average)
        else:
            raise ValueError(
                'Required property \'macro_average\' not present in ClassifierModelEvaluation JSON'
            )
        if (per_class := _dict.get('per_class')) is not None:
            args['per_class'] = [
                PerClassModelEvaluation.from_dict(v) for v in per_class
            ]
        else:
            raise ValueError(
                'Required property \'per_class\' not present in ClassifierModelEvaluation JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a ClassifierModelEvaluation object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'micro_average') and self.micro_average is not None:
            if isinstance(self.micro_average, dict):
                _dict['micro_average'] = self.micro_average
            else:
                _dict['micro_average'] = self.micro_average.to_dict()
        if hasattr(self, 'macro_average') and self.macro_average is not None:
            if isinstance(self.macro_average, dict):
                _dict['macro_average'] = self.macro_average
            else:
                _dict['macro_average'] = self.macro_average.to_dict()
        if hasattr(self, 'per_class') and self.per_class is not None:
            per_class_list = []
            for v in self.per_class:
                if isinstance(v, dict):
                    per_class_list.append(v)
                else:
                    per_class_list.append(v.to_dict())
            _dict['per_class'] = per_class_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this ClassifierModelEvaluation object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'ClassifierModelEvaluation') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'ClassifierModelEvaluation') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class Collection:
    """
    A collection for storing documents.

    :param str collection_id: (optional) The Universally Unique Identifier (UUID) of
          the collection.
    :param str name: (optional) The name of the collection.
    """

    def __init__(
        self,
        *,
        collection_id: Optional[str] = None,
        name: Optional[str] = None,
    ) -> None:
        """
        Initialize a Collection object.

        :param str name: (optional) The name of the collection.
        """
        self.collection_id = collection_id
        self.name = name

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'Collection':
        """Initialize a Collection object from a json dictionary."""
        args = {}
        if (collection_id := _dict.get('collection_id')) is not None:
            args['collection_id'] = collection_id
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a Collection object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'collection_id') and getattr(
                self, 'collection_id') is not None:
            _dict['collection_id'] = getattr(self, 'collection_id')
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this Collection object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'Collection') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'Collection') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class CollectionDetails:
    """
    A collection for storing documents.

    :param str collection_id: (optional) The Universally Unique Identifier (UUID) of
          the collection.
    :param str name: The name of the collection.
    :param str description: (optional) A description of the collection.
    :param datetime created: (optional) The date that the collection was created.
    :param str language: (optional) The language of the collection. For a list of
          supported languages, see the [product
          documentation](/docs/discovery-data?topic=discovery-data-language-support).
    :param bool ocr_enabled: (optional) If set to `true`, optical character
          recognition (OCR) is enabled. For more information, see [Optical character
          recognition](/docs/discovery-data?topic=discovery-data-collections#ocr).
    :param List[CollectionEnrichment] enrichments: (optional) An array of
          enrichments that are applied to this collection. To get a list of enrichments
          that are available for a project, use the [List enrichments](#listenrichments)
          method.
          If no enrichments are specified when the collection is created, the default
          enrichments for the project type are applied. For more information about project
          default settings, see the [product
          documentation](/docs/discovery-data?topic=discovery-data-project-defaults).
    :param CollectionDetailsSmartDocumentUnderstanding smart_document_understanding:
          (optional) An object that describes the Smart Document Understanding model for a
          collection.
    """

    def __init__(
        self,
        name: str,
        *,
        collection_id: Optional[str] = None,
        description: Optional[str] = None,
        created: Optional[datetime] = None,
        language: Optional[str] = None,
        ocr_enabled: Optional[bool] = None,
        enrichments: Optional[List['CollectionEnrichment']] = None,
        smart_document_understanding: Optional[
            'CollectionDetailsSmartDocumentUnderstanding'] = None,
    ) -> None:
        """
        Initialize a CollectionDetails object.

        :param str name: The name of the collection.
        :param str description: (optional) A description of the collection.
        :param str language: (optional) The language of the collection. For a list
               of supported languages, see the [product
               documentation](/docs/discovery-data?topic=discovery-data-language-support).
        :param bool ocr_enabled: (optional) If set to `true`, optical character
               recognition (OCR) is enabled. For more information, see [Optical character
               recognition](/docs/discovery-data?topic=discovery-data-collections#ocr).
        :param List[CollectionEnrichment] enrichments: (optional) An array of
               enrichments that are applied to this collection. To get a list of
               enrichments that are available for a project, use the [List
               enrichments](#listenrichments) method.
               If no enrichments are specified when the collection is created, the default
               enrichments for the project type are applied. For more information about
               project default settings, see the [product
               documentation](/docs/discovery-data?topic=discovery-data-project-defaults).
        """
        self.collection_id = collection_id
        self.name = name
        self.description = description
        self.created = created
        self.language = language
        self.ocr_enabled = ocr_enabled
        self.enrichments = enrichments
        self.smart_document_understanding = smart_document_understanding

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'CollectionDetails':
        """Initialize a CollectionDetails object from a json dictionary."""
        args = {}
        if (collection_id := _dict.get('collection_id')) is not None:
            args['collection_id'] = collection_id
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        else:
            raise ValueError(
                'Required property \'name\' not present in CollectionDetails JSON'
            )
        if (description := _dict.get('description')) is not None:
            args['description'] = description
        if (created := _dict.get('created')) is not None:
            args['created'] = string_to_datetime(created)
        if (language := _dict.get('language')) is not None:
            args['language'] = language
        if (ocr_enabled := _dict.get('ocr_enabled')) is not None:
            args['ocr_enabled'] = ocr_enabled
        if (enrichments := _dict.get('enrichments')) is not None:
            args['enrichments'] = [
                CollectionEnrichment.from_dict(v) for v in enrichments
            ]
        if (smart_document_understanding :=
                _dict.get('smart_document_understanding')) is not None:
            args[
                'smart_document_understanding'] = CollectionDetailsSmartDocumentUnderstanding.from_dict(
                    smart_document_understanding)
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a CollectionDetails object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'collection_id') and getattr(
                self, 'collection_id') is not None:
            _dict['collection_id'] = getattr(self, 'collection_id')
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'description') and self.description is not None:
            _dict['description'] = self.description
        if hasattr(self, 'created') and getattr(self, 'created') is not None:
            _dict['created'] = datetime_to_string(getattr(self, 'created'))
        if hasattr(self, 'language') and self.language is not None:
            _dict['language'] = self.language
        if hasattr(self, 'ocr_enabled') and self.ocr_enabled is not None:
            _dict['ocr_enabled'] = self.ocr_enabled
        if hasattr(self, 'enrichments') and self.enrichments is not None:
            enrichments_list = []
            for v in self.enrichments:
                if isinstance(v, dict):
                    enrichments_list.append(v)
                else:
                    enrichments_list.append(v.to_dict())
            _dict['enrichments'] = enrichments_list
        if hasattr(self, 'smart_document_understanding') and getattr(
                self, 'smart_document_understanding') is not None:
            if isinstance(getattr(self, 'smart_document_understanding'), dict):
                _dict['smart_document_understanding'] = getattr(
                    self, 'smart_document_understanding')
            else:
                _dict['smart_document_understanding'] = getattr(
                    self, 'smart_document_understanding').to_dict()
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this CollectionDetails object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'CollectionDetails') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'CollectionDetails') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class CollectionDetailsSmartDocumentUnderstanding:
    """
    An object that describes the Smart Document Understanding model for a collection.

    :param bool enabled: (optional) When `true`, smart document understanding
          conversion is enabled for the collection.
    :param str model: (optional) Specifies the type of Smart Document Understanding
          (SDU) model that is enabled for the collection. The following types of models
          are supported:
           * `custom`: A user-trained model is applied.
           * `pre_trained`: A pretrained model is applied. This type of model is applied
          automatically to *Document Retrieval for Contracts* projects.
           * `text_extraction`: An SDU model that extracts text and metadata from the
          content. This model is enabled in collections by default regardless of the types
          of documents in the collection (as long as the service plan supports SDU
          models).
          You can apply user-trained or pretrained models to collections from the
          *Identify fields* page of the product user interface. For more information, see
          [the product
          documentation](/docs/discovery-data?topic=discovery-data-configuring-fields).
    """

    def __init__(
        self,
        *,
        enabled: Optional[bool] = None,
        model: Optional[str] = None,
    ) -> None:
        """
        Initialize a CollectionDetailsSmartDocumentUnderstanding object.

        :param bool enabled: (optional) When `true`, smart document understanding
               conversion is enabled for the collection.
        :param str model: (optional) Specifies the type of Smart Document
               Understanding (SDU) model that is enabled for the collection. The following
               types of models are supported:
                * `custom`: A user-trained model is applied.
                * `pre_trained`: A pretrained model is applied. This type of model is
               applied automatically to *Document Retrieval for Contracts* projects.
                * `text_extraction`: An SDU model that extracts text and metadata from the
               content. This model is enabled in collections by default regardless of the
               types of documents in the collection (as long as the service plan supports
               SDU models).
               You can apply user-trained or pretrained models to collections from the
               *Identify fields* page of the product user interface. For more information,
               see [the product
               documentation](/docs/discovery-data?topic=discovery-data-configuring-fields).
        """
        self.enabled = enabled
        self.model = model

    @classmethod
    def from_dict(cls,
                  _dict: Dict) -> 'CollectionDetailsSmartDocumentUnderstanding':
        """Initialize a CollectionDetailsSmartDocumentUnderstanding object from a json dictionary."""
        args = {}
        if (enabled := _dict.get('enabled')) is not None:
            args['enabled'] = enabled
        if (model := _dict.get('model')) is not None:
            args['model'] = model
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a CollectionDetailsSmartDocumentUnderstanding object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'enabled') and self.enabled is not None:
            _dict['enabled'] = self.enabled
        if hasattr(self, 'model') and self.model is not None:
            _dict['model'] = self.model
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this CollectionDetailsSmartDocumentUnderstanding object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self,
               other: 'CollectionDetailsSmartDocumentUnderstanding') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self,
               other: 'CollectionDetailsSmartDocumentUnderstanding') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class ModelEnum(str, Enum):
        """
        Specifies the type of Smart Document Understanding (SDU) model that is enabled for
        the collection. The following types of models are supported:
         * `custom`: A user-trained model is applied.
         * `pre_trained`: A pretrained model is applied. This type of model is applied
        automatically to *Document Retrieval for Contracts* projects.
         * `text_extraction`: An SDU model that extracts text and metadata from the
        content. This model is enabled in collections by default regardless of the types
        of documents in the collection (as long as the service plan supports SDU models).
        You can apply user-trained or pretrained models to collections from the *Identify
        fields* page of the product user interface. For more information, see [the product
        documentation](/docs/discovery-data?topic=discovery-data-configuring-fields).
        """

        CUSTOM = 'custom'
        PRE_TRAINED = 'pre_trained'
        TEXT_EXTRACTION = 'text_extraction'


class CollectionEnrichment:
    """
    An object describing an enrichment for a collection.

    :param str enrichment_id: (optional) The unique identifier of this enrichment.
          For more information about how to determine the ID of an enrichment, see [the
          product
          documentation](/docs/discovery-data?topic=discovery-data-manage-enrichments#enrichments-ids).
    :param List[str] fields: (optional) An array of field names that the enrichment
          is applied to.
          If you apply an enrichment to a field from a JSON file, the data is converted to
          an array automatically, even if the field contains a single value.
    """

    def __init__(
        self,
        *,
        enrichment_id: Optional[str] = None,
        fields: Optional[List[str]] = None,
    ) -> None:
        """
        Initialize a CollectionEnrichment object.

        :param str enrichment_id: (optional) The unique identifier of this
               enrichment. For more information about how to determine the ID of an
               enrichment, see [the product
               documentation](/docs/discovery-data?topic=discovery-data-manage-enrichments#enrichments-ids).
        :param List[str] fields: (optional) An array of field names that the
               enrichment is applied to.
               If you apply an enrichment to a field from a JSON file, the data is
               converted to an array automatically, even if the field contains a single
               value.
        """
        self.enrichment_id = enrichment_id
        self.fields = fields

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'CollectionEnrichment':
        """Initialize a CollectionEnrichment object from a json dictionary."""
        args = {}
        if (enrichment_id := _dict.get('enrichment_id')) is not None:
            args['enrichment_id'] = enrichment_id
        if (fields := _dict.get('fields')) is not None:
            args['fields'] = fields
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a CollectionEnrichment object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'enrichment_id') and self.enrichment_id is not None:
            _dict['enrichment_id'] = self.enrichment_id
        if hasattr(self, 'fields') and self.fields is not None:
            _dict['fields'] = self.fields
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this CollectionEnrichment object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'CollectionEnrichment') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'CollectionEnrichment') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class Completions:
    """
    An object that contains an array of autocompletion suggestions.

    :param List[str] completions: (optional) Array of autocomplete suggestion based
          on the provided prefix.
    """

    def __init__(
        self,
        *,
        completions: Optional[List[str]] = None,
    ) -> None:
        """
        Initialize a Completions object.

        :param List[str] completions: (optional) Array of autocomplete suggestion
               based on the provided prefix.
        """
        self.completions = completions

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'Completions':
        """Initialize a Completions object from a json dictionary."""
        args = {}
        if (completions := _dict.get('completions')) is not None:
            args['completions'] = completions
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a Completions object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'completions') and self.completions is not None:
            _dict['completions'] = self.completions
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this Completions object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'Completions') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'Completions') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class ComponentSettingsAggregation:
    """
    Display settings for aggregations.

    :param str name: (optional) Identifier used to map aggregation settings to
          aggregation configuration.
    :param str label: (optional) User-friendly alias for the aggregation.
    :param bool multiple_selections_allowed: (optional) Whether users is allowed to
          select more than one of the aggregation terms.
    :param str visualization_type: (optional) Type of visualization to use when
          rendering the aggregation.
    """

    def __init__(
        self,
        *,
        name: Optional[str] = None,
        label: Optional[str] = None,
        multiple_selections_allowed: Optional[bool] = None,
        visualization_type: Optional[str] = None,
    ) -> None:
        """
        Initialize a ComponentSettingsAggregation object.

        :param str name: (optional) Identifier used to map aggregation settings to
               aggregation configuration.
        :param str label: (optional) User-friendly alias for the aggregation.
        :param bool multiple_selections_allowed: (optional) Whether users is
               allowed to select more than one of the aggregation terms.
        :param str visualization_type: (optional) Type of visualization to use when
               rendering the aggregation.
        """
        self.name = name
        self.label = label
        self.multiple_selections_allowed = multiple_selections_allowed
        self.visualization_type = visualization_type

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'ComponentSettingsAggregation':
        """Initialize a ComponentSettingsAggregation object from a json dictionary."""
        args = {}
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        if (label := _dict.get('label')) is not None:
            args['label'] = label
        if (multiple_selections_allowed :=
                _dict.get('multiple_selections_allowed')) is not None:
            args['multiple_selections_allowed'] = multiple_selections_allowed
        if (visualization_type := _dict.get('visualization_type')) is not None:
            args['visualization_type'] = visualization_type
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a ComponentSettingsAggregation object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'label') and self.label is not None:
            _dict['label'] = self.label
        if hasattr(self, 'multiple_selections_allowed'
                  ) and self.multiple_selections_allowed is not None:
            _dict[
                'multiple_selections_allowed'] = self.multiple_selections_allowed
        if hasattr(
                self,
                'visualization_type') and self.visualization_type is not None:
            _dict['visualization_type'] = self.visualization_type
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this ComponentSettingsAggregation object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'ComponentSettingsAggregation') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'ComponentSettingsAggregation') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class VisualizationTypeEnum(str, Enum):
        """
        Type of visualization to use when rendering the aggregation.
        """

        AUTO = 'auto'
        FACET_TABLE = 'facet_table'
        WORD_CLOUD = 'word_cloud'
        MAP = 'map'


class ComponentSettingsFieldsShown:
    """
    Fields shown in the results section of the UI.

    :param ComponentSettingsFieldsShownBody body: (optional) Body label.
    :param ComponentSettingsFieldsShownTitle title: (optional) Title label.
    """

    def __init__(
        self,
        *,
        body: Optional['ComponentSettingsFieldsShownBody'] = None,
        title: Optional['ComponentSettingsFieldsShownTitle'] = None,
    ) -> None:
        """
        Initialize a ComponentSettingsFieldsShown object.

        :param ComponentSettingsFieldsShownBody body: (optional) Body label.
        :param ComponentSettingsFieldsShownTitle title: (optional) Title label.
        """
        self.body = body
        self.title = title

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'ComponentSettingsFieldsShown':
        """Initialize a ComponentSettingsFieldsShown object from a json dictionary."""
        args = {}
        if (body := _dict.get('body')) is not None:
            args['body'] = ComponentSettingsFieldsShownBody.from_dict(body)
        if (title := _dict.get('title')) is not None:
            args['title'] = ComponentSettingsFieldsShownTitle.from_dict(title)
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a ComponentSettingsFieldsShown object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'body') and self.body is not None:
            if isinstance(self.body, dict):
                _dict['body'] = self.body
            else:
                _dict['body'] = self.body.to_dict()
        if hasattr(self, 'title') and self.title is not None:
            if isinstance(self.title, dict):
                _dict['title'] = self.title
            else:
                _dict['title'] = self.title.to_dict()
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this ComponentSettingsFieldsShown object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'ComponentSettingsFieldsShown') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'ComponentSettingsFieldsShown') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class ComponentSettingsFieldsShownBody:
    """
    Body label.

    :param bool use_passage: (optional) Use the whole passage as the body.
    :param str field: (optional) Use a specific field as the title.
    """

    def __init__(
        self,
        *,
        use_passage: Optional[bool] = None,
        field: Optional[str] = None,
    ) -> None:
        """
        Initialize a ComponentSettingsFieldsShownBody object.

        :param bool use_passage: (optional) Use the whole passage as the body.
        :param str field: (optional) Use a specific field as the title.
        """
        self.use_passage = use_passage
        self.field = field

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'ComponentSettingsFieldsShownBody':
        """Initialize a ComponentSettingsFieldsShownBody object from a json dictionary."""
        args = {}
        if (use_passage := _dict.get('use_passage')) is not None:
            args['use_passage'] = use_passage
        if (field := _dict.get('field')) is not None:
            args['field'] = field
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a ComponentSettingsFieldsShownBody object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'use_passage') and self.use_passage is not None:
            _dict['use_passage'] = self.use_passage
        if hasattr(self, 'field') and self.field is not None:
            _dict['field'] = self.field
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this ComponentSettingsFieldsShownBody object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'ComponentSettingsFieldsShownBody') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'ComponentSettingsFieldsShownBody') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class ComponentSettingsFieldsShownTitle:
    """
    Title label.

    :param str field: (optional) Use a specific field as the title.
    """

    def __init__(
        self,
        *,
        field: Optional[str] = None,
    ) -> None:
        """
        Initialize a ComponentSettingsFieldsShownTitle object.

        :param str field: (optional) Use a specific field as the title.
        """
        self.field = field

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'ComponentSettingsFieldsShownTitle':
        """Initialize a ComponentSettingsFieldsShownTitle object from a json dictionary."""
        args = {}
        if (field := _dict.get('field')) is not None:
            args['field'] = field
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a ComponentSettingsFieldsShownTitle object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'field') and self.field is not None:
            _dict['field'] = self.field
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this ComponentSettingsFieldsShownTitle object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'ComponentSettingsFieldsShownTitle') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'ComponentSettingsFieldsShownTitle') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class ComponentSettingsResponse:
    """
    The default component settings for this project.

    :param ComponentSettingsFieldsShown fields_shown: (optional) Fields shown in the
          results section of the UI.
    :param bool autocomplete: (optional) Whether or not autocomplete is enabled.
    :param bool structured_search: (optional) Whether or not structured search is
          enabled.
    :param int results_per_page: (optional) Number or results shown per page.
    :param List[ComponentSettingsAggregation] aggregations: (optional) a list of
          component setting aggregations.
    """

    def __init__(
        self,
        *,
        fields_shown: Optional['ComponentSettingsFieldsShown'] = None,
        autocomplete: Optional[bool] = None,
        structured_search: Optional[bool] = None,
        results_per_page: Optional[int] = None,
        aggregations: Optional[List['ComponentSettingsAggregation']] = None,
    ) -> None:
        """
        Initialize a ComponentSettingsResponse object.

        :param ComponentSettingsFieldsShown fields_shown: (optional) Fields shown
               in the results section of the UI.
        :param bool autocomplete: (optional) Whether or not autocomplete is
               enabled.
        :param bool structured_search: (optional) Whether or not structured search
               is enabled.
        :param int results_per_page: (optional) Number or results shown per page.
        :param List[ComponentSettingsAggregation] aggregations: (optional) a list
               of component setting aggregations.
        """
        self.fields_shown = fields_shown
        self.autocomplete = autocomplete
        self.structured_search = structured_search
        self.results_per_page = results_per_page
        self.aggregations = aggregations

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'ComponentSettingsResponse':
        """Initialize a ComponentSettingsResponse object from a json dictionary."""
        args = {}
        if (fields_shown := _dict.get('fields_shown')) is not None:
            args['fields_shown'] = ComponentSettingsFieldsShown.from_dict(
                fields_shown)
        if (autocomplete := _dict.get('autocomplete')) is not None:
            args['autocomplete'] = autocomplete
        if (structured_search := _dict.get('structured_search')) is not None:
            args['structured_search'] = structured_search
        if (results_per_page := _dict.get('results_per_page')) is not None:
            args['results_per_page'] = results_per_page
        if (aggregations := _dict.get('aggregations')) is not None:
            args['aggregations'] = [
                ComponentSettingsAggregation.from_dict(v) for v in aggregations
            ]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a ComponentSettingsResponse object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'fields_shown') and self.fields_shown is not None:
            if isinstance(self.fields_shown, dict):
                _dict['fields_shown'] = self.fields_shown
            else:
                _dict['fields_shown'] = self.fields_shown.to_dict()
        if hasattr(self, 'autocomplete') and self.autocomplete is not None:
            _dict['autocomplete'] = self.autocomplete
        if hasattr(self,
                   'structured_search') and self.structured_search is not None:
            _dict['structured_search'] = self.structured_search
        if hasattr(self,
                   'results_per_page') and self.results_per_page is not None:
            _dict['results_per_page'] = self.results_per_page
        if hasattr(self, 'aggregations') and self.aggregations is not None:
            aggregations_list = []
            for v in self.aggregations:
                if isinstance(v, dict):
                    aggregations_list.append(v)
                else:
                    aggregations_list.append(v.to_dict())
            _dict['aggregations'] = aggregations_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this ComponentSettingsResponse object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'ComponentSettingsResponse') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'ComponentSettingsResponse') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class CreateDocumentClassifier:
    """
    An object that manages the settings and data that is required to train a document
    classification model.

    :param str name: A human-readable name of the document classifier.
    :param str description: (optional) A description of the document classifier.
    :param str language: The language of the training data that is associated with
          the document classifier. Language is specified by using the ISO 639-1 language
          code, such as `en` for English or `ja` for Japanese.
    :param str answer_field: The name of the field from the training and test data
          that contains the classification labels.
    :param List[DocumentClassifierEnrichment] enrichments: (optional) An array of
          enrichments to apply to the data that is used to train and test the document
          classifier. The output from the enrichments is used as features by the
          classifier to classify the document content both during training and at run
          time.
    :param ClassifierFederatedModel federated_classification: (optional) An object
          with details for creating federated document classifier models.
    """

    def __init__(
        self,
        name: str,
        language: str,
        answer_field: str,
        *,
        description: Optional[str] = None,
        enrichments: Optional[List['DocumentClassifierEnrichment']] = None,
        federated_classification: Optional['ClassifierFederatedModel'] = None,
    ) -> None:
        """
        Initialize a CreateDocumentClassifier object.

        :param str name: A human-readable name of the document classifier.
        :param str language: The language of the training data that is associated
               with the document classifier. Language is specified by using the ISO 639-1
               language code, such as `en` for English or `ja` for Japanese.
        :param str answer_field: The name of the field from the training and test
               data that contains the classification labels.
        :param str description: (optional) A description of the document
               classifier.
        :param List[DocumentClassifierEnrichment] enrichments: (optional) An array
               of enrichments to apply to the data that is used to train and test the
               document classifier. The output from the enrichments is used as features by
               the classifier to classify the document content both during training and at
               run time.
        :param ClassifierFederatedModel federated_classification: (optional) An
               object with details for creating federated document classifier models.
        """
        self.name = name
        self.description = description
        self.language = language
        self.answer_field = answer_field
        self.enrichments = enrichments
        self.federated_classification = federated_classification

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'CreateDocumentClassifier':
        """Initialize a CreateDocumentClassifier object from a json dictionary."""
        args = {}
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        else:
            raise ValueError(
                'Required property \'name\' not present in CreateDocumentClassifier JSON'
            )
        if (description := _dict.get('description')) is not None:
            args['description'] = description
        if (language := _dict.get('language')) is not None:
            args['language'] = language
        else:
            raise ValueError(
                'Required property \'language\' not present in CreateDocumentClassifier JSON'
            )
        if (answer_field := _dict.get('answer_field')) is not None:
            args['answer_field'] = answer_field
        else:
            raise ValueError(
                'Required property \'answer_field\' not present in CreateDocumentClassifier JSON'
            )
        if (enrichments := _dict.get('enrichments')) is not None:
            args['enrichments'] = [
                DocumentClassifierEnrichment.from_dict(v) for v in enrichments
            ]
        if (federated_classification :=
                _dict.get('federated_classification')) is not None:
            args[
                'federated_classification'] = ClassifierFederatedModel.from_dict(
                    federated_classification)
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a CreateDocumentClassifier object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'description') and self.description is not None:
            _dict['description'] = self.description
        if hasattr(self, 'language') and self.language is not None:
            _dict['language'] = self.language
        if hasattr(self, 'answer_field') and self.answer_field is not None:
            _dict['answer_field'] = self.answer_field
        if hasattr(self, 'enrichments') and self.enrichments is not None:
            enrichments_list = []
            for v in self.enrichments:
                if isinstance(v, dict):
                    enrichments_list.append(v)
                else:
                    enrichments_list.append(v.to_dict())
            _dict['enrichments'] = enrichments_list
        if hasattr(self, 'federated_classification'
                  ) and self.federated_classification is not None:
            if isinstance(self.federated_classification, dict):
                _dict[
                    'federated_classification'] = self.federated_classification
            else:
                _dict[
                    'federated_classification'] = self.federated_classification.to_dict(
                    )
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this CreateDocumentClassifier object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'CreateDocumentClassifier') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'CreateDocumentClassifier') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class CreateEnrichment:
    """
    Information about a specific enrichment.

    :param str name: (optional) The human readable name for this enrichment.
    :param str description: (optional) The description of this enrichment.
    :param str type: (optional) The type of this enrichment. The following types are
          supported:
          * `classifier`: Creates a document classifier enrichment from a document
          classifier model that you create by using the [Document classifier
          API](/apidocs/discovery-data#createdocumentclassifier). **Note**: A text
          classifier enrichment can be created only from the product user interface.
          * `dictionary`: Creates a custom dictionary enrichment that you define in a CSV
          file.
          * `regular_expression`: Creates a custom regular expression enrichment from
          regex syntax that you specify in the request.
          * `rule_based`: Creates an enrichment from an advanced rules model that is
          created and exported as a ZIP file from Watson Knowledge Studio.
          * `uima_annotator`: Creates an enrichment from a custom UIMA text analysis model
          that is defined in a PEAR file created in one of the following ways:
              * Watson Explorer Content Analytics Studio. **Note**: Supported in IBM Cloud
          Pak for Data instances only.
              * Rule-based model that is created in Watson Knowledge Studio.
          * `watson_knowledge_studio_model`: Creates an enrichment from a Watson Knowledge
          Studio machine learning model that is defined in a ZIP file.
          * `webhook`: Connects to an external enrichment application by using a webhook.
          * `sentence_classifier`: Use sentence classifier to classify sentences in your
          documents. This feature is available in IBM Cloud-managed instances only. The
          sentence classifier feature is beta functionality. Beta features are not
          supported by the SDKs.
    :param EnrichmentOptions options: (optional) An object that contains options for
          the current enrichment. Starting with version `2020-08-30`, the enrichment
          options are not included in responses from the List Enrichments method.
    """

    def __init__(
        self,
        *,
        name: Optional[str] = None,
        description: Optional[str] = None,
        type: Optional[str] = None,
        options: Optional['EnrichmentOptions'] = None,
    ) -> None:
        """
        Initialize a CreateEnrichment object.

        :param str name: (optional) The human readable name for this enrichment.
        :param str description: (optional) The description of this enrichment.
        :param str type: (optional) The type of this enrichment. The following
               types are supported:
               * `classifier`: Creates a document classifier enrichment from a document
               classifier model that you create by using the [Document classifier
               API](/apidocs/discovery-data#createdocumentclassifier). **Note**: A text
               classifier enrichment can be created only from the product user interface.
               * `dictionary`: Creates a custom dictionary enrichment that you define in a
               CSV file.
               * `regular_expression`: Creates a custom regular expression enrichment from
               regex syntax that you specify in the request.
               * `rule_based`: Creates an enrichment from an advanced rules model that is
               created and exported as a ZIP file from Watson Knowledge Studio.
               * `uima_annotator`: Creates an enrichment from a custom UIMA text analysis
               model that is defined in a PEAR file created in one of the following ways:
                   * Watson Explorer Content Analytics Studio. **Note**: Supported in IBM
               Cloud Pak for Data instances only.
                   * Rule-based model that is created in Watson Knowledge Studio.
               * `watson_knowledge_studio_model`: Creates an enrichment from a Watson
               Knowledge Studio machine learning model that is defined in a ZIP file.
               * `webhook`: Connects to an external enrichment application by using a
               webhook.
               * `sentence_classifier`: Use sentence classifier to classify sentences in
               your documents. This feature is available in IBM Cloud-managed instances
               only. The sentence classifier feature is beta functionality. Beta features
               are not supported by the SDKs.
        :param EnrichmentOptions options: (optional) An object that contains
               options for the current enrichment. Starting with version `2020-08-30`, the
               enrichment options are not included in responses from the List Enrichments
               method.
        """
        self.name = name
        self.description = description
        self.type = type
        self.options = options

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'CreateEnrichment':
        """Initialize a CreateEnrichment object from a json dictionary."""
        args = {}
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        if (description := _dict.get('description')) is not None:
            args['description'] = description
        if (type := _dict.get('type')) is not None:
            args['type'] = type
        if (options := _dict.get('options')) is not None:
            args['options'] = EnrichmentOptions.from_dict(options)
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a CreateEnrichment object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'description') and self.description is not None:
            _dict['description'] = self.description
        if hasattr(self, 'type') and self.type is not None:
            _dict['type'] = self.type
        if hasattr(self, 'options') and self.options is not None:
            if isinstance(self.options, dict):
                _dict['options'] = self.options
            else:
                _dict['options'] = self.options.to_dict()
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this CreateEnrichment object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'CreateEnrichment') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'CreateEnrichment') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class TypeEnum(str, Enum):
        """
        The type of this enrichment. The following types are supported:
        * `classifier`: Creates a document classifier enrichment from a document
        classifier model that you create by using the [Document classifier
        API](/apidocs/discovery-data#createdocumentclassifier). **Note**: A text
        classifier enrichment can be created only from the product user interface.
        * `dictionary`: Creates a custom dictionary enrichment that you define in a CSV
        file.
        * `regular_expression`: Creates a custom regular expression enrichment from regex
        syntax that you specify in the request.
        * `rule_based`: Creates an enrichment from an advanced rules model that is created
        and exported as a ZIP file from Watson Knowledge Studio.
        * `uima_annotator`: Creates an enrichment from a custom UIMA text analysis model
        that is defined in a PEAR file created in one of the following ways:
            * Watson Explorer Content Analytics Studio. **Note**: Supported in IBM Cloud
        Pak for Data instances only.
            * Rule-based model that is created in Watson Knowledge Studio.
        * `watson_knowledge_studio_model`: Creates an enrichment from a Watson Knowledge
        Studio machine learning model that is defined in a ZIP file.
        * `webhook`: Connects to an external enrichment application by using a webhook.
        * `sentence_classifier`: Use sentence classifier to classify sentences in your
        documents. This feature is available in IBM Cloud-managed instances only. The
        sentence classifier feature is beta functionality. Beta features are not supported
        by the SDKs.
        """

        CLASSIFIER = 'classifier'
        DICTIONARY = 'dictionary'
        REGULAR_EXPRESSION = 'regular_expression'
        UIMA_ANNOTATOR = 'uima_annotator'
        RULE_BASED = 'rule_based'
        WATSON_KNOWLEDGE_STUDIO_MODEL = 'watson_knowledge_studio_model'
        WEBHOOK = 'webhook'
        SENTENCE_CLASSIFIER = 'sentence_classifier'


class DefaultQueryParams:
    """
    Default query parameters for this project.

    :param List[str] collection_ids: (optional) An array of collection identifiers
          to query. If empty or omitted all collections in the project are queried.
    :param DefaultQueryParamsPassages passages: (optional) Default settings
          configuration for passage search options.
    :param DefaultQueryParamsTableResults table_results: (optional) Default project
          query settings for table results.
    :param str aggregation: (optional) A string representing the default aggregation
          query for the project.
    :param DefaultQueryParamsSuggestedRefinements suggested_refinements: (optional)
          Object that contains suggested refinement settings.
          **Note**: The `suggested_refinements` parameter that identified dynamic facets
          from the data is deprecated.
    :param bool spelling_suggestions: (optional) When `true`, a spelling suggestions
          for the query are returned by default.
    :param bool highlight: (optional) When `true`, highlights for the query are
          returned by default.
    :param int count: (optional) The number of document results returned by default.
    :param str sort: (optional) A comma separated list of document fields to sort
          results by default.
    :param List[str] return_: (optional) An array of field names to return in
          document results if present by default.
    """

    def __init__(
        self,
        *,
        collection_ids: Optional[List[str]] = None,
        passages: Optional['DefaultQueryParamsPassages'] = None,
        table_results: Optional['DefaultQueryParamsTableResults'] = None,
        aggregation: Optional[str] = None,
        suggested_refinements: Optional[
            'DefaultQueryParamsSuggestedRefinements'] = None,
        spelling_suggestions: Optional[bool] = None,
        highlight: Optional[bool] = None,
        count: Optional[int] = None,
        sort: Optional[str] = None,
        return_: Optional[List[str]] = None,
    ) -> None:
        """
        Initialize a DefaultQueryParams object.

        :param List[str] collection_ids: (optional) An array of collection
               identifiers to query. If empty or omitted all collections in the project
               are queried.
        :param DefaultQueryParamsPassages passages: (optional) Default settings
               configuration for passage search options.
        :param DefaultQueryParamsTableResults table_results: (optional) Default
               project query settings for table results.
        :param str aggregation: (optional) A string representing the default
               aggregation query for the project.
        :param DefaultQueryParamsSuggestedRefinements suggested_refinements:
               (optional) Object that contains suggested refinement settings.
               **Note**: The `suggested_refinements` parameter that identified dynamic
               facets from the data is deprecated.
        :param bool spelling_suggestions: (optional) When `true`, a spelling
               suggestions for the query are returned by default.
        :param bool highlight: (optional) When `true`, highlights for the query are
               returned by default.
        :param int count: (optional) The number of document results returned by
               default.
        :param str sort: (optional) A comma separated list of document fields to
               sort results by default.
        :param List[str] return_: (optional) An array of field names to return in
               document results if present by default.
        """
        self.collection_ids = collection_ids
        self.passages = passages
        self.table_results = table_results
        self.aggregation = aggregation
        self.suggested_refinements = suggested_refinements
        self.spelling_suggestions = spelling_suggestions
        self.highlight = highlight
        self.count = count
        self.sort = sort
        self.return_ = return_

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'DefaultQueryParams':
        """Initialize a DefaultQueryParams object from a json dictionary."""
        args = {}
        if (collection_ids := _dict.get('collection_ids')) is not None:
            args['collection_ids'] = collection_ids
        if (passages := _dict.get('passages')) is not None:
            args['passages'] = DefaultQueryParamsPassages.from_dict(passages)
        if (table_results := _dict.get('table_results')) is not None:
            args['table_results'] = DefaultQueryParamsTableResults.from_dict(
                table_results)
        if (aggregation := _dict.get('aggregation')) is not None:
            args['aggregation'] = aggregation
        if (suggested_refinements :=
                _dict.get('suggested_refinements')) is not None:
            args[
                'suggested_refinements'] = DefaultQueryParamsSuggestedRefinements.from_dict(
                    suggested_refinements)
        if (spelling_suggestions :=
                _dict.get('spelling_suggestions')) is not None:
            args['spelling_suggestions'] = spelling_suggestions
        if (highlight := _dict.get('highlight')) is not None:
            args['highlight'] = highlight
        if (count := _dict.get('count')) is not None:
            args['count'] = count
        if (sort := _dict.get('sort')) is not None:
            args['sort'] = sort
        if (return_ := _dict.get('return')) is not None:
            args['return_'] = return_
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a DefaultQueryParams object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'collection_ids') and self.collection_ids is not None:
            _dict['collection_ids'] = self.collection_ids
        if hasattr(self, 'passages') and self.passages is not None:
            if isinstance(self.passages, dict):
                _dict['passages'] = self.passages
            else:
                _dict['passages'] = self.passages.to_dict()
        if hasattr(self, 'table_results') and self.table_results is not None:
            if isinstance(self.table_results, dict):
                _dict['table_results'] = self.table_results
            else:
                _dict['table_results'] = self.table_results.to_dict()
        if hasattr(self, 'aggregation') and self.aggregation is not None:
            _dict['aggregation'] = self.aggregation
        if hasattr(self, 'suggested_refinements'
                  ) and self.suggested_refinements is not None:
            if isinstance(self.suggested_refinements, dict):
                _dict['suggested_refinements'] = self.suggested_refinements
            else:
                _dict[
                    'suggested_refinements'] = self.suggested_refinements.to_dict(
                    )
        if hasattr(self, 'spelling_suggestions'
                  ) and self.spelling_suggestions is not None:
            _dict['spelling_suggestions'] = self.spelling_suggestions
        if hasattr(self, 'highlight') and self.highlight is not None:
            _dict['highlight'] = self.highlight
        if hasattr(self, 'count') and self.count is not None:
            _dict['count'] = self.count
        if hasattr(self, 'sort') and self.sort is not None:
            _dict['sort'] = self.sort
        if hasattr(self, 'return_') and self.return_ is not None:
            _dict['return'] = self.return_
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this DefaultQueryParams object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'DefaultQueryParams') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'DefaultQueryParams') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class DefaultQueryParamsPassages:
    """
    Default settings configuration for passage search options.

    :param bool enabled: (optional) When `true`, a passage search is performed by
          default.
    :param int count: (optional) The number of passages to return.
    :param List[str] fields: (optional) An array of field names to perform the
          passage search on.
    :param int characters: (optional) The approximate number of characters that each
          returned passage will contain.
    :param bool per_document: (optional) When `true` the number of passages that can
          be returned from a single document is restricted to the *max_per_document*
          value.
    :param int max_per_document: (optional) The default maximum number of passages
          that can be taken from a single document as the result of a passage query.
    """

    def __init__(
        self,
        *,
        enabled: Optional[bool] = None,
        count: Optional[int] = None,
        fields: Optional[List[str]] = None,
        characters: Optional[int] = None,
        per_document: Optional[bool] = None,
        max_per_document: Optional[int] = None,
    ) -> None:
        """
        Initialize a DefaultQueryParamsPassages object.

        :param bool enabled: (optional) When `true`, a passage search is performed
               by default.
        :param int count: (optional) The number of passages to return.
        :param List[str] fields: (optional) An array of field names to perform the
               passage search on.
        :param int characters: (optional) The approximate number of characters that
               each returned passage will contain.
        :param bool per_document: (optional) When `true` the number of passages
               that can be returned from a single document is restricted to the
               *max_per_document* value.
        :param int max_per_document: (optional) The default maximum number of
               passages that can be taken from a single document as the result of a
               passage query.
        """
        self.enabled = enabled
        self.count = count
        self.fields = fields
        self.characters = characters
        self.per_document = per_document
        self.max_per_document = max_per_document

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'DefaultQueryParamsPassages':
        """Initialize a DefaultQueryParamsPassages object from a json dictionary."""
        args = {}
        if (enabled := _dict.get('enabled')) is not None:
            args['enabled'] = enabled
        if (count := _dict.get('count')) is not None:
            args['count'] = count
        if (fields := _dict.get('fields')) is not None:
            args['fields'] = fields
        if (characters := _dict.get('characters')) is not None:
            args['characters'] = characters
        if (per_document := _dict.get('per_document')) is not None:
            args['per_document'] = per_document
        if (max_per_document := _dict.get('max_per_document')) is not None:
            args['max_per_document'] = max_per_document
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a DefaultQueryParamsPassages object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'enabled') and self.enabled is not None:
            _dict['enabled'] = self.enabled
        if hasattr(self, 'count') and self.count is not None:
            _dict['count'] = self.count
        if hasattr(self, 'fields') and self.fields is not None:
            _dict['fields'] = self.fields
        if hasattr(self, 'characters') and self.characters is not None:
            _dict['characters'] = self.characters
        if hasattr(self, 'per_document') and self.per_document is not None:
            _dict['per_document'] = self.per_document
        if hasattr(self,
                   'max_per_document') and self.max_per_document is not None:
            _dict['max_per_document'] = self.max_per_document
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this DefaultQueryParamsPassages object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'DefaultQueryParamsPassages') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'DefaultQueryParamsPassages') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class DefaultQueryParamsSuggestedRefinements:
    """
    Object that contains suggested refinement settings.
    **Note**: The `suggested_refinements` parameter that identified dynamic facets from
    the data is deprecated.

    :param bool enabled: (optional) When `true`, suggested refinements for the query
          are returned by default.
    :param int count: (optional) The number of suggested refinements to return by
          default.
    """

    def __init__(
        self,
        *,
        enabled: Optional[bool] = None,
        count: Optional[int] = None,
    ) -> None:
        """
        Initialize a DefaultQueryParamsSuggestedRefinements object.

        :param bool enabled: (optional) When `true`, suggested refinements for the
               query are returned by default.
        :param int count: (optional) The number of suggested refinements to return
               by default.
        """
        self.enabled = enabled
        self.count = count

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'DefaultQueryParamsSuggestedRefinements':
        """Initialize a DefaultQueryParamsSuggestedRefinements object from a json dictionary."""
        args = {}
        if (enabled := _dict.get('enabled')) is not None:
            args['enabled'] = enabled
        if (count := _dict.get('count')) is not None:
            args['count'] = count
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a DefaultQueryParamsSuggestedRefinements object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'enabled') and self.enabled is not None:
            _dict['enabled'] = self.enabled
        if hasattr(self, 'count') and self.count is not None:
            _dict['count'] = self.count
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this DefaultQueryParamsSuggestedRefinements object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'DefaultQueryParamsSuggestedRefinements') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'DefaultQueryParamsSuggestedRefinements') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class DefaultQueryParamsTableResults:
    """
    Default project query settings for table results.

    :param bool enabled: (optional) When `true`, a table results for the query are
          returned by default.
    :param int count: (optional) The number of table results to return by default.
    :param int per_document: (optional) The number of table results to include in
          each result document.
    """

    def __init__(
        self,
        *,
        enabled: Optional[bool] = None,
        count: Optional[int] = None,
        per_document: Optional[int] = None,
    ) -> None:
        """
        Initialize a DefaultQueryParamsTableResults object.

        :param bool enabled: (optional) When `true`, a table results for the query
               are returned by default.
        :param int count: (optional) The number of table results to return by
               default.
        :param int per_document: (optional) The number of table results to include
               in each result document.
        """
        self.enabled = enabled
        self.count = count
        self.per_document = per_document

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'DefaultQueryParamsTableResults':
        """Initialize a DefaultQueryParamsTableResults object from a json dictionary."""
        args = {}
        if (enabled := _dict.get('enabled')) is not None:
            args['enabled'] = enabled
        if (count := _dict.get('count')) is not None:
            args['count'] = count
        if (per_document := _dict.get('per_document')) is not None:
            args['per_document'] = per_document
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a DefaultQueryParamsTableResults object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'enabled') and self.enabled is not None:
            _dict['enabled'] = self.enabled
        if hasattr(self, 'count') and self.count is not None:
            _dict['count'] = self.count
        if hasattr(self, 'per_document') and self.per_document is not None:
            _dict['per_document'] = self.per_document
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this DefaultQueryParamsTableResults object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'DefaultQueryParamsTableResults') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'DefaultQueryParamsTableResults') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class DeleteDocumentResponse:
    """
    Information returned when a document is deleted.

    :param str document_id: (optional) The unique identifier of the document.
    :param str status: (optional) Status of the document. A deleted document has the
          status deleted.
    """

    def __init__(
        self,
        *,
        document_id: Optional[str] = None,
        status: Optional[str] = None,
    ) -> None:
        """
        Initialize a DeleteDocumentResponse object.

        :param str document_id: (optional) The unique identifier of the document.
        :param str status: (optional) Status of the document. A deleted document
               has the status deleted.
        """
        self.document_id = document_id
        self.status = status

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'DeleteDocumentResponse':
        """Initialize a DeleteDocumentResponse object from a json dictionary."""
        args = {}
        if (document_id := _dict.get('document_id')) is not None:
            args['document_id'] = document_id
        if (status := _dict.get('status')) is not None:
            args['status'] = status
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a DeleteDocumentResponse object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'document_id') and self.document_id is not None:
            _dict['document_id'] = self.document_id
        if hasattr(self, 'status') and self.status is not None:
            _dict['status'] = self.status
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this DeleteDocumentResponse object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'DeleteDocumentResponse') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'DeleteDocumentResponse') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class StatusEnum(str, Enum):
        """
        Status of the document. A deleted document has the status deleted.
        """

        DELETED = 'deleted'


class DocumentAccepted:
    """
    Information returned after an uploaded document is accepted.

    :param str document_id: (optional) The unique identifier of the ingested
          document.
    :param str status: (optional) Status of the document in the ingestion process. A
          status of `processing` is returned for documents that are ingested with a
          *version* date before `2019-01-01`. The `pending` status is returned for all
          others.
    """

    def __init__(
        self,
        *,
        document_id: Optional[str] = None,
        status: Optional[str] = None,
    ) -> None:
        """
        Initialize a DocumentAccepted object.

        :param str document_id: (optional) The unique identifier of the ingested
               document.
        :param str status: (optional) Status of the document in the ingestion
               process. A status of `processing` is returned for documents that are
               ingested with a *version* date before `2019-01-01`. The `pending` status is
               returned for all others.
        """
        self.document_id = document_id
        self.status = status

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'DocumentAccepted':
        """Initialize a DocumentAccepted object from a json dictionary."""
        args = {}
        if (document_id := _dict.get('document_id')) is not None:
            args['document_id'] = document_id
        if (status := _dict.get('status')) is not None:
            args['status'] = status
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a DocumentAccepted object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'document_id') and self.document_id is not None:
            _dict['document_id'] = self.document_id
        if hasattr(self, 'status') and self.status is not None:
            _dict['status'] = self.status
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this DocumentAccepted object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'DocumentAccepted') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'DocumentAccepted') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class StatusEnum(str, Enum):
        """
        Status of the document in the ingestion process. A status of `processing` is
        returned for documents that are ingested with a *version* date before
        `2019-01-01`. The `pending` status is returned for all others.
        """

        PROCESSING = 'processing'
        PENDING = 'pending'


class DocumentAttribute:
    """
    List of document attributes.

    :param str type: (optional) The type of attribute.
    :param str text: (optional) The text associated with the attribute.
    :param TableElementLocation location: (optional) The numeric location of the
          identified element in the document, represented with two integers labeled
          `begin` and `end`.
    """

    def __init__(
        self,
        *,
        type: Optional[str] = None,
        text: Optional[str] = None,
        location: Optional['TableElementLocation'] = None,
    ) -> None:
        """
        Initialize a DocumentAttribute object.

        :param str type: (optional) The type of attribute.
        :param str text: (optional) The text associated with the attribute.
        :param TableElementLocation location: (optional) The numeric location of
               the identified element in the document, represented with two integers
               labeled `begin` and `end`.
        """
        self.type = type
        self.text = text
        self.location = location

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'DocumentAttribute':
        """Initialize a DocumentAttribute object from a json dictionary."""
        args = {}
        if (type := _dict.get('type')) is not None:
            args['type'] = type
        if (text := _dict.get('text')) is not None:
            args['text'] = text
        if (location := _dict.get('location')) is not None:
            args['location'] = TableElementLocation.from_dict(location)
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a DocumentAttribute object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'type') and self.type is not None:
            _dict['type'] = self.type
        if hasattr(self, 'text') and self.text is not None:
            _dict['text'] = self.text
        if hasattr(self, 'location') and self.location is not None:
            if isinstance(self.location, dict):
                _dict['location'] = self.location
            else:
                _dict['location'] = self.location.to_dict()
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this DocumentAttribute object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'DocumentAttribute') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'DocumentAttribute') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class DocumentClassifier:
    """
    Information about a document classifier.

    :param str classifier_id: (optional) The Universally Unique Identifier (UUID) of
          the document classifier.
    :param str name: A human-readable name of the document classifier.
    :param str description: (optional) A description of the document classifier.
    :param datetime created: (optional) The date that the document classifier was
          created.
    :param str language: (optional) The language of the training data that is
          associated with the document classifier. Language is specified by using the ISO
          639-1 language code, such as `en` for English or `ja` for Japanese.
    :param List[DocumentClassifierEnrichment] enrichments: (optional) An array of
          enrichments to apply to the data that is used to train and test the document
          classifier. The output from the enrichments is used as features by the
          classifier to classify the document content both during training and at run
          time.
    :param List[str] recognized_fields: (optional) An array of fields that are used
          to train the document classifier. The same set of fields must exist in the
          training data, the test data, and the documents where the resulting document
          classifier enrichment is applied at run time.
    :param str answer_field: (optional) The name of the field from the training and
          test data that contains the classification labels.
    :param str training_data_file: (optional) Name of the CSV file with training
          data that is used to train the document classifier.
    :param str test_data_file: (optional) Name of the CSV file with data that is
          used to test the document classifier. If no test data is provided, a subset of
          the training data is used for testing purposes.
    :param ClassifierFederatedModel federated_classification: (optional) An object
          with details for creating federated document classifier models.
    """

    def __init__(
        self,
        name: str,
        *,
        classifier_id: Optional[str] = None,
        description: Optional[str] = None,
        created: Optional[datetime] = None,
        language: Optional[str] = None,
        enrichments: Optional[List['DocumentClassifierEnrichment']] = None,
        recognized_fields: Optional[List[str]] = None,
        answer_field: Optional[str] = None,
        training_data_file: Optional[str] = None,
        test_data_file: Optional[str] = None,
        federated_classification: Optional['ClassifierFederatedModel'] = None,
    ) -> None:
        """
        Initialize a DocumentClassifier object.

        :param str name: A human-readable name of the document classifier.
        :param str description: (optional) A description of the document
               classifier.
        :param str language: (optional) The language of the training data that is
               associated with the document classifier. Language is specified by using the
               ISO 639-1 language code, such as `en` for English or `ja` for Japanese.
        :param List[DocumentClassifierEnrichment] enrichments: (optional) An array
               of enrichments to apply to the data that is used to train and test the
               document classifier. The output from the enrichments is used as features by
               the classifier to classify the document content both during training and at
               run time.
        :param List[str] recognized_fields: (optional) An array of fields that are
               used to train the document classifier. The same set of fields must exist in
               the training data, the test data, and the documents where the resulting
               document classifier enrichment is applied at run time.
        :param str answer_field: (optional) The name of the field from the training
               and test data that contains the classification labels.
        :param str training_data_file: (optional) Name of the CSV file with
               training data that is used to train the document classifier.
        :param str test_data_file: (optional) Name of the CSV file with data that
               is used to test the document classifier. If no test data is provided, a
               subset of the training data is used for testing purposes.
        :param ClassifierFederatedModel federated_classification: (optional) An
               object with details for creating federated document classifier models.
        """
        self.classifier_id = classifier_id
        self.name = name
        self.description = description
        self.created = created
        self.language = language
        self.enrichments = enrichments
        self.recognized_fields = recognized_fields
        self.answer_field = answer_field
        self.training_data_file = training_data_file
        self.test_data_file = test_data_file
        self.federated_classification = federated_classification

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'DocumentClassifier':
        """Initialize a DocumentClassifier object from a json dictionary."""
        args = {}
        if (classifier_id := _dict.get('classifier_id')) is not None:
            args['classifier_id'] = classifier_id
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        else:
            raise ValueError(
                'Required property \'name\' not present in DocumentClassifier JSON'
            )
        if (description := _dict.get('description')) is not None:
            args['description'] = description
        if (created := _dict.get('created')) is not None:
            args['created'] = string_to_datetime(created)
        if (language := _dict.get('language')) is not None:
            args['language'] = language
        if (enrichments := _dict.get('enrichments')) is not None:
            args['enrichments'] = [
                DocumentClassifierEnrichment.from_dict(v) for v in enrichments
            ]
        if (recognized_fields := _dict.get('recognized_fields')) is not None:
            args['recognized_fields'] = recognized_fields
        if (answer_field := _dict.get('answer_field')) is not None:
            args['answer_field'] = answer_field
        if (training_data_file := _dict.get('training_data_file')) is not None:
            args['training_data_file'] = training_data_file
        if (test_data_file := _dict.get('test_data_file')) is not None:
            args['test_data_file'] = test_data_file
        if (federated_classification :=
                _dict.get('federated_classification')) is not None:
            args[
                'federated_classification'] = ClassifierFederatedModel.from_dict(
                    federated_classification)
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a DocumentClassifier object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'classifier_id') and getattr(
                self, 'classifier_id') is not None:
            _dict['classifier_id'] = getattr(self, 'classifier_id')
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'description') and self.description is not None:
            _dict['description'] = self.description
        if hasattr(self, 'created') and getattr(self, 'created') is not None:
            _dict['created'] = datetime_to_string(getattr(self, 'created'))
        if hasattr(self, 'language') and self.language is not None:
            _dict['language'] = self.language
        if hasattr(self, 'enrichments') and self.enrichments is not None:
            enrichments_list = []
            for v in self.enrichments:
                if isinstance(v, dict):
                    enrichments_list.append(v)
                else:
                    enrichments_list.append(v.to_dict())
            _dict['enrichments'] = enrichments_list
        if hasattr(self,
                   'recognized_fields') and self.recognized_fields is not None:
            _dict['recognized_fields'] = self.recognized_fields
        if hasattr(self, 'answer_field') and self.answer_field is not None:
            _dict['answer_field'] = self.answer_field
        if hasattr(
                self,
                'training_data_file') and self.training_data_file is not None:
            _dict['training_data_file'] = self.training_data_file
        if hasattr(self, 'test_data_file') and self.test_data_file is not None:
            _dict['test_data_file'] = self.test_data_file
        if hasattr(self, 'federated_classification'
                  ) and self.federated_classification is not None:
            if isinstance(self.federated_classification, dict):
                _dict[
                    'federated_classification'] = self.federated_classification
            else:
                _dict[
                    'federated_classification'] = self.federated_classification.to_dict(
                    )
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this DocumentClassifier object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'DocumentClassifier') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'DocumentClassifier') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class DocumentClassifierEnrichment:
    """
    An object that describes enrichments that are applied to the training and test data
    that is used by the document classifier.

    :param str enrichment_id: The Universally Unique Identifier (UUID) of the
          enrichment.
    :param List[str] fields: An array of field names where the enrichment is
          applied.
    """

    def __init__(
        self,
        enrichment_id: str,
        fields: List[str],
    ) -> None:
        """
        Initialize a DocumentClassifierEnrichment object.

        :param str enrichment_id: The Universally Unique Identifier (UUID) of the
               enrichment.
        :param List[str] fields: An array of field names where the enrichment is
               applied.
        """
        self.enrichment_id = enrichment_id
        self.fields = fields

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'DocumentClassifierEnrichment':
        """Initialize a DocumentClassifierEnrichment object from a json dictionary."""
        args = {}
        if (enrichment_id := _dict.get('enrichment_id')) is not None:
            args['enrichment_id'] = enrichment_id
        else:
            raise ValueError(
                'Required property \'enrichment_id\' not present in DocumentClassifierEnrichment JSON'
            )
        if (fields := _dict.get('fields')) is not None:
            args['fields'] = fields
        else:
            raise ValueError(
                'Required property \'fields\' not present in DocumentClassifierEnrichment JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a DocumentClassifierEnrichment object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'enrichment_id') and self.enrichment_id is not None:
            _dict['enrichment_id'] = self.enrichment_id
        if hasattr(self, 'fields') and self.fields is not None:
            _dict['fields'] = self.fields
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this DocumentClassifierEnrichment object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'DocumentClassifierEnrichment') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'DocumentClassifierEnrichment') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class DocumentClassifierModel:
    """
    Information about a document classifier model.

    :param str model_id: (optional) The Universally Unique Identifier (UUID) of the
          document classifier model.
    :param str name: A human-readable name of the document classifier model.
    :param str description: (optional) A description of the document classifier
          model.
    :param datetime created: (optional) The date that the document classifier model
          was created.
    :param datetime updated: (optional) The date that the document classifier model
          was last updated.
    :param str training_data_file: (optional) Name of the CSV file that contains the
          training data that is used to train the document classifier model.
    :param str test_data_file: (optional) Name of the CSV file that contains data
          that is used to test the document classifier model. If no test data is provided,
          a subset of the training data is used for testing purposes.
    :param str status: (optional) The status of the training run.
    :param ClassifierModelEvaluation evaluation: (optional) An object that contains
          information about a trained document classifier model.
    :param str enrichment_id: (optional) The Universally Unique Identifier (UUID) of
          the enrichment that is generated by this document classifier model.
    :param datetime deployed_at: (optional) The date that the document classifier
          model was deployed.
    """

    def __init__(
        self,
        name: str,
        *,
        model_id: Optional[str] = None,
        description: Optional[str] = None,
        created: Optional[datetime] = None,
        updated: Optional[datetime] = None,
        training_data_file: Optional[str] = None,
        test_data_file: Optional[str] = None,
        status: Optional[str] = None,
        evaluation: Optional['ClassifierModelEvaluation'] = None,
        enrichment_id: Optional[str] = None,
        deployed_at: Optional[datetime] = None,
    ) -> None:
        """
        Initialize a DocumentClassifierModel object.

        :param str name: A human-readable name of the document classifier model.
        :param str description: (optional) A description of the document classifier
               model.
        :param str training_data_file: (optional) Name of the CSV file that
               contains the training data that is used to train the document classifier
               model.
        :param str test_data_file: (optional) Name of the CSV file that contains
               data that is used to test the document classifier model. If no test data is
               provided, a subset of the training data is used for testing purposes.
        :param str status: (optional) The status of the training run.
        :param ClassifierModelEvaluation evaluation: (optional) An object that
               contains information about a trained document classifier model.
        :param str enrichment_id: (optional) The Universally Unique Identifier
               (UUID) of the enrichment that is generated by this document classifier
               model.
        """
        self.model_id = model_id
        self.name = name
        self.description = description
        self.created = created
        self.updated = updated
        self.training_data_file = training_data_file
        self.test_data_file = test_data_file
        self.status = status
        self.evaluation = evaluation
        self.enrichment_id = enrichment_id
        self.deployed_at = deployed_at

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'DocumentClassifierModel':
        """Initialize a DocumentClassifierModel object from a json dictionary."""
        args = {}
        if (model_id := _dict.get('model_id')) is not None:
            args['model_id'] = model_id
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        else:
            raise ValueError(
                'Required property \'name\' not present in DocumentClassifierModel JSON'
            )
        if (description := _dict.get('description')) is not None:
            args['description'] = description
        if (created := _dict.get('created')) is not None:
            args['created'] = string_to_datetime(created)
        if (updated := _dict.get('updated')) is not None:
            args['updated'] = string_to_datetime(updated)
        if (training_data_file := _dict.get('training_data_file')) is not None:
            args['training_data_file'] = training_data_file
        if (test_data_file := _dict.get('test_data_file')) is not None:
            args['test_data_file'] = test_data_file
        if (status := _dict.get('status')) is not None:
            args['status'] = status
        if (evaluation := _dict.get('evaluation')) is not None:
            args['evaluation'] = ClassifierModelEvaluation.from_dict(evaluation)
        if (enrichment_id := _dict.get('enrichment_id')) is not None:
            args['enrichment_id'] = enrichment_id
        if (deployed_at := _dict.get('deployed_at')) is not None:
            args['deployed_at'] = string_to_datetime(deployed_at)
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a DocumentClassifierModel object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'model_id') and getattr(self, 'model_id') is not None:
            _dict['model_id'] = getattr(self, 'model_id')
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'description') and self.description is not None:
            _dict['description'] = self.description
        if hasattr(self, 'created') and getattr(self, 'created') is not None:
            _dict['created'] = datetime_to_string(getattr(self, 'created'))
        if hasattr(self, 'updated') and getattr(self, 'updated') is not None:
            _dict['updated'] = datetime_to_string(getattr(self, 'updated'))
        if hasattr(
                self,
                'training_data_file') and self.training_data_file is not None:
            _dict['training_data_file'] = self.training_data_file
        if hasattr(self, 'test_data_file') and self.test_data_file is not None:
            _dict['test_data_file'] = self.test_data_file
        if hasattr(self, 'status') and self.status is not None:
            _dict['status'] = self.status
        if hasattr(self, 'evaluation') and self.evaluation is not None:
            if isinstance(self.evaluation, dict):
                _dict['evaluation'] = self.evaluation
            else:
                _dict['evaluation'] = self.evaluation.to_dict()
        if hasattr(self, 'enrichment_id') and self.enrichment_id is not None:
            _dict['enrichment_id'] = self.enrichment_id
        if hasattr(self, 'deployed_at') and getattr(self,
                                                    'deployed_at') is not None:
            _dict['deployed_at'] = datetime_to_string(
                getattr(self, 'deployed_at'))
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this DocumentClassifierModel object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'DocumentClassifierModel') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'DocumentClassifierModel') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class StatusEnum(str, Enum):
        """
        The status of the training run.
        """

        TRAINING = 'training'
        AVAILABLE = 'available'
        FAILED = 'failed'


class DocumentClassifierModels:
    """
    An object that contains a list of document classifier model definitions.

    :param List[DocumentClassifierModel] models: (optional) An array of document
          classifier model definitions.
    """

    def __init__(
        self,
        *,
        models: Optional[List['DocumentClassifierModel']] = None,
    ) -> None:
        """
        Initialize a DocumentClassifierModels object.

        :param List[DocumentClassifierModel] models: (optional) An array of
               document classifier model definitions.
        """
        self.models = models

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'DocumentClassifierModels':
        """Initialize a DocumentClassifierModels object from a json dictionary."""
        args = {}
        if (models := _dict.get('models')) is not None:
            args['models'] = [
                DocumentClassifierModel.from_dict(v) for v in models
            ]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a DocumentClassifierModels object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'models') and self.models is not None:
            models_list = []
            for v in self.models:
                if isinstance(v, dict):
                    models_list.append(v)
                else:
                    models_list.append(v.to_dict())
            _dict['models'] = models_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this DocumentClassifierModels object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'DocumentClassifierModels') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'DocumentClassifierModels') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class DocumentClassifiers:
    """
    An object that contains a list of document classifier definitions.

    :param List[DocumentClassifier] classifiers: (optional) An array of document
          classifier definitions.
    """

    def __init__(
        self,
        *,
        classifiers: Optional[List['DocumentClassifier']] = None,
    ) -> None:
        """
        Initialize a DocumentClassifiers object.

        :param List[DocumentClassifier] classifiers: (optional) An array of
               document classifier definitions.
        """
        self.classifiers = classifiers

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'DocumentClassifiers':
        """Initialize a DocumentClassifiers object from a json dictionary."""
        args = {}
        if (classifiers := _dict.get('classifiers')) is not None:
            args['classifiers'] = [
                DocumentClassifier.from_dict(v) for v in classifiers
            ]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a DocumentClassifiers object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'classifiers') and self.classifiers is not None:
            classifiers_list = []
            for v in self.classifiers:
                if isinstance(v, dict):
                    classifiers_list.append(v)
                else:
                    classifiers_list.append(v.to_dict())
            _dict['classifiers'] = classifiers_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this DocumentClassifiers object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'DocumentClassifiers') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'DocumentClassifiers') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class DocumentDetails:
    """
    Information about a document.

    :param str document_id: (optional) The unique identifier of the document.
    :param datetime created: (optional) Date and time that the document is added to
          the collection. For a child document, the date and time when the process that
          generates the child document runs. The date-time format is
          `yyyy-MM-dd'T'HH:mm:ss.SSS'Z'`.
    :param datetime updated: (optional) Date and time that the document is finished
          being processed and is indexed. This date changes whenever the document is
          reprocessed, including for enrichment changes. The date-time format is
          `yyyy-MM-dd'T'HH:mm:ss.SSS'Z'`.
    :param str status: (optional) The status of the ingestion of the document. The
          possible values are:
          * `available`: Ingestion is finished and the document is indexed.
          * `failed`: Ingestion is finished, but the document is not indexed because of an
          error.
          * `pending`: The document is uploaded, but the ingestion process is not started.
          * `processing`: Ingestion is in progress.
    :param List[Notice] notices: (optional) Array of JSON objects for notices,
          meaning warning or error messages, that are produced by the document ingestion
          process. The array does not include notices that are produced for child
          documents that are generated when a document is processed.
    :param DocumentDetailsChildren children: (optional) Information about the child
          documents that are generated from a single document during ingestion or other
          processing.
    :param str filename: (optional) Name of the original source file (if available).
    :param str file_type: (optional) The type of the original source file, such as
          `csv`, `excel`, `html`, `json`, `pdf`, `text`, `word`, and so on.
    :param str sha256: (optional) The SHA-256 hash of the original source file. The
          hash is formatted as a hexadecimal string.
    """

    def __init__(
        self,
        *,
        document_id: Optional[str] = None,
        created: Optional[datetime] = None,
        updated: Optional[datetime] = None,
        status: Optional[str] = None,
        notices: Optional[List['Notice']] = None,
        children: Optional['DocumentDetailsChildren'] = None,
        filename: Optional[str] = None,
        file_type: Optional[str] = None,
        sha256: Optional[str] = None,
    ) -> None:
        """
        Initialize a DocumentDetails object.

        :param str status: (optional) The status of the ingestion of the document.
               The possible values are:
               * `available`: Ingestion is finished and the document is indexed.
               * `failed`: Ingestion is finished, but the document is not indexed because
               of an error.
               * `pending`: The document is uploaded, but the ingestion process is not
               started.
               * `processing`: Ingestion is in progress.
        :param List[Notice] notices: (optional) Array of JSON objects for notices,
               meaning warning or error messages, that are produced by the document
               ingestion process. The array does not include notices that are produced for
               child documents that are generated when a document is processed.
        :param DocumentDetailsChildren children: (optional) Information about the
               child documents that are generated from a single document during ingestion
               or other processing.
        :param str filename: (optional) Name of the original source file (if
               available).
        :param str file_type: (optional) The type of the original source file, such
               as `csv`, `excel`, `html`, `json`, `pdf`, `text`, `word`, and so on.
        :param str sha256: (optional) The SHA-256 hash of the original source file.
               The hash is formatted as a hexadecimal string.
        """
        self.document_id = document_id
        self.created = created
        self.updated = updated
        self.status = status
        self.notices = notices
        self.children = children
        self.filename = filename
        self.file_type = file_type
        self.sha256 = sha256

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'DocumentDetails':
        """Initialize a DocumentDetails object from a json dictionary."""
        args = {}
        if (document_id := _dict.get('document_id')) is not None:
            args['document_id'] = document_id
        if (created := _dict.get('created')) is not None:
            args['created'] = string_to_datetime(created)
        if (updated := _dict.get('updated')) is not None:
            args['updated'] = string_to_datetime(updated)
        if (status := _dict.get('status')) is not None:
            args['status'] = status
        if (notices := _dict.get('notices')) is not None:
            args['notices'] = [Notice.from_dict(v) for v in notices]
        if (children := _dict.get('children')) is not None:
            args['children'] = DocumentDetailsChildren.from_dict(children)
        if (filename := _dict.get('filename')) is not None:
            args['filename'] = filename
        if (file_type := _dict.get('file_type')) is not None:
            args['file_type'] = file_type
        if (sha256 := _dict.get('sha256')) is not None:
            args['sha256'] = sha256
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a DocumentDetails object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'document_id') and getattr(self,
                                                    'document_id') is not None:
            _dict['document_id'] = getattr(self, 'document_id')
        if hasattr(self, 'created') and getattr(self, 'created') is not None:
            _dict['created'] = datetime_to_string(getattr(self, 'created'))
        if hasattr(self, 'updated') and getattr(self, 'updated') is not None:
            _dict['updated'] = datetime_to_string(getattr(self, 'updated'))
        if hasattr(self, 'status') and self.status is not None:
            _dict['status'] = self.status
        if hasattr(self, 'notices') and self.notices is not None:
            notices_list = []
            for v in self.notices:
                if isinstance(v, dict):
                    notices_list.append(v)
                else:
                    notices_list.append(v.to_dict())
            _dict['notices'] = notices_list
        if hasattr(self, 'children') and self.children is not None:
            if isinstance(self.children, dict):
                _dict['children'] = self.children
            else:
                _dict['children'] = self.children.to_dict()
        if hasattr(self, 'filename') and self.filename is not None:
            _dict['filename'] = self.filename
        if hasattr(self, 'file_type') and self.file_type is not None:
            _dict['file_type'] = self.file_type
        if hasattr(self, 'sha256') and self.sha256 is not None:
            _dict['sha256'] = self.sha256
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this DocumentDetails object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'DocumentDetails') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'DocumentDetails') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class StatusEnum(str, Enum):
        """
        The status of the ingestion of the document. The possible values are:
        * `available`: Ingestion is finished and the document is indexed.
        * `failed`: Ingestion is finished, but the document is not indexed because of an
        error.
        * `pending`: The document is uploaded, but the ingestion process is not started.
        * `processing`: Ingestion is in progress.
        """

        AVAILABLE = 'available'
        FAILED = 'failed'
        PENDING = 'pending'
        PROCESSING = 'processing'


class DocumentDetailsChildren:
    """
    Information about the child documents that are generated from a single document during
    ingestion or other processing.

    :param bool have_notices: (optional) Indicates whether the child documents have
          any notices. The value is `false` if the document does not have child documents.
    :param int count: (optional) Number of child documents. The value is `0` when
          processing of the document doesn't generate any child documents.
    """

    def __init__(
        self,
        *,
        have_notices: Optional[bool] = None,
        count: Optional[int] = None,
    ) -> None:
        """
        Initialize a DocumentDetailsChildren object.

        :param bool have_notices: (optional) Indicates whether the child documents
               have any notices. The value is `false` if the document does not have child
               documents.
        :param int count: (optional) Number of child documents. The value is `0`
               when processing of the document doesn't generate any child documents.
        """
        self.have_notices = have_notices
        self.count = count

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'DocumentDetailsChildren':
        """Initialize a DocumentDetailsChildren object from a json dictionary."""
        args = {}
        if (have_notices := _dict.get('have_notices')) is not None:
            args['have_notices'] = have_notices
        if (count := _dict.get('count')) is not None:
            args['count'] = count
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a DocumentDetailsChildren object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'have_notices') and self.have_notices is not None:
            _dict['have_notices'] = self.have_notices
        if hasattr(self, 'count') and self.count is not None:
            _dict['count'] = self.count
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this DocumentDetailsChildren object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'DocumentDetailsChildren') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'DocumentDetailsChildren') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class Enrichment:
    """
    Information about a specific enrichment.

    :param str enrichment_id: (optional) The Universally Unique Identifier (UUID) of
          this enrichment.
    :param str name: (optional) The human readable name for this enrichment.
    :param str description: (optional) The description of this enrichment.
    :param str type: (optional) The type of this enrichment.
    :param EnrichmentOptions options: (optional) An object that contains options for
          the current enrichment. Starting with version `2020-08-30`, the enrichment
          options are not included in responses from the List Enrichments method.
    """

    def __init__(
        self,
        *,
        enrichment_id: Optional[str] = None,
        name: Optional[str] = None,
        description: Optional[str] = None,
        type: Optional[str] = None,
        options: Optional['EnrichmentOptions'] = None,
    ) -> None:
        """
        Initialize a Enrichment object.

        :param str name: (optional) The human readable name for this enrichment.
        :param str description: (optional) The description of this enrichment.
        :param str type: (optional) The type of this enrichment.
        :param EnrichmentOptions options: (optional) An object that contains
               options for the current enrichment. Starting with version `2020-08-30`, the
               enrichment options are not included in responses from the List Enrichments
               method.
        """
        self.enrichment_id = enrichment_id
        self.name = name
        self.description = description
        self.type = type
        self.options = options

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'Enrichment':
        """Initialize a Enrichment object from a json dictionary."""
        args = {}
        if (enrichment_id := _dict.get('enrichment_id')) is not None:
            args['enrichment_id'] = enrichment_id
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        if (description := _dict.get('description')) is not None:
            args['description'] = description
        if (type := _dict.get('type')) is not None:
            args['type'] = type
        if (options := _dict.get('options')) is not None:
            args['options'] = EnrichmentOptions.from_dict(options)
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a Enrichment object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'enrichment_id') and getattr(
                self, 'enrichment_id') is not None:
            _dict['enrichment_id'] = getattr(self, 'enrichment_id')
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'description') and self.description is not None:
            _dict['description'] = self.description
        if hasattr(self, 'type') and self.type is not None:
            _dict['type'] = self.type
        if hasattr(self, 'options') and self.options is not None:
            if isinstance(self.options, dict):
                _dict['options'] = self.options
            else:
                _dict['options'] = self.options.to_dict()
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this Enrichment object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'Enrichment') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'Enrichment') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class TypeEnum(str, Enum):
        """
        The type of this enrichment.
        """

        PART_OF_SPEECH = 'part_of_speech'
        SENTIMENT = 'sentiment'
        NATURAL_LANGUAGE_UNDERSTANDING = 'natural_language_understanding'
        DICTIONARY = 'dictionary'
        REGULAR_EXPRESSION = 'regular_expression'
        UIMA_ANNOTATOR = 'uima_annotator'
        RULE_BASED = 'rule_based'
        WATSON_KNOWLEDGE_STUDIO_MODEL = 'watson_knowledge_studio_model'
        CLASSIFIER = 'classifier'
        WEBHOOK = 'webhook'
        SENTENCE_CLASSIFIER = 'sentence_classifier'


class EnrichmentOptions:
    """
    An object that contains options for the current enrichment. Starting with version
    `2020-08-30`, the enrichment options are not included in responses from the List
    Enrichments method.

    :param List[str] languages: (optional) An array of supported languages for this
          enrichment. When creating an enrichment, only specify a language that is used by
          the model or in the dictionary. Required when **type** is `dictionary`. Optional
          when **type** is `rule_based`. Not valid when creating any other type of
          enrichment.
    :param str entity_type: (optional) The name of the entity type. This value is
          used as the field name in the index. Required when **type** is `dictionary` or
          `regular_expression`. Not valid when creating any other type of enrichment.
    :param str regular_expression: (optional) The regular expression to apply for
          this enrichment. Required when **type** is `regular_expression`. Not valid when
          creating any other type of enrichment.
    :param str result_field: (optional) The name of the result document field that
          this enrichment creates. Required when **type** is `rule_based` or `classifier`.
          Not valid when creating any other type of enrichment.
    :param str classifier_id: (optional) The Universally Unique Identifier (UUID) of
          the document classifier. Required when **type** is `classifier`. Not valid when
          creating any other type of enrichment.
    :param str model_id: (optional) The Universally Unique Identifier (UUID) of the
          document classifier model. Required when **type** is `classifier`. Not valid
          when creating any other type of enrichment.
    :param float confidence_threshold: (optional) Specifies a threshold. Only
          classes with evaluation confidence scores that are higher than the specified
          threshold are included in the output. Optional when **type** is `classifier`.
          Not valid when creating any other type of enrichment.
    :param int top_k: (optional) Evaluates only the classes that fall in the top set
          of results when ranked by confidence. For example, if set to `5`, then the top
          five classes for each document are evaluated. If set to 0, the
          **confidence_threshold** is used to determine the predicted classes. Optional
          when **type** is `classifier`. Not valid when creating any other type of
          enrichment.
    :param str url: (optional) A URL that uses the SSL protocol (begins with https)
          for the webhook. Required when type is `webhook`. Not valid when creating any
          other type of enrichment.
    :param str version: (optional) The Discovery API version that allows to
          distinguish the schema. The version is specified in the `yyyy-mm-dd` format.
          Optional when `type` is `webhook`. Not valid when creating any other type of
          enrichment.
    :param str secret: (optional) A private key can be included in the request to
          authenticate with the external service. The maximum length is 1,024 characters.
          Optional when `type` is `webhook`. Not valid when creating any other type of
          enrichment.
    :param WebhookHeader headers_: (optional) An array of headers to pass with the
          HTTP request. Optional when `type` is `webhook`. Not valid when creating any
          other type of enrichment.
    :param str location_encoding: (optional) Discovery calculates offsets of the
          text's location with this encoding type in documents. Use the same location
          encoding type in both Discovery and external enrichment for a document.
           These encoding types are supported: `utf-8`, `utf-16`, and `utf-32`. Optional
          when `type` is `webhook`. Not valid when creating any other type of enrichment.
    """

    def __init__(
        self,
        *,
        languages: Optional[List[str]] = None,
        entity_type: Optional[str] = None,
        regular_expression: Optional[str] = None,
        result_field: Optional[str] = None,
        classifier_id: Optional[str] = None,
        model_id: Optional[str] = None,
        confidence_threshold: Optional[float] = None,
        top_k: Optional[int] = None,
        url: Optional[str] = None,
        version: Optional[str] = None,
        secret: Optional[str] = None,
        headers_: Optional['WebhookHeader'] = None,
        location_encoding: Optional[str] = None,
    ) -> None:
        """
        Initialize a EnrichmentOptions object.

        :param List[str] languages: (optional) An array of supported languages for
               this enrichment. When creating an enrichment, only specify a language that
               is used by the model or in the dictionary. Required when **type** is
               `dictionary`. Optional when **type** is `rule_based`. Not valid when
               creating any other type of enrichment.
        :param str entity_type: (optional) The name of the entity type. This value
               is used as the field name in the index. Required when **type** is
               `dictionary` or `regular_expression`. Not valid when creating any other
               type of enrichment.
        :param str regular_expression: (optional) The regular expression to apply
               for this enrichment. Required when **type** is `regular_expression`. Not
               valid when creating any other type of enrichment.
        :param str result_field: (optional) The name of the result document field
               that this enrichment creates. Required when **type** is `rule_based` or
               `classifier`. Not valid when creating any other type of enrichment.
        :param str classifier_id: (optional) The Universally Unique Identifier
               (UUID) of the document classifier. Required when **type** is `classifier`.
               Not valid when creating any other type of enrichment.
        :param str model_id: (optional) The Universally Unique Identifier (UUID) of
               the document classifier model. Required when **type** is `classifier`. Not
               valid when creating any other type of enrichment.
        :param float confidence_threshold: (optional) Specifies a threshold. Only
               classes with evaluation confidence scores that are higher than the
               specified threshold are included in the output. Optional when **type** is
               `classifier`. Not valid when creating any other type of enrichment.
        :param int top_k: (optional) Evaluates only the classes that fall in the
               top set of results when ranked by confidence. For example, if set to `5`,
               then the top five classes for each document are evaluated. If set to 0, the
               **confidence_threshold** is used to determine the predicted classes.
               Optional when **type** is `classifier`. Not valid when creating any other
               type of enrichment.
        :param str url: (optional) A URL that uses the SSL protocol (begins with
               https) for the webhook. Required when type is `webhook`. Not valid when
               creating any other type of enrichment.
        :param str version: (optional) The Discovery API version that allows to
               distinguish the schema. The version is specified in the `yyyy-mm-dd`
               format. Optional when `type` is `webhook`. Not valid when creating any
               other type of enrichment.
        :param str secret: (optional) A private key can be included in the request
               to authenticate with the external service. The maximum length is 1,024
               characters. Optional when `type` is `webhook`. Not valid when creating any
               other type of enrichment.
        :param WebhookHeader headers_: (optional) An array of headers to pass with
               the HTTP request. Optional when `type` is `webhook`. Not valid when
               creating any other type of enrichment.
        :param str location_encoding: (optional) Discovery calculates offsets of
               the text's location with this encoding type in documents. Use the same
               location encoding type in both Discovery and external enrichment for a
               document.
                These encoding types are supported: `utf-8`, `utf-16`, and `utf-32`.
               Optional when `type` is `webhook`. Not valid when creating any other type
               of enrichment.
        """
        self.languages = languages
        self.entity_type = entity_type
        self.regular_expression = regular_expression
        self.result_field = result_field
        self.classifier_id = classifier_id
        self.model_id = model_id
        self.confidence_threshold = confidence_threshold
        self.top_k = top_k
        self.url = url
        self.version = version
        self.secret = secret
        self.headers_ = headers_
        self.location_encoding = location_encoding

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'EnrichmentOptions':
        """Initialize a EnrichmentOptions object from a json dictionary."""
        args = {}
        if (languages := _dict.get('languages')) is not None:
            args['languages'] = languages
        if (entity_type := _dict.get('entity_type')) is not None:
            args['entity_type'] = entity_type
        if (regular_expression := _dict.get('regular_expression')) is not None:
            args['regular_expression'] = regular_expression
        if (result_field := _dict.get('result_field')) is not None:
            args['result_field'] = result_field
        if (classifier_id := _dict.get('classifier_id')) is not None:
            args['classifier_id'] = classifier_id
        if (model_id := _dict.get('model_id')) is not None:
            args['model_id'] = model_id
        if (confidence_threshold :=
                _dict.get('confidence_threshold')) is not None:
            args['confidence_threshold'] = confidence_threshold
        if (top_k := _dict.get('top_k')) is not None:
            args['top_k'] = top_k
        if (url := _dict.get('url')) is not None:
            args['url'] = url
        if (version := _dict.get('version')) is not None:
            args['version'] = version
        if (secret := _dict.get('secret')) is not None:
            args['secret'] = secret
        if (headers_ := _dict.get('headers')) is not None:
            args['headers_'] = WebhookHeader.from_dict(headers_)
        if (location_encoding := _dict.get('location_encoding')) is not None:
            args['location_encoding'] = location_encoding
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a EnrichmentOptions object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'languages') and self.languages is not None:
            _dict['languages'] = self.languages
        if hasattr(self, 'entity_type') and self.entity_type is not None:
            _dict['entity_type'] = self.entity_type
        if hasattr(
                self,
                'regular_expression') and self.regular_expression is not None:
            _dict['regular_expression'] = self.regular_expression
        if hasattr(self, 'result_field') and self.result_field is not None:
            _dict['result_field'] = self.result_field
        if hasattr(self, 'classifier_id') and self.classifier_id is not None:
            _dict['classifier_id'] = self.classifier_id
        if hasattr(self, 'model_id') and self.model_id is not None:
            _dict['model_id'] = self.model_id
        if hasattr(self, 'confidence_threshold'
                  ) and self.confidence_threshold is not None:
            _dict['confidence_threshold'] = self.confidence_threshold
        if hasattr(self, 'top_k') and self.top_k is not None:
            _dict['top_k'] = self.top_k
        if hasattr(self, 'url') and self.url is not None:
            _dict['url'] = self.url
        if hasattr(self, 'version') and self.version is not None:
            _dict['version'] = self.version
        if hasattr(self, 'secret') and self.secret is not None:
            _dict['secret'] = self.secret
        if hasattr(self, 'headers_') and self.headers_ is not None:
            if isinstance(self.headers_, dict):
                _dict['headers'] = self.headers_
            else:
                _dict['headers'] = self.headers_.to_dict()
        if hasattr(self,
                   'location_encoding') and self.location_encoding is not None:
            _dict['location_encoding'] = self.location_encoding
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this EnrichmentOptions object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'EnrichmentOptions') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'EnrichmentOptions') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class Enrichments:
    """
    An object that contains an array of enrichment definitions.

    :param List[Enrichment] enrichments: (optional) An array of enrichment
          definitions.
    """

    def __init__(
        self,
        *,
        enrichments: Optional[List['Enrichment']] = None,
    ) -> None:
        """
        Initialize a Enrichments object.

        :param List[Enrichment] enrichments: (optional) An array of enrichment
               definitions.
        """
        self.enrichments = enrichments

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'Enrichments':
        """Initialize a Enrichments object from a json dictionary."""
        args = {}
        if (enrichments := _dict.get('enrichments')) is not None:
            args['enrichments'] = [Enrichment.from_dict(v) for v in enrichments]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a Enrichments object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'enrichments') and self.enrichments is not None:
            enrichments_list = []
            for v in self.enrichments:
                if isinstance(v, dict):
                    enrichments_list.append(v)
                else:
                    enrichments_list.append(v.to_dict())
            _dict['enrichments'] = enrichments_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this Enrichments object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'Enrichments') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'Enrichments') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class Expansion:
    """
    An expansion definition. Each object respresents one set of expandable strings. For
    example, you could have expansions for the word `hot` in one object, and expansions
    for the word `cold` in another. Follow these guidelines when you add terms:
    * Specify the terms in lowercase. Lowercase terms expand to uppercase.
    * Multiword terms are supported only in bidirectional expansions.
    * Do not specify a term that is specified in the stop words list for the collection.

    :param List[str] input_terms: (optional) A list of terms that will be expanded
          for this expansion. If specified, only the items in this list are expanded.
    :param List[str] expanded_terms: A list of terms that this expansion will be
          expanded to. If specified without **input_terms**, the list also functions as
          the input term list.
    """

    def __init__(
        self,
        expanded_terms: List[str],
        *,
        input_terms: Optional[List[str]] = None,
    ) -> None:
        """
        Initialize a Expansion object.

        :param List[str] expanded_terms: A list of terms that this expansion will
               be expanded to. If specified without **input_terms**, the list also
               functions as the input term list.
        :param List[str] input_terms: (optional) A list of terms that will be
               expanded for this expansion. If specified, only the items in this list are
               expanded.
        """
        self.input_terms = input_terms
        self.expanded_terms = expanded_terms

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'Expansion':
        """Initialize a Expansion object from a json dictionary."""
        args = {}
        if (input_terms := _dict.get('input_terms')) is not None:
            args['input_terms'] = input_terms
        if (expanded_terms := _dict.get('expanded_terms')) is not None:
            args['expanded_terms'] = expanded_terms
        else:
            raise ValueError(
                'Required property \'expanded_terms\' not present in Expansion JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a Expansion object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'input_terms') and self.input_terms is not None:
            _dict['input_terms'] = self.input_terms
        if hasattr(self, 'expanded_terms') and self.expanded_terms is not None:
            _dict['expanded_terms'] = self.expanded_terms
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this Expansion object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'Expansion') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'Expansion') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class Expansions:
    """
    The query expansion definitions for the specified collection.

    :param List[Expansion] expansions: An array of query expansion definitions.
           Each object in the **expansions** array represents a term or set of terms that
          will be expanded into other terms. Each expansion object can be configured as
          `bidirectional` or `unidirectional`.
          * **Bidirectional**: Each entry in the `expanded_terms` list expands to include
          all expanded terms. For example, a query for `ibm` expands to `ibm OR
          international business machines OR big blue`.
          * **Unidirectional**: The terms in `input_terms` in the query are replaced by
          the terms in `expanded_terms`. For example, a query for the often misused term
          `on premise` is converted to `on premises OR on-premises` and does not contain
          the original term. If you want an input term to be included in the query, then
          repeat the input term in the expanded terms list.
    """

    def __init__(
        self,
        expansions: List['Expansion'],
    ) -> None:
        """
        Initialize a Expansions object.

        :param List[Expansion] expansions: An array of query expansion definitions.
                Each object in the **expansions** array represents a term or set of terms
               that will be expanded into other terms. Each expansion object can be
               configured as `bidirectional` or `unidirectional`.
               * **Bidirectional**: Each entry in the `expanded_terms` list expands to
               include all expanded terms. For example, a query for `ibm` expands to `ibm
               OR international business machines OR big blue`.
               * **Unidirectional**: The terms in `input_terms` in the query are replaced
               by the terms in `expanded_terms`. For example, a query for the often
               misused term `on premise` is converted to `on premises OR on-premises` and
               does not contain the original term. If you want an input term to be
               included in the query, then repeat the input term in the expanded terms
               list.
        """
        self.expansions = expansions

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'Expansions':
        """Initialize a Expansions object from a json dictionary."""
        args = {}
        if (expansions := _dict.get('expansions')) is not None:
            args['expansions'] = [Expansion.from_dict(v) for v in expansions]
        else:
            raise ValueError(
                'Required property \'expansions\' not present in Expansions JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a Expansions object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'expansions') and self.expansions is not None:
            expansions_list = []
            for v in self.expansions:
                if isinstance(v, dict):
                    expansions_list.append(v)
                else:
                    expansions_list.append(v.to_dict())
            _dict['expansions'] = expansions_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this Expansions object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'Expansions') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'Expansions') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class Field:
    """
    Object that contains field details.

    :param str field: (optional) The name of the field.
    :param str type: (optional) The type of the field.
    :param str collection_id: (optional) The collection Id of the collection where
          the field was found.
    """

    def __init__(
        self,
        *,
        field: Optional[str] = None,
        type: Optional[str] = None,
        collection_id: Optional[str] = None,
    ) -> None:
        """
        Initialize a Field object.

        """
        self.field = field
        self.type = type
        self.collection_id = collection_id

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'Field':
        """Initialize a Field object from a json dictionary."""
        args = {}
        if (field := _dict.get('field')) is not None:
            args['field'] = field
        if (type := _dict.get('type')) is not None:
            args['type'] = type
        if (collection_id := _dict.get('collection_id')) is not None:
            args['collection_id'] = collection_id
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a Field object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'field') and getattr(self, 'field') is not None:
            _dict['field'] = getattr(self, 'field')
        if hasattr(self, 'type') and getattr(self, 'type') is not None:
            _dict['type'] = getattr(self, 'type')
        if hasattr(self, 'collection_id') and getattr(
                self, 'collection_id') is not None:
            _dict['collection_id'] = getattr(self, 'collection_id')
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this Field object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'Field') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'Field') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class TypeEnum(str, Enum):
        """
        The type of the field.
        """

        NESTED = 'nested'
        STRING = 'string'
        DATE = 'date'
        LONG = 'long'
        INTEGER = 'integer'
        SHORT = 'short'
        BYTE = 'byte'
        DOUBLE = 'double'
        FLOAT = 'float'
        BOOLEAN = 'boolean'
        BINARY = 'binary'


class ListBatchesResponse:
    """
    An object that contains a list of batches that are ready for enrichment by the
    external application.

    :param List[BatchDetails] batches: (optional) An array that lists the batches in
          a collection.
    """

    def __init__(
        self,
        *,
        batches: Optional[List['BatchDetails']] = None,
    ) -> None:
        """
        Initialize a ListBatchesResponse object.

        :param List[BatchDetails] batches: (optional) An array that lists the
               batches in a collection.
        """
        self.batches = batches

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'ListBatchesResponse':
        """Initialize a ListBatchesResponse object from a json dictionary."""
        args = {}
        if (batches := _dict.get('batches')) is not None:
            args['batches'] = [BatchDetails.from_dict(v) for v in batches]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a ListBatchesResponse object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'batches') and self.batches is not None:
            batches_list = []
            for v in self.batches:
                if isinstance(v, dict):
                    batches_list.append(v)
                else:
                    batches_list.append(v.to_dict())
            _dict['batches'] = batches_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this ListBatchesResponse object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'ListBatchesResponse') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'ListBatchesResponse') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class ListCollectionsResponse:
    """
    Response object that contains an array of collection details.

    :param List[Collection] collections: (optional) An array that contains
          information about each collection in the project.
    """

    def __init__(
        self,
        *,
        collections: Optional[List['Collection']] = None,
    ) -> None:
        """
        Initialize a ListCollectionsResponse object.

        :param List[Collection] collections: (optional) An array that contains
               information about each collection in the project.
        """
        self.collections = collections

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'ListCollectionsResponse':
        """Initialize a ListCollectionsResponse object from a json dictionary."""
        args = {}
        if (collections := _dict.get('collections')) is not None:
            args['collections'] = [Collection.from_dict(v) for v in collections]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a ListCollectionsResponse object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'collections') and self.collections is not None:
            collections_list = []
            for v in self.collections:
                if isinstance(v, dict):
                    collections_list.append(v)
                else:
                    collections_list.append(v.to_dict())
            _dict['collections'] = collections_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this ListCollectionsResponse object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'ListCollectionsResponse') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'ListCollectionsResponse') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class ListDocumentsResponse:
    """
    Response object that contains an array of documents.

    :param int matching_results: (optional) The number of matching results for the
          document query.
    :param List[DocumentDetails] documents: (optional) An array that lists the
          documents in a collection. Only the document ID of each document is returned in
          the list. You can use the [Get document](#getdocument) method to get more
          information about an individual document.
    """

    def __init__(
        self,
        *,
        matching_results: Optional[int] = None,
        documents: Optional[List['DocumentDetails']] = None,
    ) -> None:
        """
        Initialize a ListDocumentsResponse object.

        :param int matching_results: (optional) The number of matching results for
               the document query.
        :param List[DocumentDetails] documents: (optional) An array that lists the
               documents in a collection. Only the document ID of each document is
               returned in the list. You can use the [Get document](#getdocument) method
               to get more information about an individual document.
        """
        self.matching_results = matching_results
        self.documents = documents

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'ListDocumentsResponse':
        """Initialize a ListDocumentsResponse object from a json dictionary."""
        args = {}
        if (matching_results := _dict.get('matching_results')) is not None:
            args['matching_results'] = matching_results
        if (documents := _dict.get('documents')) is not None:
            args['documents'] = [
                DocumentDetails.from_dict(v) for v in documents
            ]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a ListDocumentsResponse object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self,
                   'matching_results') and self.matching_results is not None:
            _dict['matching_results'] = self.matching_results
        if hasattr(self, 'documents') and self.documents is not None:
            documents_list = []
            for v in self.documents:
                if isinstance(v, dict):
                    documents_list.append(v)
                else:
                    documents_list.append(v.to_dict())
            _dict['documents'] = documents_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this ListDocumentsResponse object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'ListDocumentsResponse') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'ListDocumentsResponse') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class ListFieldsResponse:
    """
    The list of fetched fields.
    The fields are returned using a fully qualified name format, however, the format
    differs slightly from that used by the query operations.
      * Fields which contain nested objects are assigned a type of "nested".
      * Fields which belong to a nested object are prefixed with `.properties` (for
    example, `warnings.properties.severity` means that the `warnings` object has a
    property called `severity`).

    :param List[Field] fields: (optional) An array that contains information about
          each field in the collections.
    """

    def __init__(
        self,
        *,
        fields: Optional[List['Field']] = None,
    ) -> None:
        """
        Initialize a ListFieldsResponse object.

        :param List[Field] fields: (optional) An array that contains information
               about each field in the collections.
        """
        self.fields = fields

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'ListFieldsResponse':
        """Initialize a ListFieldsResponse object from a json dictionary."""
        args = {}
        if (fields := _dict.get('fields')) is not None:
            args['fields'] = [Field.from_dict(v) for v in fields]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a ListFieldsResponse object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'fields') and self.fields is not None:
            fields_list = []
            for v in self.fields:
                if isinstance(v, dict):
                    fields_list.append(v)
                else:
                    fields_list.append(v.to_dict())
            _dict['fields'] = fields_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this ListFieldsResponse object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'ListFieldsResponse') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'ListFieldsResponse') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class ListProjectsResponse:
    """
    A list of projects in this instance.

    :param List[ProjectListDetails] projects: (optional) An array of project
          details.
    """

    def __init__(
        self,
        *,
        projects: Optional[List['ProjectListDetails']] = None,
    ) -> None:
        """
        Initialize a ListProjectsResponse object.

        :param List[ProjectListDetails] projects: (optional) An array of project
               details.
        """
        self.projects = projects

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'ListProjectsResponse':
        """Initialize a ListProjectsResponse object from a json dictionary."""
        args = {}
        if (projects := _dict.get('projects')) is not None:
            args['projects'] = [
                ProjectListDetails.from_dict(v) for v in projects
            ]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a ListProjectsResponse object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'projects') and self.projects is not None:
            projects_list = []
            for v in self.projects:
                if isinstance(v, dict):
                    projects_list.append(v)
                else:
                    projects_list.append(v.to_dict())
            _dict['projects'] = projects_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this ListProjectsResponse object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'ListProjectsResponse') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'ListProjectsResponse') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class ModelEvaluationMacroAverage:
    """
    A macro-average computes metric independently for each class and then takes the
    average. Class refers to the classification label that is specified in the
    **answer_field**.

    :param float precision: A metric that measures how many of the overall documents
          are classified correctly.
    :param float recall: A metric that measures how often documents that should be
          classified into certain classes are classified into those classes.
    :param float f1: A metric that measures whether the optimal balance between
          precision and recall is reached. The F1 score can be interpreted as a weighted
          average of the precision and recall values. An F1 score reaches its best value
          at 1 and worst value at 0.
    """

    def __init__(
        self,
        precision: float,
        recall: float,
        f1: float,
    ) -> None:
        """
        Initialize a ModelEvaluationMacroAverage object.

        :param float precision: A metric that measures how many of the overall
               documents are classified correctly.
        :param float recall: A metric that measures how often documents that should
               be classified into certain classes are classified into those classes.
        :param float f1: A metric that measures whether the optimal balance between
               precision and recall is reached. The F1 score can be interpreted as a
               weighted average of the precision and recall values. An F1 score reaches
               its best value at 1 and worst value at 0.
        """
        self.precision = precision
        self.recall = recall
        self.f1 = f1

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'ModelEvaluationMacroAverage':
        """Initialize a ModelEvaluationMacroAverage object from a json dictionary."""
        args = {}
        if (precision := _dict.get('precision')) is not None:
            args['precision'] = precision
        else:
            raise ValueError(
                'Required property \'precision\' not present in ModelEvaluationMacroAverage JSON'
            )
        if (recall := _dict.get('recall')) is not None:
            args['recall'] = recall
        else:
            raise ValueError(
                'Required property \'recall\' not present in ModelEvaluationMacroAverage JSON'
            )
        if (f1 := _dict.get('f1')) is not None:
            args['f1'] = f1
        else:
            raise ValueError(
                'Required property \'f1\' not present in ModelEvaluationMacroAverage JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a ModelEvaluationMacroAverage object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'precision') and self.precision is not None:
            _dict['precision'] = self.precision
        if hasattr(self, 'recall') and self.recall is not None:
            _dict['recall'] = self.recall
        if hasattr(self, 'f1') and self.f1 is not None:
            _dict['f1'] = self.f1
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this ModelEvaluationMacroAverage object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'ModelEvaluationMacroAverage') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'ModelEvaluationMacroAverage') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class ModelEvaluationMicroAverage:
    """
    A micro-average aggregates the contributions of all classes to compute the average
    metric. Classes refers to the classification labels that are specified in the
    **answer_field**.

    :param float precision: A metric that measures how many of the overall documents
          are classified correctly.
    :param float recall: A metric that measures how often documents that should be
          classified into certain classes are classified into those classes.
    :param float f1: A metric that measures whether the optimal balance between
          precision and recall is reached. The F1 score can be interpreted as a weighted
          average of the precision and recall values. An F1 score reaches its best value
          at 1 and worst value at 0.
    """

    def __init__(
        self,
        precision: float,
        recall: float,
        f1: float,
    ) -> None:
        """
        Initialize a ModelEvaluationMicroAverage object.

        :param float precision: A metric that measures how many of the overall
               documents are classified correctly.
        :param float recall: A metric that measures how often documents that should
               be classified into certain classes are classified into those classes.
        :param float f1: A metric that measures whether the optimal balance between
               precision and recall is reached. The F1 score can be interpreted as a
               weighted average of the precision and recall values. An F1 score reaches
               its best value at 1 and worst value at 0.
        """
        self.precision = precision
        self.recall = recall
        self.f1 = f1

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'ModelEvaluationMicroAverage':
        """Initialize a ModelEvaluationMicroAverage object from a json dictionary."""
        args = {}
        if (precision := _dict.get('precision')) is not None:
            args['precision'] = precision
        else:
            raise ValueError(
                'Required property \'precision\' not present in ModelEvaluationMicroAverage JSON'
            )
        if (recall := _dict.get('recall')) is not None:
            args['recall'] = recall
        else:
            raise ValueError(
                'Required property \'recall\' not present in ModelEvaluationMicroAverage JSON'
            )
        if (f1 := _dict.get('f1')) is not None:
            args['f1'] = f1
        else:
            raise ValueError(
                'Required property \'f1\' not present in ModelEvaluationMicroAverage JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a ModelEvaluationMicroAverage object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'precision') and self.precision is not None:
            _dict['precision'] = self.precision
        if hasattr(self, 'recall') and self.recall is not None:
            _dict['recall'] = self.recall
        if hasattr(self, 'f1') and self.f1 is not None:
            _dict['f1'] = self.f1
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this ModelEvaluationMicroAverage object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'ModelEvaluationMicroAverage') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'ModelEvaluationMicroAverage') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class Notice:
    """
    A notice produced for the collection.

    :param str notice_id: (optional) Identifies the notice. Many notices might have
          the same ID. This field exists so that user applications can programmatically
          identify a notice and take automatic corrective action. Typical notice IDs
          include:
          `index_failed`, `index_failed_too_many_requests`,
          `index_failed_incompatible_field`, `index_failed_cluster_unavailable`,
          `ingestion_timeout`, `ingestion_error`, `bad_request`, `internal_error`,
          `missing_model`, `unsupported_model`,
          `smart_document_understanding_failed_incompatible_field`,
          `smart_document_understanding_failed_internal_error`,
          `smart_document_understanding_failed_internal_error`,
          `smart_document_understanding_failed_warning`,
          `smart_document_understanding_page_error`,
          `smart_document_understanding_page_warning`. **Note:** This is not a complete
          list. Other values might be returned.
    :param datetime created: (optional) The creation date of the collection in the
          format yyyy-MM-dd'T'HH:mm:ss.SSS'Z'.
    :param str document_id: (optional) Unique identifier of the document.
    :param str collection_id: (optional) Unique identifier of the collection.
    :param str query_id: (optional) Unique identifier of the query used for
          relevance training.
    :param str severity: (optional) Severity level of the notice.
    :param str step: (optional) Ingestion or training step in which the notice
          occurred.
    :param str description: (optional) The description of the notice.
    """

    def __init__(
        self,
        *,
        notice_id: Optional[str] = None,
        created: Optional[datetime] = None,
        document_id: Optional[str] = None,
        collection_id: Optional[str] = None,
        query_id: Optional[str] = None,
        severity: Optional[str] = None,
        step: Optional[str] = None,
        description: Optional[str] = None,
    ) -> None:
        """
        Initialize a Notice object.

        """
        self.notice_id = notice_id
        self.created = created
        self.document_id = document_id
        self.collection_id = collection_id
        self.query_id = query_id
        self.severity = severity
        self.step = step
        self.description = description

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'Notice':
        """Initialize a Notice object from a json dictionary."""
        args = {}
        if (notice_id := _dict.get('notice_id')) is not None:
            args['notice_id'] = notice_id
        if (created := _dict.get('created')) is not None:
            args['created'] = string_to_datetime(created)
        if (document_id := _dict.get('document_id')) is not None:
            args['document_id'] = document_id
        if (collection_id := _dict.get('collection_id')) is not None:
            args['collection_id'] = collection_id
        if (query_id := _dict.get('query_id')) is not None:
            args['query_id'] = query_id
        if (severity := _dict.get('severity')) is not None:
            args['severity'] = severity
        if (step := _dict.get('step')) is not None:
            args['step'] = step
        if (description := _dict.get('description')) is not None:
            args['description'] = description
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a Notice object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'notice_id') and getattr(self,
                                                  'notice_id') is not None:
            _dict['notice_id'] = getattr(self, 'notice_id')
        if hasattr(self, 'created') and getattr(self, 'created') is not None:
            _dict['created'] = datetime_to_string(getattr(self, 'created'))
        if hasattr(self, 'document_id') and getattr(self,
                                                    'document_id') is not None:
            _dict['document_id'] = getattr(self, 'document_id')
        if hasattr(self, 'collection_id') and getattr(
                self, 'collection_id') is not None:
            _dict['collection_id'] = getattr(self, 'collection_id')
        if hasattr(self, 'query_id') and getattr(self, 'query_id') is not None:
            _dict['query_id'] = getattr(self, 'query_id')
        if hasattr(self, 'severity') and getattr(self, 'severity') is not None:
            _dict['severity'] = getattr(self, 'severity')
        if hasattr(self, 'step') and getattr(self, 'step') is not None:
            _dict['step'] = getattr(self, 'step')
        if hasattr(self, 'description') and getattr(self,
                                                    'description') is not None:
            _dict['description'] = getattr(self, 'description')
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this Notice object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'Notice') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'Notice') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class SeverityEnum(str, Enum):
        """
        Severity level of the notice.
        """

        WARNING = 'warning'
        ERROR = 'error'


class PerClassModelEvaluation:
    """
    An object that measures the metrics from a training run for each classification label
    separately.

    :param str name: Class name. Each class name is derived from a value in the
          **answer_field**.
    :param float precision: A metric that measures how many of the overall documents
          are classified correctly.
    :param float recall: A metric that measures how often documents that should be
          classified into certain classes are classified into those classes.
    :param float f1: A metric that measures whether the optimal balance between
          precision and recall is reached. The F1 score can be interpreted as a weighted
          average of the precision and recall values. An F1 score reaches its best value
          at 1 and worst value at 0.
    """

    def __init__(
        self,
        name: str,
        precision: float,
        recall: float,
        f1: float,
    ) -> None:
        """
        Initialize a PerClassModelEvaluation object.

        :param str name: Class name. Each class name is derived from a value in the
               **answer_field**.
        :param float precision: A metric that measures how many of the overall
               documents are classified correctly.
        :param float recall: A metric that measures how often documents that should
               be classified into certain classes are classified into those classes.
        :param float f1: A metric that measures whether the optimal balance between
               precision and recall is reached. The F1 score can be interpreted as a
               weighted average of the precision and recall values. An F1 score reaches
               its best value at 1 and worst value at 0.
        """
        self.name = name
        self.precision = precision
        self.recall = recall
        self.f1 = f1

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'PerClassModelEvaluation':
        """Initialize a PerClassModelEvaluation object from a json dictionary."""
        args = {}
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        else:
            raise ValueError(
                'Required property \'name\' not present in PerClassModelEvaluation JSON'
            )
        if (precision := _dict.get('precision')) is not None:
            args['precision'] = precision
        else:
            raise ValueError(
                'Required property \'precision\' not present in PerClassModelEvaluation JSON'
            )
        if (recall := _dict.get('recall')) is not None:
            args['recall'] = recall
        else:
            raise ValueError(
                'Required property \'recall\' not present in PerClassModelEvaluation JSON'
            )
        if (f1 := _dict.get('f1')) is not None:
            args['f1'] = f1
        else:
            raise ValueError(
                'Required property \'f1\' not present in PerClassModelEvaluation JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a PerClassModelEvaluation object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'precision') and self.precision is not None:
            _dict['precision'] = self.precision
        if hasattr(self, 'recall') and self.recall is not None:
            _dict['recall'] = self.recall
        if hasattr(self, 'f1') and self.f1 is not None:
            _dict['f1'] = self.f1
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this PerClassModelEvaluation object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'PerClassModelEvaluation') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'PerClassModelEvaluation') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class ProjectDetails:
    """
    Detailed information about the specified project.

    :param str project_id: (optional) The Universally Unique Identifier (UUID) of
          this project.
    :param str name: (optional) The human readable name of this project.
    :param str type: (optional) The type of project.
          The `content_intelligence` type is a *Document Retrieval for Contracts* project
          and the `other` type is a *Custom* project.
          The `content_mining` and `content_intelligence` types are available with Premium
          plan managed deployments and installed deployments only.
          The Intelligent Document Processing (IDP) project type is available from IBM
          Cloud-managed instances only.
    :param ProjectListDetailsRelevancyTrainingStatus relevancy_training_status:
          (optional) Relevancy training status information for this project.
    :param int collection_count: (optional) The number of collections configured in
          this project.
    :param DefaultQueryParams default_query_parameters: (optional) Default query
          parameters for this project.
    """

    def __init__(
        self,
        *,
        project_id: Optional[str] = None,
        name: Optional[str] = None,
        type: Optional[str] = None,
        relevancy_training_status: Optional[
            'ProjectListDetailsRelevancyTrainingStatus'] = None,
        collection_count: Optional[int] = None,
        default_query_parameters: Optional['DefaultQueryParams'] = None,
    ) -> None:
        """
        Initialize a ProjectDetails object.

        :param str name: (optional) The human readable name of this project.
        :param str type: (optional) The type of project.
               The `content_intelligence` type is a *Document Retrieval for Contracts*
               project and the `other` type is a *Custom* project.
               The `content_mining` and `content_intelligence` types are available with
               Premium plan managed deployments and installed deployments only.
               The Intelligent Document Processing (IDP) project type is available from
               IBM Cloud-managed instances only.
        :param DefaultQueryParams default_query_parameters: (optional) Default
               query parameters for this project.
        """
        self.project_id = project_id
        self.name = name
        self.type = type
        self.relevancy_training_status = relevancy_training_status
        self.collection_count = collection_count
        self.default_query_parameters = default_query_parameters

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'ProjectDetails':
        """Initialize a ProjectDetails object from a json dictionary."""
        args = {}
        if (project_id := _dict.get('project_id')) is not None:
            args['project_id'] = project_id
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        if (type := _dict.get('type')) is not None:
            args['type'] = type
        if (relevancy_training_status :=
                _dict.get('relevancy_training_status')) is not None:
            args[
                'relevancy_training_status'] = ProjectListDetailsRelevancyTrainingStatus.from_dict(
                    relevancy_training_status)
        if (collection_count := _dict.get('collection_count')) is not None:
            args['collection_count'] = collection_count
        if (default_query_parameters :=
                _dict.get('default_query_parameters')) is not None:
            args['default_query_parameters'] = DefaultQueryParams.from_dict(
                default_query_parameters)
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a ProjectDetails object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'project_id') and getattr(self,
                                                   'project_id') is not None:
            _dict['project_id'] = getattr(self, 'project_id')
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'type') and self.type is not None:
            _dict['type'] = self.type
        if hasattr(self, 'relevancy_training_status') and getattr(
                self, 'relevancy_training_status') is not None:
            if isinstance(getattr(self, 'relevancy_training_status'), dict):
                _dict['relevancy_training_status'] = getattr(
                    self, 'relevancy_training_status')
            else:
                _dict['relevancy_training_status'] = getattr(
                    self, 'relevancy_training_status').to_dict()
        if hasattr(self, 'collection_count') and getattr(
                self, 'collection_count') is not None:
            _dict['collection_count'] = getattr(self, 'collection_count')
        if hasattr(self, 'default_query_parameters'
                  ) and self.default_query_parameters is not None:
            if isinstance(self.default_query_parameters, dict):
                _dict[
                    'default_query_parameters'] = self.default_query_parameters
            else:
                _dict[
                    'default_query_parameters'] = self.default_query_parameters.to_dict(
                    )
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this ProjectDetails object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'ProjectDetails') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'ProjectDetails') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class TypeEnum(str, Enum):
        """
        The type of project.
        The `content_intelligence` type is a *Document Retrieval for Contracts* project
        and the `other` type is a *Custom* project.
        The `content_mining` and `content_intelligence` types are available with Premium
        plan managed deployments and installed deployments only.
        The Intelligent Document Processing (IDP) project type is available from IBM
        Cloud-managed instances only.
        """

        INTELLIGENT_DOCUMENT_PROCESSING = 'intelligent_document_processing'
        DOCUMENT_RETRIEVAL = 'document_retrieval'
        CONVERSATIONAL_SEARCH = 'conversational_search'
        CONTENT_MINING = 'content_mining'
        CONTENT_INTELLIGENCE = 'content_intelligence'
        OTHER = 'other'


class ProjectListDetails:
    """
    Details about a specific project.

    :param str project_id: (optional) The Universally Unique Identifier (UUID) of
          this project.
    :param str name: (optional) The human readable name of this project.
    :param str type: (optional) The type of project.
          The `content_intelligence` type is a *Document Retrieval for Contracts* project
          and the `other` type is a *Custom* project.
          The `content_mining` and `content_intelligence` types are available with Premium
          plan managed deployments and installed deployments only.
          The Intelligent Document Processing (IDP) project type is available from IBM
          Cloud-managed instances only.
    :param ProjectListDetailsRelevancyTrainingStatus relevancy_training_status:
          (optional) Relevancy training status information for this project.
    :param int collection_count: (optional) The number of collections configured in
          this project.
    """

    def __init__(
        self,
        *,
        project_id: Optional[str] = None,
        name: Optional[str] = None,
        type: Optional[str] = None,
        relevancy_training_status: Optional[
            'ProjectListDetailsRelevancyTrainingStatus'] = None,
        collection_count: Optional[int] = None,
    ) -> None:
        """
        Initialize a ProjectListDetails object.

        :param str name: (optional) The human readable name of this project.
        :param str type: (optional) The type of project.
               The `content_intelligence` type is a *Document Retrieval for Contracts*
               project and the `other` type is a *Custom* project.
               The `content_mining` and `content_intelligence` types are available with
               Premium plan managed deployments and installed deployments only.
               The Intelligent Document Processing (IDP) project type is available from
               IBM Cloud-managed instances only.
        """
        self.project_id = project_id
        self.name = name
        self.type = type
        self.relevancy_training_status = relevancy_training_status
        self.collection_count = collection_count

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'ProjectListDetails':
        """Initialize a ProjectListDetails object from a json dictionary."""
        args = {}
        if (project_id := _dict.get('project_id')) is not None:
            args['project_id'] = project_id
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        if (type := _dict.get('type')) is not None:
            args['type'] = type
        if (relevancy_training_status :=
                _dict.get('relevancy_training_status')) is not None:
            args[
                'relevancy_training_status'] = ProjectListDetailsRelevancyTrainingStatus.from_dict(
                    relevancy_training_status)
        if (collection_count := _dict.get('collection_count')) is not None:
            args['collection_count'] = collection_count
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a ProjectListDetails object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'project_id') and getattr(self,
                                                   'project_id') is not None:
            _dict['project_id'] = getattr(self, 'project_id')
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'type') and self.type is not None:
            _dict['type'] = self.type
        if hasattr(self, 'relevancy_training_status') and getattr(
                self, 'relevancy_training_status') is not None:
            if isinstance(getattr(self, 'relevancy_training_status'), dict):
                _dict['relevancy_training_status'] = getattr(
                    self, 'relevancy_training_status')
            else:
                _dict['relevancy_training_status'] = getattr(
                    self, 'relevancy_training_status').to_dict()
        if hasattr(self, 'collection_count') and getattr(
                self, 'collection_count') is not None:
            _dict['collection_count'] = getattr(self, 'collection_count')
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this ProjectListDetails object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'ProjectListDetails') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'ProjectListDetails') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class TypeEnum(str, Enum):
        """
        The type of project.
        The `content_intelligence` type is a *Document Retrieval for Contracts* project
        and the `other` type is a *Custom* project.
        The `content_mining` and `content_intelligence` types are available with Premium
        plan managed deployments and installed deployments only.
        The Intelligent Document Processing (IDP) project type is available from IBM
        Cloud-managed instances only.
        """

        INTELLIGENT_DOCUMENT_PROCESSING = 'intelligent_document_processing'
        DOCUMENT_RETRIEVAL = 'document_retrieval'
        CONVERSATIONAL_SEARCH = 'conversational_search'
        CONTENT_MINING = 'content_mining'
        CONTENT_INTELLIGENCE = 'content_intelligence'
        OTHER = 'other'


class ProjectListDetailsRelevancyTrainingStatus:
    """
    Relevancy training status information for this project.

    :param str data_updated: (optional) When the training data was updated.
    :param int total_examples: (optional) The total number of examples.
    :param bool sufficient_label_diversity: (optional) When `true`, sufficient label
          diversity is present to allow training for this project.
    :param bool processing: (optional) When `true`, the relevancy training is in
          processing.
    :param bool minimum_examples_added: (optional) When `true`, the minimum number
          of examples required to train has been met.
    :param str successfully_trained: (optional) The time that the most recent
          successful training occurred.
    :param bool available: (optional) When `true`, relevancy training is available
          when querying collections in the project.
    :param int notices: (optional) The number of notices generated during the
          relevancy training.
    :param bool minimum_queries_added: (optional) When `true`, the minimum number of
          queries required to train has been met.
    """

    def __init__(
        self,
        *,
        data_updated: Optional[str] = None,
        total_examples: Optional[int] = None,
        sufficient_label_diversity: Optional[bool] = None,
        processing: Optional[bool] = None,
        minimum_examples_added: Optional[bool] = None,
        successfully_trained: Optional[str] = None,
        available: Optional[bool] = None,
        notices: Optional[int] = None,
        minimum_queries_added: Optional[bool] = None,
    ) -> None:
        """
        Initialize a ProjectListDetailsRelevancyTrainingStatus object.

        :param str data_updated: (optional) When the training data was updated.
        :param int total_examples: (optional) The total number of examples.
        :param bool sufficient_label_diversity: (optional) When `true`, sufficient
               label diversity is present to allow training for this project.
        :param bool processing: (optional) When `true`, the relevancy training is
               in processing.
        :param bool minimum_examples_added: (optional) When `true`, the minimum
               number of examples required to train has been met.
        :param str successfully_trained: (optional) The time that the most recent
               successful training occurred.
        :param bool available: (optional) When `true`, relevancy training is
               available when querying collections in the project.
        :param int notices: (optional) The number of notices generated during the
               relevancy training.
        :param bool minimum_queries_added: (optional) When `true`, the minimum
               number of queries required to train has been met.
        """
        self.data_updated = data_updated
        self.total_examples = total_examples
        self.sufficient_label_diversity = sufficient_label_diversity
        self.processing = processing
        self.minimum_examples_added = minimum_examples_added
        self.successfully_trained = successfully_trained
        self.available = available
        self.notices = notices
        self.minimum_queries_added = minimum_queries_added

    @classmethod
    def from_dict(cls,
                  _dict: Dict) -> 'ProjectListDetailsRelevancyTrainingStatus':
        """Initialize a ProjectListDetailsRelevancyTrainingStatus object from a json dictionary."""
        args = {}
        if (data_updated := _dict.get('data_updated')) is not None:
            args['data_updated'] = data_updated
        if (total_examples := _dict.get('total_examples')) is not None:
            args['total_examples'] = total_examples
        if (sufficient_label_diversity :=
                _dict.get('sufficient_label_diversity')) is not None:
            args['sufficient_label_diversity'] = sufficient_label_diversity
        if (processing := _dict.get('processing')) is not None:
            args['processing'] = processing
        if (minimum_examples_added :=
                _dict.get('minimum_examples_added')) is not None:
            args['minimum_examples_added'] = minimum_examples_added
        if (successfully_trained :=
                _dict.get('successfully_trained')) is not None:
            args['successfully_trained'] = successfully_trained
        if (available := _dict.get('available')) is not None:
            args['available'] = available
        if (notices := _dict.get('notices')) is not None:
            args['notices'] = notices
        if (minimum_queries_added :=
                _dict.get('minimum_queries_added')) is not None:
            args['minimum_queries_added'] = minimum_queries_added
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a ProjectListDetailsRelevancyTrainingStatus object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'data_updated') and self.data_updated is not None:
            _dict['data_updated'] = self.data_updated
        if hasattr(self, 'total_examples') and self.total_examples is not None:
            _dict['total_examples'] = self.total_examples
        if hasattr(self, 'sufficient_label_diversity'
                  ) and self.sufficient_label_diversity is not None:
            _dict[
                'sufficient_label_diversity'] = self.sufficient_label_diversity
        if hasattr(self, 'processing') and self.processing is not None:
            _dict['processing'] = self.processing
        if hasattr(self, 'minimum_examples_added'
                  ) and self.minimum_examples_added is not None:
            _dict['minimum_examples_added'] = self.minimum_examples_added
        if hasattr(self, 'successfully_trained'
                  ) and self.successfully_trained is not None:
            _dict['successfully_trained'] = self.successfully_trained
        if hasattr(self, 'available') and self.available is not None:
            _dict['available'] = self.available
        if hasattr(self, 'notices') and self.notices is not None:
            _dict['notices'] = self.notices
        if hasattr(self, 'minimum_queries_added'
                  ) and self.minimum_queries_added is not None:
            _dict['minimum_queries_added'] = self.minimum_queries_added
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this ProjectListDetailsRelevancyTrainingStatus object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self,
               other: 'ProjectListDetailsRelevancyTrainingStatus') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self,
               other: 'ProjectListDetailsRelevancyTrainingStatus') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryAggregation:
    """
    An object that defines how to aggregate query results.

    """

    def __init__(self,) -> None:
        """
        Initialize a QueryAggregation object.

        """
        msg = "Cannot instantiate base class. Instead, instantiate one of the defined subclasses: {0}".format(
            ", ".join([
                'QueryAggregationQueryTermAggregation',
                'QueryAggregationQueryGroupByAggregation',
                'QueryAggregationQueryHistogramAggregation',
                'QueryAggregationQueryTimesliceAggregation',
                'QueryAggregationQueryNestedAggregation',
                'QueryAggregationQueryFilterAggregation',
                'QueryAggregationQueryCalculationAggregation',
                'QueryAggregationQueryTopHitsAggregation',
                'QueryAggregationQueryPairAggregation',
                'QueryAggregationQueryTrendAggregation',
                'QueryAggregationQueryTopicAggregation'
            ]))
        raise Exception(msg)

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryAggregation':
        """Initialize a QueryAggregation object from a json dictionary."""
        disc_class = cls._get_class_by_discriminator(_dict)
        if disc_class != cls:
            return disc_class.from_dict(_dict)
        msg = "Cannot convert dictionary into an instance of base class 'QueryAggregation'. The discriminator value should map to a valid subclass: {1}".format(
            ", ".join([
                'QueryAggregationQueryTermAggregation',
                'QueryAggregationQueryGroupByAggregation',
                'QueryAggregationQueryHistogramAggregation',
                'QueryAggregationQueryTimesliceAggregation',
                'QueryAggregationQueryNestedAggregation',
                'QueryAggregationQueryFilterAggregation',
                'QueryAggregationQueryCalculationAggregation',
                'QueryAggregationQueryTopHitsAggregation',
                'QueryAggregationQueryPairAggregation',
                'QueryAggregationQueryTrendAggregation',
                'QueryAggregationQueryTopicAggregation'
            ]))
        raise Exception(msg)

    @classmethod
    def _from_dict(cls, _dict: Dict):
        """Initialize a QueryAggregation object from a json dictionary."""
        return cls.from_dict(_dict)

    @classmethod
    def _get_class_by_discriminator(cls, _dict: Dict) -> object:
        mapping = {}
        mapping['term'] = 'QueryAggregationQueryTermAggregation'
        mapping['group_by'] = 'QueryAggregationQueryGroupByAggregation'
        mapping['histogram'] = 'QueryAggregationQueryHistogramAggregation'
        mapping['timeslice'] = 'QueryAggregationQueryTimesliceAggregation'
        mapping['nested'] = 'QueryAggregationQueryNestedAggregation'
        mapping['filter'] = 'QueryAggregationQueryFilterAggregation'
        mapping['min'] = 'QueryAggregationQueryCalculationAggregation'
        mapping['max'] = 'QueryAggregationQueryCalculationAggregation'
        mapping['sum'] = 'QueryAggregationQueryCalculationAggregation'
        mapping['average'] = 'QueryAggregationQueryCalculationAggregation'
        mapping['unique_count'] = 'QueryAggregationQueryCalculationAggregation'
        mapping['top_hits'] = 'QueryAggregationQueryTopHitsAggregation'
        mapping['pair'] = 'QueryAggregationQueryPairAggregation'
        mapping['trend'] = 'QueryAggregationQueryTrendAggregation'
        mapping['topic'] = 'QueryAggregationQueryTopicAggregation'
        disc_value = _dict.get('type')
        if disc_value is None:
            raise ValueError(
                'Discriminator property \'type\' not found in QueryAggregation JSON'
            )
        class_name = mapping.get(disc_value, disc_value)
        try:
            disc_class = getattr(sys.modules[__name__], class_name)
        except AttributeError:
            disc_class = cls
        if isinstance(disc_class, object):
            return disc_class
        raise TypeError('%s is not a discriminator class' % class_name)


class QueryGroupByAggregationResult:
    """
    Result group for the `group_by` aggregation.

    :param str key: The condition that is met by the documents in this group. For
          example, `YEARTXT<2000`.
    :param int matching_results: Number of documents that meet the query and
          condition.
    :param float relevancy: (optional) The relevancy for this group. Returned only
          if `relevancy:true` is specified in the request.
    :param int total_matching_documents: (optional) Number of documents that meet
          the condition in the whole set of documents in this collection. Returned only
          when `relevancy:true` is specified in the request.
    :param float estimated_matching_results: (optional) The number of documents that
          are estimated to match the query and condition. Returned only when
          `relevancy:true` is specified in the request.
    :param List[dict] aggregations: (optional) An array of subaggregations. Returned
          only when this aggregation is returned as a subaggregation.
    """

    def __init__(
        self,
        key: str,
        matching_results: int,
        *,
        relevancy: Optional[float] = None,
        total_matching_documents: Optional[int] = None,
        estimated_matching_results: Optional[float] = None,
        aggregations: Optional[List[dict]] = None,
    ) -> None:
        """
        Initialize a QueryGroupByAggregationResult object.

        :param str key: The condition that is met by the documents in this group.
               For example, `YEARTXT<2000`.
        :param int matching_results: Number of documents that meet the query and
               condition.
        :param float relevancy: (optional) The relevancy for this group. Returned
               only if `relevancy:true` is specified in the request.
        :param int total_matching_documents: (optional) Number of documents that
               meet the condition in the whole set of documents in this collection.
               Returned only when `relevancy:true` is specified in the request.
        :param float estimated_matching_results: (optional) The number of documents
               that are estimated to match the query and condition. Returned only when
               `relevancy:true` is specified in the request.
        :param List[dict] aggregations: (optional) An array of subaggregations.
               Returned only when this aggregation is returned as a subaggregation.
        """
        self.key = key
        self.matching_results = matching_results
        self.relevancy = relevancy
        self.total_matching_documents = total_matching_documents
        self.estimated_matching_results = estimated_matching_results
        self.aggregations = aggregations

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryGroupByAggregationResult':
        """Initialize a QueryGroupByAggregationResult object from a json dictionary."""
        args = {}
        if (key := _dict.get('key')) is not None:
            args['key'] = key
        else:
            raise ValueError(
                'Required property \'key\' not present in QueryGroupByAggregationResult JSON'
            )
        if (matching_results := _dict.get('matching_results')) is not None:
            args['matching_results'] = matching_results
        else:
            raise ValueError(
                'Required property \'matching_results\' not present in QueryGroupByAggregationResult JSON'
            )
        if (relevancy := _dict.get('relevancy')) is not None:
            args['relevancy'] = relevancy
        if (total_matching_documents :=
                _dict.get('total_matching_documents')) is not None:
            args['total_matching_documents'] = total_matching_documents
        if (estimated_matching_results :=
                _dict.get('estimated_matching_results')) is not None:
            args['estimated_matching_results'] = estimated_matching_results
        if (aggregations := _dict.get('aggregations')) is not None:
            args['aggregations'] = aggregations
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryGroupByAggregationResult object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'key') and self.key is not None:
            _dict['key'] = self.key
        if hasattr(self,
                   'matching_results') and self.matching_results is not None:
            _dict['matching_results'] = self.matching_results
        if hasattr(self, 'relevancy') and self.relevancy is not None:
            _dict['relevancy'] = self.relevancy
        if hasattr(self, 'total_matching_documents'
                  ) and self.total_matching_documents is not None:
            _dict['total_matching_documents'] = self.total_matching_documents
        if hasattr(self, 'estimated_matching_results'
                  ) and self.estimated_matching_results is not None:
            _dict[
                'estimated_matching_results'] = self.estimated_matching_results
        if hasattr(self, 'aggregations') and self.aggregations is not None:
            _dict['aggregations'] = self.aggregations
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryGroupByAggregationResult object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryGroupByAggregationResult') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryGroupByAggregationResult') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryHistogramAggregationResult:
    """
    Histogram numeric interval result.

    :param int key: The value of the upper bound for the numeric segment.
    :param int matching_results: Number of documents with the specified key as the
          upper bound.
    :param List[dict] aggregations: (optional) An array of subaggregations. Returned
          only when this aggregation is returned as a subaggregation.
    """

    def __init__(
        self,
        key: int,
        matching_results: int,
        *,
        aggregations: Optional[List[dict]] = None,
    ) -> None:
        """
        Initialize a QueryHistogramAggregationResult object.

        :param int key: The value of the upper bound for the numeric segment.
        :param int matching_results: Number of documents with the specified key as
               the upper bound.
        :param List[dict] aggregations: (optional) An array of subaggregations.
               Returned only when this aggregation is returned as a subaggregation.
        """
        self.key = key
        self.matching_results = matching_results
        self.aggregations = aggregations

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryHistogramAggregationResult':
        """Initialize a QueryHistogramAggregationResult object from a json dictionary."""
        args = {}
        if (key := _dict.get('key')) is not None:
            args['key'] = key
        else:
            raise ValueError(
                'Required property \'key\' not present in QueryHistogramAggregationResult JSON'
            )
        if (matching_results := _dict.get('matching_results')) is not None:
            args['matching_results'] = matching_results
        else:
            raise ValueError(
                'Required property \'matching_results\' not present in QueryHistogramAggregationResult JSON'
            )
        if (aggregations := _dict.get('aggregations')) is not None:
            args['aggregations'] = aggregations
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryHistogramAggregationResult object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'key') and self.key is not None:
            _dict['key'] = self.key
        if hasattr(self,
                   'matching_results') and self.matching_results is not None:
            _dict['matching_results'] = self.matching_results
        if hasattr(self, 'aggregations') and self.aggregations is not None:
            _dict['aggregations'] = self.aggregations
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryHistogramAggregationResult object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryHistogramAggregationResult') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryHistogramAggregationResult') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryLargePassages:
    """
    Configuration for passage retrieval.

    :param bool enabled: (optional) A passages query that returns the most relevant
          passages from the results.
    :param bool per_document: (optional) If `true`, ranks the documents by document
          quality, and then returns the highest-ranked passages per document in a
          `document_passages` field for each document entry in the results list of the
          response.
          If `false`, ranks the passages from all of the documents by passage quality
          regardless of the document quality and returns them in a separate `passages`
          field in the response.
    :param int max_per_document: (optional) Maximum number of passages to return per
          document in the result. Ignored if **passages.per_document** is `false`.
    :param List[str] fields: (optional) A list of fields to extract passages from.
          By default, passages are extracted from the `text` and `title` fields only. If
          you add this parameter and specify an empty list (`[]`) as its value, then the
          service searches all root-level fields for suitable passages.
    :param int count: (optional) The maximum number of passages to return. Ignored
          if **passages.per_document** is `true`.
    :param int characters: (optional) The approximate number of characters that any
          one passage will have.
    :param bool find_answers: (optional) When true, `answer` objects are returned as
          part of each passage in the query results. The primary difference between an
          `answer` and a `passage` is that the length of a passage is defined by the
          query, where the length of an `answer` is calculated by Discovery based on how
          much text is needed to answer the question.
          This parameter is ignored if passages are not enabled for the query, or no
          **natural_language_query** is specified.
          If the **find_answers** parameter is set to `true` and **per_document**
          parameter is also set to `true`, then the document search results and the
          passage search results within each document are reordered using the answer
          confidences. The goal of this reordering is to place the best answer as the
          first answer of the first passage of the first document. Similarly, if the
          **find_answers** parameter is set to `true` and **per_document** parameter is
          set to `false`, then the passage search results are reordered in decreasing
          order of the highest confidence answer for each document and passage.
          The **find_answers** parameter is available only on managed instances of
          Discovery.
    :param int max_answers_per_passage: (optional) The number of `answer` objects to
          return per passage if the **find_answers** parmeter is specified as `true`.
    """

    def __init__(
        self,
        *,
        enabled: Optional[bool] = None,
        per_document: Optional[bool] = None,
        max_per_document: Optional[int] = None,
        fields: Optional[List[str]] = None,
        count: Optional[int] = None,
        characters: Optional[int] = None,
        find_answers: Optional[bool] = None,
        max_answers_per_passage: Optional[int] = None,
    ) -> None:
        """
        Initialize a QueryLargePassages object.

        :param bool enabled: (optional) A passages query that returns the most
               relevant passages from the results.
        :param bool per_document: (optional) If `true`, ranks the documents by
               document quality, and then returns the highest-ranked passages per document
               in a `document_passages` field for each document entry in the results list
               of the response.
               If `false`, ranks the passages from all of the documents by passage quality
               regardless of the document quality and returns them in a separate
               `passages` field in the response.
        :param int max_per_document: (optional) Maximum number of passages to
               return per document in the result. Ignored if **passages.per_document** is
               `false`.
        :param List[str] fields: (optional) A list of fields to extract passages
               from. By default, passages are extracted from the `text` and `title` fields
               only. If you add this parameter and specify an empty list (`[]`) as its
               value, then the service searches all root-level fields for suitable
               passages.
        :param int count: (optional) The maximum number of passages to return.
               Ignored if **passages.per_document** is `true`.
        :param int characters: (optional) The approximate number of characters that
               any one passage will have.
        :param bool find_answers: (optional) When true, `answer` objects are
               returned as part of each passage in the query results. The primary
               difference between an `answer` and a `passage` is that the length of a
               passage is defined by the query, where the length of an `answer` is
               calculated by Discovery based on how much text is needed to answer the
               question.
               This parameter is ignored if passages are not enabled for the query, or no
               **natural_language_query** is specified.
               If the **find_answers** parameter is set to `true` and **per_document**
               parameter is also set to `true`, then the document search results and the
               passage search results within each document are reordered using the answer
               confidences. The goal of this reordering is to place the best answer as the
               first answer of the first passage of the first document. Similarly, if the
               **find_answers** parameter is set to `true` and **per_document** parameter
               is set to `false`, then the passage search results are reordered in
               decreasing order of the highest confidence answer for each document and
               passage.
               The **find_answers** parameter is available only on managed instances of
               Discovery.
        :param int max_answers_per_passage: (optional) The number of `answer`
               objects to return per passage if the **find_answers** parmeter is specified
               as `true`.
        """
        self.enabled = enabled
        self.per_document = per_document
        self.max_per_document = max_per_document
        self.fields = fields
        self.count = count
        self.characters = characters
        self.find_answers = find_answers
        self.max_answers_per_passage = max_answers_per_passage

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryLargePassages':
        """Initialize a QueryLargePassages object from a json dictionary."""
        args = {}
        if (enabled := _dict.get('enabled')) is not None:
            args['enabled'] = enabled
        if (per_document := _dict.get('per_document')) is not None:
            args['per_document'] = per_document
        if (max_per_document := _dict.get('max_per_document')) is not None:
            args['max_per_document'] = max_per_document
        if (fields := _dict.get('fields')) is not None:
            args['fields'] = fields
        if (count := _dict.get('count')) is not None:
            args['count'] = count
        if (characters := _dict.get('characters')) is not None:
            args['characters'] = characters
        if (find_answers := _dict.get('find_answers')) is not None:
            args['find_answers'] = find_answers
        if (max_answers_per_passage :=
                _dict.get('max_answers_per_passage')) is not None:
            args['max_answers_per_passage'] = max_answers_per_passage
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryLargePassages object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'enabled') and self.enabled is not None:
            _dict['enabled'] = self.enabled
        if hasattr(self, 'per_document') and self.per_document is not None:
            _dict['per_document'] = self.per_document
        if hasattr(self,
                   'max_per_document') and self.max_per_document is not None:
            _dict['max_per_document'] = self.max_per_document
        if hasattr(self, 'fields') and self.fields is not None:
            _dict['fields'] = self.fields
        if hasattr(self, 'count') and self.count is not None:
            _dict['count'] = self.count
        if hasattr(self, 'characters') and self.characters is not None:
            _dict['characters'] = self.characters
        if hasattr(self, 'find_answers') and self.find_answers is not None:
            _dict['find_answers'] = self.find_answers
        if hasattr(self, 'max_answers_per_passage'
                  ) and self.max_answers_per_passage is not None:
            _dict['max_answers_per_passage'] = self.max_answers_per_passage
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryLargePassages object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryLargePassages') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryLargePassages') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryLargeSimilar:
    """
    Finds results from documents that are similar to documents of interest. Use this
    parameter to add a *More like these* function to your search. You can include this
    parameter with or without a **query**, **filter** or **natural_language_query**
    parameter.

    :param bool enabled: (optional) When `true`, includes documents in the query
          results that are similar to documents you specify.
    :param List[str] document_ids: (optional) The list of documents of interest.
          Required if **enabled** is `true`.
    :param List[str] fields: (optional) Looks for similarities in the specified
          subset of fields in the documents. If not specified, all of the document fields
          are used.
    """

    def __init__(
        self,
        *,
        enabled: Optional[bool] = None,
        document_ids: Optional[List[str]] = None,
        fields: Optional[List[str]] = None,
    ) -> None:
        """
        Initialize a QueryLargeSimilar object.

        :param bool enabled: (optional) When `true`, includes documents in the
               query results that are similar to documents you specify.
        :param List[str] document_ids: (optional) The list of documents of
               interest. Required if **enabled** is `true`.
        :param List[str] fields: (optional) Looks for similarities in the specified
               subset of fields in the documents. If not specified, all of the document
               fields are used.
        """
        self.enabled = enabled
        self.document_ids = document_ids
        self.fields = fields

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryLargeSimilar':
        """Initialize a QueryLargeSimilar object from a json dictionary."""
        args = {}
        if (enabled := _dict.get('enabled')) is not None:
            args['enabled'] = enabled
        if (document_ids := _dict.get('document_ids')) is not None:
            args['document_ids'] = document_ids
        if (fields := _dict.get('fields')) is not None:
            args['fields'] = fields
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryLargeSimilar object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'enabled') and self.enabled is not None:
            _dict['enabled'] = self.enabled
        if hasattr(self, 'document_ids') and self.document_ids is not None:
            _dict['document_ids'] = self.document_ids
        if hasattr(self, 'fields') and self.fields is not None:
            _dict['fields'] = self.fields
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryLargeSimilar object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryLargeSimilar') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryLargeSimilar') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryLargeSuggestedRefinements:
    """
    Configuration for suggested refinements.
    **Note**: The **suggested_refinements** parameter that identified dynamic facets from
    the data is deprecated.

    :param bool enabled: (optional) Whether to perform suggested refinements.
    :param int count: (optional) Maximum number of suggested refinements texts to be
          returned. The maximum is `100`.
    """

    def __init__(
        self,
        *,
        enabled: Optional[bool] = None,
        count: Optional[int] = None,
    ) -> None:
        """
        Initialize a QueryLargeSuggestedRefinements object.

        :param bool enabled: (optional) Whether to perform suggested refinements.
        :param int count: (optional) Maximum number of suggested refinements texts
               to be returned. The maximum is `100`.
        """
        self.enabled = enabled
        self.count = count

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryLargeSuggestedRefinements':
        """Initialize a QueryLargeSuggestedRefinements object from a json dictionary."""
        args = {}
        if (enabled := _dict.get('enabled')) is not None:
            args['enabled'] = enabled
        if (count := _dict.get('count')) is not None:
            args['count'] = count
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryLargeSuggestedRefinements object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'enabled') and self.enabled is not None:
            _dict['enabled'] = self.enabled
        if hasattr(self, 'count') and self.count is not None:
            _dict['count'] = self.count
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryLargeSuggestedRefinements object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryLargeSuggestedRefinements') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryLargeSuggestedRefinements') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryLargeTableResults:
    """
    Configuration for table retrieval.

    :param bool enabled: (optional) Whether to enable table retrieval.
    :param int count: (optional) Maximum number of tables to return.
    """

    def __init__(
        self,
        *,
        enabled: Optional[bool] = None,
        count: Optional[int] = None,
    ) -> None:
        """
        Initialize a QueryLargeTableResults object.

        :param bool enabled: (optional) Whether to enable table retrieval.
        :param int count: (optional) Maximum number of tables to return.
        """
        self.enabled = enabled
        self.count = count

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryLargeTableResults':
        """Initialize a QueryLargeTableResults object from a json dictionary."""
        args = {}
        if (enabled := _dict.get('enabled')) is not None:
            args['enabled'] = enabled
        if (count := _dict.get('count')) is not None:
            args['count'] = count
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryLargeTableResults object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'enabled') and self.enabled is not None:
            _dict['enabled'] = self.enabled
        if hasattr(self, 'count') and self.count is not None:
            _dict['count'] = self.count
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryLargeTableResults object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryLargeTableResults') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryLargeTableResults') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryNoticesResponse:
    """
    Object that contains notice query results.

    :param int matching_results: (optional) The number of matching results.
    :param List[Notice] notices: (optional) Array of document results that match the
          query.
    """

    def __init__(
        self,
        *,
        matching_results: Optional[int] = None,
        notices: Optional[List['Notice']] = None,
    ) -> None:
        """
        Initialize a QueryNoticesResponse object.

        :param int matching_results: (optional) The number of matching results.
        :param List[Notice] notices: (optional) Array of document results that
               match the query.
        """
        self.matching_results = matching_results
        self.notices = notices

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryNoticesResponse':
        """Initialize a QueryNoticesResponse object from a json dictionary."""
        args = {}
        if (matching_results := _dict.get('matching_results')) is not None:
            args['matching_results'] = matching_results
        if (notices := _dict.get('notices')) is not None:
            args['notices'] = [Notice.from_dict(v) for v in notices]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryNoticesResponse object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self,
                   'matching_results') and self.matching_results is not None:
            _dict['matching_results'] = self.matching_results
        if hasattr(self, 'notices') and self.notices is not None:
            notices_list = []
            for v in self.notices:
                if isinstance(v, dict):
                    notices_list.append(v)
                else:
                    notices_list.append(v.to_dict())
            _dict['notices'] = notices_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryNoticesResponse object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryNoticesResponse') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryNoticesResponse') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryPairAggregationResult:
    """
    Result for the `pair` aggregation.

    :param List[dict] aggregations: (optional) Array of subaggregations of type
          `term`, `group_by`, `histogram`, or `timeslice`. Each element of the matrix that
          is returned contains a **relevancy** value that is calculated from the
          combination of each value from the first and second aggregations.
    """

    def __init__(
        self,
        *,
        aggregations: Optional[List[dict]] = None,
    ) -> None:
        """
        Initialize a QueryPairAggregationResult object.

        :param List[dict] aggregations: (optional) Array of subaggregations of type
               `term`, `group_by`, `histogram`, or `timeslice`. Each element of the matrix
               that is returned contains a **relevancy** value that is calculated from the
               combination of each value from the first and second aggregations.
        """
        self.aggregations = aggregations

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryPairAggregationResult':
        """Initialize a QueryPairAggregationResult object from a json dictionary."""
        args = {}
        if (aggregations := _dict.get('aggregations')) is not None:
            args['aggregations'] = aggregations
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryPairAggregationResult object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'aggregations') and self.aggregations is not None:
            _dict['aggregations'] = self.aggregations
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryPairAggregationResult object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryPairAggregationResult') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryPairAggregationResult') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryResponse:
    """
    A response that contains the documents and aggregations for the query.

    :param int matching_results: (optional) The number of matching results for the
          query. Results that match due to a curation only are not counted in the total.
    :param List[QueryResult] results: (optional) Array of document results for the
          query.
    :param List[QueryAggregation] aggregations: (optional) Array of aggregations for
          the query.
    :param RetrievalDetails retrieval_details: (optional) An object contain
          retrieval type information.
    :param str suggested_query: (optional) Suggested correction to the submitted
          **natural_language_query** value.
    :param List[QuerySuggestedRefinement] suggested_refinements: (optional)
          Deprecated: Array of suggested refinements. **Note**: The
          `suggested_refinements` parameter that identified dynamic facets from the data
          is deprecated.
    :param List[QueryTableResult] table_results: (optional) Array of table results.
    :param List[QueryResponsePassage] passages: (optional) Passages that best match
          the query from across all of the collections in the project. Returned if
          **passages.per_document** is `false`.
    """

    def __init__(
        self,
        *,
        matching_results: Optional[int] = None,
        results: Optional[List['QueryResult']] = None,
        aggregations: Optional[List['QueryAggregation']] = None,
        retrieval_details: Optional['RetrievalDetails'] = None,
        suggested_query: Optional[str] = None,
        suggested_refinements: Optional[
            List['QuerySuggestedRefinement']] = None,
        table_results: Optional[List['QueryTableResult']] = None,
        passages: Optional[List['QueryResponsePassage']] = None,
    ) -> None:
        """
        Initialize a QueryResponse object.

        :param int matching_results: (optional) The number of matching results for
               the query. Results that match due to a curation only are not counted in the
               total.
        :param List[QueryResult] results: (optional) Array of document results for
               the query.
        :param List[QueryAggregation] aggregations: (optional) Array of
               aggregations for the query.
        :param RetrievalDetails retrieval_details: (optional) An object contain
               retrieval type information.
        :param str suggested_query: (optional) Suggested correction to the
               submitted **natural_language_query** value.
        :param List[QuerySuggestedRefinement] suggested_refinements: (optional)
               Deprecated: Array of suggested refinements. **Note**: The
               `suggested_refinements` parameter that identified dynamic facets from the
               data is deprecated.
        :param List[QueryTableResult] table_results: (optional) Array of table
               results.
        :param List[QueryResponsePassage] passages: (optional) Passages that best
               match the query from across all of the collections in the project. Returned
               if **passages.per_document** is `false`.
        """
        self.matching_results = matching_results
        self.results = results
        self.aggregations = aggregations
        self.retrieval_details = retrieval_details
        self.suggested_query = suggested_query
        self.suggested_refinements = suggested_refinements
        self.table_results = table_results
        self.passages = passages

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryResponse':
        """Initialize a QueryResponse object from a json dictionary."""
        args = {}
        if (matching_results := _dict.get('matching_results')) is not None:
            args['matching_results'] = matching_results
        if (results := _dict.get('results')) is not None:
            args['results'] = [QueryResult.from_dict(v) for v in results]
        if (aggregations := _dict.get('aggregations')) is not None:
            args['aggregations'] = [
                QueryAggregation.from_dict(v) for v in aggregations
            ]
        if (retrieval_details := _dict.get('retrieval_details')) is not None:
            args['retrieval_details'] = RetrievalDetails.from_dict(
                retrieval_details)
        if (suggested_query := _dict.get('suggested_query')) is not None:
            args['suggested_query'] = suggested_query
        if (suggested_refinements :=
                _dict.get('suggested_refinements')) is not None:
            args['suggested_refinements'] = [
                QuerySuggestedRefinement.from_dict(v)
                for v in suggested_refinements
            ]
        if (table_results := _dict.get('table_results')) is not None:
            args['table_results'] = [
                QueryTableResult.from_dict(v) for v in table_results
            ]
        if (passages := _dict.get('passages')) is not None:
            args['passages'] = [
                QueryResponsePassage.from_dict(v) for v in passages
            ]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryResponse object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self,
                   'matching_results') and self.matching_results is not None:
            _dict['matching_results'] = self.matching_results
        if hasattr(self, 'results') and self.results is not None:
            results_list = []
            for v in self.results:
                if isinstance(v, dict):
                    results_list.append(v)
                else:
                    results_list.append(v.to_dict())
            _dict['results'] = results_list
        if hasattr(self, 'aggregations') and self.aggregations is not None:
            aggregations_list = []
            for v in self.aggregations:
                if isinstance(v, dict):
                    aggregations_list.append(v)
                else:
                    aggregations_list.append(v.to_dict())
            _dict['aggregations'] = aggregations_list
        if hasattr(self,
                   'retrieval_details') and self.retrieval_details is not None:
            if isinstance(self.retrieval_details, dict):
                _dict['retrieval_details'] = self.retrieval_details
            else:
                _dict['retrieval_details'] = self.retrieval_details.to_dict()
        if hasattr(self,
                   'suggested_query') and self.suggested_query is not None:
            _dict['suggested_query'] = self.suggested_query
        if hasattr(self, 'suggested_refinements'
                  ) and self.suggested_refinements is not None:
            suggested_refinements_list = []
            for v in self.suggested_refinements:
                if isinstance(v, dict):
                    suggested_refinements_list.append(v)
                else:
                    suggested_refinements_list.append(v.to_dict())
            _dict['suggested_refinements'] = suggested_refinements_list
        if hasattr(self, 'table_results') and self.table_results is not None:
            table_results_list = []
            for v in self.table_results:
                if isinstance(v, dict):
                    table_results_list.append(v)
                else:
                    table_results_list.append(v.to_dict())
            _dict['table_results'] = table_results_list
        if hasattr(self, 'passages') and self.passages is not None:
            passages_list = []
            for v in self.passages:
                if isinstance(v, dict):
                    passages_list.append(v)
                else:
                    passages_list.append(v.to_dict())
            _dict['passages'] = passages_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryResponse object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryResponse') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryResponse') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryResponsePassage:
    """
    A passage query response.

    :param str passage_text: (optional) The content of the extracted passage.
    :param float passage_score: (optional) The confidence score of the passage's
          analysis. A higher score indicates greater confidence. The score is used to rank
          the passages from all documents and is returned only if
          **passages.per_document** is `false`.
    :param str document_id: (optional) The unique identifier of the ingested
          document.
    :param str collection_id: (optional) The unique identifier of the collection.
    :param int start_offset: (optional) The position of the first character of the
          extracted passage in the originating field.
    :param int end_offset: (optional) The position after the last character of the
          extracted passage in the originating field.
    :param str field: (optional) The label of the field from which the passage has
          been extracted.
    :param List[ResultPassageAnswer] answers: (optional) An array of extracted
          answers to the specified query. Returned for natural language queries when
          **passages.per_document** is `false`.
    """

    def __init__(
        self,
        *,
        passage_text: Optional[str] = None,
        passage_score: Optional[float] = None,
        document_id: Optional[str] = None,
        collection_id: Optional[str] = None,
        start_offset: Optional[int] = None,
        end_offset: Optional[int] = None,
        field: Optional[str] = None,
        answers: Optional[List['ResultPassageAnswer']] = None,
    ) -> None:
        """
        Initialize a QueryResponsePassage object.

        :param str passage_text: (optional) The content of the extracted passage.
        :param float passage_score: (optional) The confidence score of the
               passage's analysis. A higher score indicates greater confidence. The score
               is used to rank the passages from all documents and is returned only if
               **passages.per_document** is `false`.
        :param str document_id: (optional) The unique identifier of the ingested
               document.
        :param str collection_id: (optional) The unique identifier of the
               collection.
        :param int start_offset: (optional) The position of the first character of
               the extracted passage in the originating field.
        :param int end_offset: (optional) The position after the last character of
               the extracted passage in the originating field.
        :param str field: (optional) The label of the field from which the passage
               has been extracted.
        :param List[ResultPassageAnswer] answers: (optional) An array of extracted
               answers to the specified query. Returned for natural language queries when
               **passages.per_document** is `false`.
        """
        self.passage_text = passage_text
        self.passage_score = passage_score
        self.document_id = document_id
        self.collection_id = collection_id
        self.start_offset = start_offset
        self.end_offset = end_offset
        self.field = field
        self.answers = answers

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryResponsePassage':
        """Initialize a QueryResponsePassage object from a json dictionary."""
        args = {}
        if (passage_text := _dict.get('passage_text')) is not None:
            args['passage_text'] = passage_text
        if (passage_score := _dict.get('passage_score')) is not None:
            args['passage_score'] = passage_score
        if (document_id := _dict.get('document_id')) is not None:
            args['document_id'] = document_id
        if (collection_id := _dict.get('collection_id')) is not None:
            args['collection_id'] = collection_id
        if (start_offset := _dict.get('start_offset')) is not None:
            args['start_offset'] = start_offset
        if (end_offset := _dict.get('end_offset')) is not None:
            args['end_offset'] = end_offset
        if (field := _dict.get('field')) is not None:
            args['field'] = field
        if (answers := _dict.get('answers')) is not None:
            args['answers'] = [
                ResultPassageAnswer.from_dict(v) for v in answers
            ]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryResponsePassage object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'passage_text') and self.passage_text is not None:
            _dict['passage_text'] = self.passage_text
        if hasattr(self, 'passage_score') and self.passage_score is not None:
            _dict['passage_score'] = self.passage_score
        if hasattr(self, 'document_id') and self.document_id is not None:
            _dict['document_id'] = self.document_id
        if hasattr(self, 'collection_id') and self.collection_id is not None:
            _dict['collection_id'] = self.collection_id
        if hasattr(self, 'start_offset') and self.start_offset is not None:
            _dict['start_offset'] = self.start_offset
        if hasattr(self, 'end_offset') and self.end_offset is not None:
            _dict['end_offset'] = self.end_offset
        if hasattr(self, 'field') and self.field is not None:
            _dict['field'] = self.field
        if hasattr(self, 'answers') and self.answers is not None:
            answers_list = []
            for v in self.answers:
                if isinstance(v, dict):
                    answers_list.append(v)
                else:
                    answers_list.append(v.to_dict())
            _dict['answers'] = answers_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryResponsePassage object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryResponsePassage') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryResponsePassage') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryResult:
    """
    Result document for the specified query.

    :param str document_id: The unique identifier of the document.
    :param dict metadata: (optional) Metadata of the document.
    :param QueryResultMetadata result_metadata: Metadata of a query result.
    :param List[QueryResultPassage] document_passages: (optional) Passages from the
          document that best matches the query. Returned if **passages.per_document** is
          `true`.

    This type supports additional properties of type object. The remaining key-value
    pairs.
    """

    # The set of defined properties for the class
    _properties = frozenset(
        ['document_id', 'metadata', 'result_metadata', 'document_passages'])

    def __init__(
        self,
        document_id: str,
        result_metadata: 'QueryResultMetadata',
        *,
        metadata: Optional[dict] = None,
        document_passages: Optional[List['QueryResultPassage']] = None,
        **kwargs: Optional[object],
    ) -> None:
        """
        Initialize a QueryResult object.

        :param str document_id: The unique identifier of the document.
        :param QueryResultMetadata result_metadata: Metadata of a query result.
        :param dict metadata: (optional) Metadata of the document.
        :param List[QueryResultPassage] document_passages: (optional) Passages from
               the document that best matches the query. Returned if
               **passages.per_document** is `true`.
        :param object **kwargs: (optional) The remaining key-value pairs.
        """
        self.document_id = document_id
        self.metadata = metadata
        self.result_metadata = result_metadata
        self.document_passages = document_passages
        for k, v in kwargs.items():
            if k not in QueryResult._properties:
                if not isinstance(v, object):
                    raise ValueError(
                        'Value for additional property {} must be of type object'
                        .format(k))
                setattr(self, k, v)
            else:
                raise ValueError(
                    'Property {} cannot be specified as an additional property'.
                    format(k))

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryResult':
        """Initialize a QueryResult object from a json dictionary."""
        args = {}
        if (document_id := _dict.get('document_id')) is not None:
            args['document_id'] = document_id
        else:
            raise ValueError(
                'Required property \'document_id\' not present in QueryResult JSON'
            )
        if (metadata := _dict.get('metadata')) is not None:
            args['metadata'] = metadata
        if (result_metadata := _dict.get('result_metadata')) is not None:
            args['result_metadata'] = QueryResultMetadata.from_dict(
                result_metadata)
        else:
            raise ValueError(
                'Required property \'result_metadata\' not present in QueryResult JSON'
            )
        if (document_passages := _dict.get('document_passages')) is not None:
            args['document_passages'] = [
                QueryResultPassage.from_dict(v) for v in document_passages
            ]
        for k, v in _dict.items():
            if k not in cls._properties:
                if not isinstance(v, object):
                    raise ValueError(
                        'Value for additional property {} must be of type object'
                        .format(k))
                args[k] = v
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryResult object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'document_id') and self.document_id is not None:
            _dict['document_id'] = self.document_id
        if hasattr(self, 'metadata') and self.metadata is not None:
            _dict['metadata'] = self.metadata
        if hasattr(self,
                   'result_metadata') and self.result_metadata is not None:
            if isinstance(self.result_metadata, dict):
                _dict['result_metadata'] = self.result_metadata
            else:
                _dict['result_metadata'] = self.result_metadata.to_dict()
        if hasattr(self,
                   'document_passages') and self.document_passages is not None:
            document_passages_list = []
            for v in self.document_passages:
                if isinstance(v, dict):
                    document_passages_list.append(v)
                else:
                    document_passages_list.append(v.to_dict())
            _dict['document_passages'] = document_passages_list
        for k in [
                _k for _k in vars(self).keys()
                if _k not in QueryResult._properties
        ]:
            _dict[k] = getattr(self, k)
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def get_properties(self) -> Dict:
        """Return the additional properties from this instance of QueryResult in the form of a dict."""
        _dict = {}
        for k in [
                _k for _k in vars(self).keys()
                if _k not in QueryResult._properties
        ]:
            _dict[k] = getattr(self, k)
        return _dict

    def set_properties(self, _dict: dict):
        """Set a dictionary of additional properties in this instance of QueryResult"""
        for k in [
                _k for _k in vars(self).keys()
                if _k not in QueryResult._properties
        ]:
            delattr(self, k)
        for k, v in _dict.items():
            if k not in QueryResult._properties:
                if not isinstance(v, object):
                    raise ValueError(
                        'Value for additional property {} must be of type object'
                        .format(k))
                setattr(self, k, v)
            else:
                raise ValueError(
                    'Property {} cannot be specified as an additional property'.
                    format(k))

    def __str__(self) -> str:
        """Return a `str` version of this QueryResult object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryResult') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryResult') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryResultMetadata:
    """
    Metadata of a query result.

    :param str document_retrieval_source: (optional) The document retrieval source
          that produced this search result.
    :param str collection_id: The collection id associated with this training data
          set.
    :param float confidence: (optional) The confidence score for the given result.
          Calculated based on how relevant the result is estimated to be. The score can
          range from `0.0` to `1.0`. The higher the number, the more relevant the
          document. The `confidence` value for a result was calculated using the model
          specified in the `document_retrieval_strategy` field of the result set. This
          field is returned only if the **natural_language_query** parameter is specified
          in the query.
    """

    def __init__(
        self,
        collection_id: str,
        *,
        document_retrieval_source: Optional[str] = None,
        confidence: Optional[float] = None,
    ) -> None:
        """
        Initialize a QueryResultMetadata object.

        :param str collection_id: The collection id associated with this training
               data set.
        :param str document_retrieval_source: (optional) The document retrieval
               source that produced this search result.
        :param float confidence: (optional) The confidence score for the given
               result. Calculated based on how relevant the result is estimated to be. The
               score can range from `0.0` to `1.0`. The higher the number, the more
               relevant the document. The `confidence` value for a result was calculated
               using the model specified in the `document_retrieval_strategy` field of the
               result set. This field is returned only if the **natural_language_query**
               parameter is specified in the query.
        """
        self.document_retrieval_source = document_retrieval_source
        self.collection_id = collection_id
        self.confidence = confidence

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryResultMetadata':
        """Initialize a QueryResultMetadata object from a json dictionary."""
        args = {}
        if (document_retrieval_source :=
                _dict.get('document_retrieval_source')) is not None:
            args['document_retrieval_source'] = document_retrieval_source
        if (collection_id := _dict.get('collection_id')) is not None:
            args['collection_id'] = collection_id
        else:
            raise ValueError(
                'Required property \'collection_id\' not present in QueryResultMetadata JSON'
            )
        if (confidence := _dict.get('confidence')) is not None:
            args['confidence'] = confidence
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryResultMetadata object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'document_retrieval_source'
                  ) and self.document_retrieval_source is not None:
            _dict['document_retrieval_source'] = self.document_retrieval_source
        if hasattr(self, 'collection_id') and self.collection_id is not None:
            _dict['collection_id'] = self.collection_id
        if hasattr(self, 'confidence') and self.confidence is not None:
            _dict['confidence'] = self.confidence
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryResultMetadata object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryResultMetadata') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryResultMetadata') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class DocumentRetrievalSourceEnum(str, Enum):
        """
        The document retrieval source that produced this search result.
        """

        SEARCH = 'search'
        CURATION = 'curation'


class QueryResultPassage:
    """
    A passage query result.

    :param str passage_text: (optional) The content of the extracted passage.
    :param int start_offset: (optional) The position of the first character of the
          extracted passage in the originating field.
    :param int end_offset: (optional) The position after the last character of the
          extracted passage in the originating field.
    :param str field: (optional) The label of the field from which the passage has
          been extracted.
    :param List[ResultPassageAnswer] answers: (optional) An arry of extracted
          answers to the specified query. Returned for natural language queries when
          **passages.per_document** is `true`.
    """

    def __init__(
        self,
        *,
        passage_text: Optional[str] = None,
        start_offset: Optional[int] = None,
        end_offset: Optional[int] = None,
        field: Optional[str] = None,
        answers: Optional[List['ResultPassageAnswer']] = None,
    ) -> None:
        """
        Initialize a QueryResultPassage object.

        :param str passage_text: (optional) The content of the extracted passage.
        :param int start_offset: (optional) The position of the first character of
               the extracted passage in the originating field.
        :param int end_offset: (optional) The position after the last character of
               the extracted passage in the originating field.
        :param str field: (optional) The label of the field from which the passage
               has been extracted.
        :param List[ResultPassageAnswer] answers: (optional) An arry of extracted
               answers to the specified query. Returned for natural language queries when
               **passages.per_document** is `true`.
        """
        self.passage_text = passage_text
        self.start_offset = start_offset
        self.end_offset = end_offset
        self.field = field
        self.answers = answers

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryResultPassage':
        """Initialize a QueryResultPassage object from a json dictionary."""
        args = {}
        if (passage_text := _dict.get('passage_text')) is not None:
            args['passage_text'] = passage_text
        if (start_offset := _dict.get('start_offset')) is not None:
            args['start_offset'] = start_offset
        if (end_offset := _dict.get('end_offset')) is not None:
            args['end_offset'] = end_offset
        if (field := _dict.get('field')) is not None:
            args['field'] = field
        if (answers := _dict.get('answers')) is not None:
            args['answers'] = [
                ResultPassageAnswer.from_dict(v) for v in answers
            ]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryResultPassage object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'passage_text') and self.passage_text is not None:
            _dict['passage_text'] = self.passage_text
        if hasattr(self, 'start_offset') and self.start_offset is not None:
            _dict['start_offset'] = self.start_offset
        if hasattr(self, 'end_offset') and self.end_offset is not None:
            _dict['end_offset'] = self.end_offset
        if hasattr(self, 'field') and self.field is not None:
            _dict['field'] = self.field
        if hasattr(self, 'answers') and self.answers is not None:
            answers_list = []
            for v in self.answers:
                if isinstance(v, dict):
                    answers_list.append(v)
                else:
                    answers_list.append(v.to_dict())
            _dict['answers'] = answers_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryResultPassage object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryResultPassage') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryResultPassage') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QuerySuggestedRefinement:
    """
    A suggested additional query term or terms user to filter results. **Note**: The
    `suggested_refinements` parameter is deprecated.

    :param str text: (optional) The text used to filter.
    """

    def __init__(
        self,
        *,
        text: Optional[str] = None,
    ) -> None:
        """
        Initialize a QuerySuggestedRefinement object.

        :param str text: (optional) The text used to filter.
        """
        self.text = text

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QuerySuggestedRefinement':
        """Initialize a QuerySuggestedRefinement object from a json dictionary."""
        args = {}
        if (text := _dict.get('text')) is not None:
            args['text'] = text
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QuerySuggestedRefinement object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'text') and self.text is not None:
            _dict['text'] = self.text
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QuerySuggestedRefinement object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QuerySuggestedRefinement') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QuerySuggestedRefinement') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryTableResult:
    """
    A tables whose content or context match a search query.

    :param str table_id: (optional) The identifier for the retrieved table.
    :param str source_document_id: (optional) The identifier of the document the
          table was retrieved from.
    :param str collection_id: (optional) The identifier of the collection the table
          was retrieved from.
    :param str table_html: (optional) HTML snippet of the table info.
    :param int table_html_offset: (optional) The offset of the table html snippet in
          the original document html.
    :param TableResultTable table: (optional) Full table object retrieved from Table
          Understanding Enrichment.
    """

    def __init__(
        self,
        *,
        table_id: Optional[str] = None,
        source_document_id: Optional[str] = None,
        collection_id: Optional[str] = None,
        table_html: Optional[str] = None,
        table_html_offset: Optional[int] = None,
        table: Optional['TableResultTable'] = None,
    ) -> None:
        """
        Initialize a QueryTableResult object.

        :param str table_id: (optional) The identifier for the retrieved table.
        :param str source_document_id: (optional) The identifier of the document
               the table was retrieved from.
        :param str collection_id: (optional) The identifier of the collection the
               table was retrieved from.
        :param str table_html: (optional) HTML snippet of the table info.
        :param int table_html_offset: (optional) The offset of the table html
               snippet in the original document html.
        :param TableResultTable table: (optional) Full table object retrieved from
               Table Understanding Enrichment.
        """
        self.table_id = table_id
        self.source_document_id = source_document_id
        self.collection_id = collection_id
        self.table_html = table_html
        self.table_html_offset = table_html_offset
        self.table = table

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryTableResult':
        """Initialize a QueryTableResult object from a json dictionary."""
        args = {}
        if (table_id := _dict.get('table_id')) is not None:
            args['table_id'] = table_id
        if (source_document_id := _dict.get('source_document_id')) is not None:
            args['source_document_id'] = source_document_id
        if (collection_id := _dict.get('collection_id')) is not None:
            args['collection_id'] = collection_id
        if (table_html := _dict.get('table_html')) is not None:
            args['table_html'] = table_html
        if (table_html_offset := _dict.get('table_html_offset')) is not None:
            args['table_html_offset'] = table_html_offset
        if (table := _dict.get('table')) is not None:
            args['table'] = TableResultTable.from_dict(table)
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryTableResult object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'table_id') and self.table_id is not None:
            _dict['table_id'] = self.table_id
        if hasattr(
                self,
                'source_document_id') and self.source_document_id is not None:
            _dict['source_document_id'] = self.source_document_id
        if hasattr(self, 'collection_id') and self.collection_id is not None:
            _dict['collection_id'] = self.collection_id
        if hasattr(self, 'table_html') and self.table_html is not None:
            _dict['table_html'] = self.table_html
        if hasattr(self,
                   'table_html_offset') and self.table_html_offset is not None:
            _dict['table_html_offset'] = self.table_html_offset
        if hasattr(self, 'table') and self.table is not None:
            if isinstance(self.table, dict):
                _dict['table'] = self.table
            else:
                _dict['table'] = self.table.to_dict()
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryTableResult object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryTableResult') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryTableResult') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryTermAggregationResult:
    """
    Top value result for the `term` aggregation.

    :param str key: Value of the field with a nonzero frequency in the document set.
    :param int matching_results: Number of documents that contain the 'key'.
    :param float relevancy: (optional) The relevancy score for this result. Returned
          only if `relevancy:true` is specified in the request.
    :param int total_matching_documents: (optional) Number of documents in the
          collection that contain the term in the specified field. Returned only when
          `relevancy:true` is specified in the request.
    :param float estimated_matching_results: (optional) Number of documents that are
          estimated to match the query and also meet the condition. Returned only when
          `relevancy:true` is specified in the request.
    :param List[dict] aggregations: (optional) An array of subaggregations. Returned
          only when this aggregation is combined with other aggregations in the request or
          is returned as a subaggregation.
    """

    def __init__(
        self,
        key: str,
        matching_results: int,
        *,
        relevancy: Optional[float] = None,
        total_matching_documents: Optional[int] = None,
        estimated_matching_results: Optional[float] = None,
        aggregations: Optional[List[dict]] = None,
    ) -> None:
        """
        Initialize a QueryTermAggregationResult object.

        :param str key: Value of the field with a nonzero frequency in the document
               set.
        :param int matching_results: Number of documents that contain the 'key'.
        :param float relevancy: (optional) The relevancy score for this result.
               Returned only if `relevancy:true` is specified in the request.
        :param int total_matching_documents: (optional) Number of documents in the
               collection that contain the term in the specified field. Returned only when
               `relevancy:true` is specified in the request.
        :param float estimated_matching_results: (optional) Number of documents
               that are estimated to match the query and also meet the condition. Returned
               only when `relevancy:true` is specified in the request.
        :param List[dict] aggregations: (optional) An array of subaggregations.
               Returned only when this aggregation is combined with other aggregations in
               the request or is returned as a subaggregation.
        """
        self.key = key
        self.matching_results = matching_results
        self.relevancy = relevancy
        self.total_matching_documents = total_matching_documents
        self.estimated_matching_results = estimated_matching_results
        self.aggregations = aggregations

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryTermAggregationResult':
        """Initialize a QueryTermAggregationResult object from a json dictionary."""
        args = {}
        if (key := _dict.get('key')) is not None:
            args['key'] = key
        else:
            raise ValueError(
                'Required property \'key\' not present in QueryTermAggregationResult JSON'
            )
        if (matching_results := _dict.get('matching_results')) is not None:
            args['matching_results'] = matching_results
        else:
            raise ValueError(
                'Required property \'matching_results\' not present in QueryTermAggregationResult JSON'
            )
        if (relevancy := _dict.get('relevancy')) is not None:
            args['relevancy'] = relevancy
        if (total_matching_documents :=
                _dict.get('total_matching_documents')) is not None:
            args['total_matching_documents'] = total_matching_documents
        if (estimated_matching_results :=
                _dict.get('estimated_matching_results')) is not None:
            args['estimated_matching_results'] = estimated_matching_results
        if (aggregations := _dict.get('aggregations')) is not None:
            args['aggregations'] = aggregations
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryTermAggregationResult object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'key') and self.key is not None:
            _dict['key'] = self.key
        if hasattr(self,
                   'matching_results') and self.matching_results is not None:
            _dict['matching_results'] = self.matching_results
        if hasattr(self, 'relevancy') and self.relevancy is not None:
            _dict['relevancy'] = self.relevancy
        if hasattr(self, 'total_matching_documents'
                  ) and self.total_matching_documents is not None:
            _dict['total_matching_documents'] = self.total_matching_documents
        if hasattr(self, 'estimated_matching_results'
                  ) and self.estimated_matching_results is not None:
            _dict[
                'estimated_matching_results'] = self.estimated_matching_results
        if hasattr(self, 'aggregations') and self.aggregations is not None:
            _dict['aggregations'] = self.aggregations
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryTermAggregationResult object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryTermAggregationResult') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryTermAggregationResult') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryTimesliceAggregationResult:
    """
    A timeslice interval segment.

    :param str key_as_string: String date value of the upper bound for the timeslice
          interval in ISO-8601 format.
    :param int key: Numeric date value of the upper bound for the timeslice interval
          in UNIX milliseconds since epoch.
    :param int matching_results: Number of documents with the specified key as the
          upper bound.
    :param List[dict] aggregations: (optional) An array of subaggregations. Returned
          only when this aggregation is returned as a subaggregation.
    """

    def __init__(
        self,
        key_as_string: str,
        key: int,
        matching_results: int,
        *,
        aggregations: Optional[List[dict]] = None,
    ) -> None:
        """
        Initialize a QueryTimesliceAggregationResult object.

        :param str key_as_string: String date value of the upper bound for the
               timeslice interval in ISO-8601 format.
        :param int key: Numeric date value of the upper bound for the timeslice
               interval in UNIX milliseconds since epoch.
        :param int matching_results: Number of documents with the specified key as
               the upper bound.
        :param List[dict] aggregations: (optional) An array of subaggregations.
               Returned only when this aggregation is returned as a subaggregation.
        """
        self.key_as_string = key_as_string
        self.key = key
        self.matching_results = matching_results
        self.aggregations = aggregations

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryTimesliceAggregationResult':
        """Initialize a QueryTimesliceAggregationResult object from a json dictionary."""
        args = {}
        if (key_as_string := _dict.get('key_as_string')) is not None:
            args['key_as_string'] = key_as_string
        else:
            raise ValueError(
                'Required property \'key_as_string\' not present in QueryTimesliceAggregationResult JSON'
            )
        if (key := _dict.get('key')) is not None:
            args['key'] = key
        else:
            raise ValueError(
                'Required property \'key\' not present in QueryTimesliceAggregationResult JSON'
            )
        if (matching_results := _dict.get('matching_results')) is not None:
            args['matching_results'] = matching_results
        else:
            raise ValueError(
                'Required property \'matching_results\' not present in QueryTimesliceAggregationResult JSON'
            )
        if (aggregations := _dict.get('aggregations')) is not None:
            args['aggregations'] = aggregations
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryTimesliceAggregationResult object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'key_as_string') and self.key_as_string is not None:
            _dict['key_as_string'] = self.key_as_string
        if hasattr(self, 'key') and self.key is not None:
            _dict['key'] = self.key
        if hasattr(self,
                   'matching_results') and self.matching_results is not None:
            _dict['matching_results'] = self.matching_results
        if hasattr(self, 'aggregations') and self.aggregations is not None:
            _dict['aggregations'] = self.aggregations
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryTimesliceAggregationResult object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryTimesliceAggregationResult') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryTimesliceAggregationResult') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryTopHitsAggregationResult:
    """
    A query response that contains the matching documents for the preceding aggregations.

    :param int matching_results: Number of matching results.
    :param List[dict] hits: (optional) An array of the document results in an
          ordered list.
    """

    def __init__(
        self,
        matching_results: int,
        *,
        hits: Optional[List[dict]] = None,
    ) -> None:
        """
        Initialize a QueryTopHitsAggregationResult object.

        :param int matching_results: Number of matching results.
        :param List[dict] hits: (optional) An array of the document results in an
               ordered list.
        """
        self.matching_results = matching_results
        self.hits = hits

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryTopHitsAggregationResult':
        """Initialize a QueryTopHitsAggregationResult object from a json dictionary."""
        args = {}
        if (matching_results := _dict.get('matching_results')) is not None:
            args['matching_results'] = matching_results
        else:
            raise ValueError(
                'Required property \'matching_results\' not present in QueryTopHitsAggregationResult JSON'
            )
        if (hits := _dict.get('hits')) is not None:
            args['hits'] = hits
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryTopHitsAggregationResult object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self,
                   'matching_results') and self.matching_results is not None:
            _dict['matching_results'] = self.matching_results
        if hasattr(self, 'hits') and self.hits is not None:
            _dict['hits'] = self.hits
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryTopHitsAggregationResult object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryTopHitsAggregationResult') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryTopHitsAggregationResult') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryTopicAggregationResult:
    """
    Result for the `topic` aggregation.

    :param List[dict] aggregations: (optional) Array of subaggregations  of type
          `term` or `group_by` and `timeslice`. Each element of the matrix that is
          returned contains a **topic_indicator** that is calculated from the combination
          of each aggregation value and segment of time.
    """

    def __init__(
        self,
        *,
        aggregations: Optional[List[dict]] = None,
    ) -> None:
        """
        Initialize a QueryTopicAggregationResult object.

        :param List[dict] aggregations: (optional) Array of subaggregations  of
               type `term` or `group_by` and `timeslice`. Each element of the matrix that
               is returned contains a **topic_indicator** that is calculated from the
               combination of each aggregation value and segment of time.
        """
        self.aggregations = aggregations

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryTopicAggregationResult':
        """Initialize a QueryTopicAggregationResult object from a json dictionary."""
        args = {}
        if (aggregations := _dict.get('aggregations')) is not None:
            args['aggregations'] = aggregations
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryTopicAggregationResult object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'aggregations') and self.aggregations is not None:
            _dict['aggregations'] = self.aggregations
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryTopicAggregationResult object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryTopicAggregationResult') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryTopicAggregationResult') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryTrendAggregationResult:
    """
    Result for the `trend` aggregation.

    :param List[dict] aggregations: (optional) Array of subaggregations of type
          `term` or `group_by` and `timeslice`. Each element of the matrix that is
          returned contains a **trend_indicator** that is calculated from the combination
          of each aggregation value and segment of time.
    """

    def __init__(
        self,
        *,
        aggregations: Optional[List[dict]] = None,
    ) -> None:
        """
        Initialize a QueryTrendAggregationResult object.

        :param List[dict] aggregations: (optional) Array of subaggregations of type
               `term` or `group_by` and `timeslice`. Each element of the matrix that is
               returned contains a **trend_indicator** that is calculated from the
               combination of each aggregation value and segment of time.
        """
        self.aggregations = aggregations

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryTrendAggregationResult':
        """Initialize a QueryTrendAggregationResult object from a json dictionary."""
        args = {}
        if (aggregations := _dict.get('aggregations')) is not None:
            args['aggregations'] = aggregations
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryTrendAggregationResult object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'aggregations') and self.aggregations is not None:
            _dict['aggregations'] = self.aggregations
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryTrendAggregationResult object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryTrendAggregationResult') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryTrendAggregationResult') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class ResultPassageAnswer:
    """
    Object that contains a potential answer to the specified query.

    :param str answer_text: (optional) Answer text for the specified query as
          identified by Discovery.
    :param int start_offset: (optional) The position of the first character of the
          extracted answer in the originating field.
    :param int end_offset: (optional) The position after the last character of the
          extracted answer in the originating field.
    :param float confidence: (optional) An estimate of the probability that the
          answer is relevant.
    """

    def __init__(
        self,
        *,
        answer_text: Optional[str] = None,
        start_offset: Optional[int] = None,
        end_offset: Optional[int] = None,
        confidence: Optional[float] = None,
    ) -> None:
        """
        Initialize a ResultPassageAnswer object.

        :param str answer_text: (optional) Answer text for the specified query as
               identified by Discovery.
        :param int start_offset: (optional) The position of the first character of
               the extracted answer in the originating field.
        :param int end_offset: (optional) The position after the last character of
               the extracted answer in the originating field.
        :param float confidence: (optional) An estimate of the probability that the
               answer is relevant.
        """
        self.answer_text = answer_text
        self.start_offset = start_offset
        self.end_offset = end_offset
        self.confidence = confidence

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'ResultPassageAnswer':
        """Initialize a ResultPassageAnswer object from a json dictionary."""
        args = {}
        if (answer_text := _dict.get('answer_text')) is not None:
            args['answer_text'] = answer_text
        if (start_offset := _dict.get('start_offset')) is not None:
            args['start_offset'] = start_offset
        if (end_offset := _dict.get('end_offset')) is not None:
            args['end_offset'] = end_offset
        if (confidence := _dict.get('confidence')) is not None:
            args['confidence'] = confidence
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a ResultPassageAnswer object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'answer_text') and self.answer_text is not None:
            _dict['answer_text'] = self.answer_text
        if hasattr(self, 'start_offset') and self.start_offset is not None:
            _dict['start_offset'] = self.start_offset
        if hasattr(self, 'end_offset') and self.end_offset is not None:
            _dict['end_offset'] = self.end_offset
        if hasattr(self, 'confidence') and self.confidence is not None:
            _dict['confidence'] = self.confidence
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this ResultPassageAnswer object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'ResultPassageAnswer') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'ResultPassageAnswer') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class RetrievalDetails:
    """
    An object contain retrieval type information.

    :param str document_retrieval_strategy: (optional) Identifies the document
          retrieval strategy used for this query. `relevancy_training` indicates that the
          results were returned using a relevancy trained model.
          **Note**: In the event of trained collections being queried, but the trained
          model is not used to return results, the **document_retrieval_strategy** is
          listed as `untrained`.
    """

    def __init__(
        self,
        *,
        document_retrieval_strategy: Optional[str] = None,
    ) -> None:
        """
        Initialize a RetrievalDetails object.

        :param str document_retrieval_strategy: (optional) Identifies the document
               retrieval strategy used for this query. `relevancy_training` indicates that
               the results were returned using a relevancy trained model.
               **Note**: In the event of trained collections being queried, but the
               trained model is not used to return results, the
               **document_retrieval_strategy** is listed as `untrained`.
        """
        self.document_retrieval_strategy = document_retrieval_strategy

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'RetrievalDetails':
        """Initialize a RetrievalDetails object from a json dictionary."""
        args = {}
        if (document_retrieval_strategy :=
                _dict.get('document_retrieval_strategy')) is not None:
            args['document_retrieval_strategy'] = document_retrieval_strategy
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a RetrievalDetails object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'document_retrieval_strategy'
                  ) and self.document_retrieval_strategy is not None:
            _dict[
                'document_retrieval_strategy'] = self.document_retrieval_strategy
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this RetrievalDetails object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'RetrievalDetails') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'RetrievalDetails') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class DocumentRetrievalStrategyEnum(str, Enum):
        """
        Identifies the document retrieval strategy used for this query.
        `relevancy_training` indicates that the results were returned using a relevancy
        trained model.
        **Note**: In the event of trained collections being queried, but the trained model
        is not used to return results, the **document_retrieval_strategy** is listed as
        `untrained`.
        """

        UNTRAINED = 'untrained'
        RELEVANCY_TRAINING = 'relevancy_training'


class StopWordList:
    """
    List of words to filter out of text that is submitted in queries.

    :param List[str] stopwords: List of stop words.
    """

    def __init__(
        self,
        stopwords: List[str],
    ) -> None:
        """
        Initialize a StopWordList object.

        :param List[str] stopwords: List of stop words.
        """
        self.stopwords = stopwords

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'StopWordList':
        """Initialize a StopWordList object from a json dictionary."""
        args = {}
        if (stopwords := _dict.get('stopwords')) is not None:
            args['stopwords'] = stopwords
        else:
            raise ValueError(
                'Required property \'stopwords\' not present in StopWordList JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a StopWordList object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'stopwords') and self.stopwords is not None:
            _dict['stopwords'] = self.stopwords
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this StopWordList object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'StopWordList') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'StopWordList') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class TableBodyCells:
    """
    Cells that are not table header, column header, or row header cells.

    :param str cell_id: (optional) The unique ID of the cell in the current table.
    :param TableElementLocation location: (optional) The numeric location of the
          identified element in the document, represented with two integers labeled
          `begin` and `end`.
    :param str text: (optional) The textual contents of this cell from the input
          document without associated markup content.
    :param int row_index_begin: (optional) The `begin` index of this cell's `row`
          location in the current table.
    :param int row_index_end: (optional) The `end` index of this cell's `row`
          location in the current table.
    :param int column_index_begin: (optional) The `begin` index of this cell's
          `column` location in the current table.
    :param int column_index_end: (optional) The `end` index of this cell's `column`
          location in the current table.
    :param List[str] row_header_ids: (optional) A list of ID values that represent
          the table row headers that are associated with this body cell.
    :param List[str] row_header_texts: (optional) A list of row header values that
          are associated with this body cell.
    :param List[str] row_header_texts_normalized: (optional) A list of normalized
          row header values that are associated with this body cell.
    :param List[str] column_header_ids: (optional) A list of ID values that
          represent the column headers that are associated with this body cell.
    :param List[str] column_header_texts: (optional) A list of column header values
          that are associated with this body cell.
    :param List[str] column_header_texts_normalized: (optional) A list of normalized
          column header values that are associated with this body cell.
    :param List[DocumentAttribute] attributes: (optional) A list of document
          attributes.
    """

    def __init__(
        self,
        *,
        cell_id: Optional[str] = None,
        location: Optional['TableElementLocation'] = None,
        text: Optional[str] = None,
        row_index_begin: Optional[int] = None,
        row_index_end: Optional[int] = None,
        column_index_begin: Optional[int] = None,
        column_index_end: Optional[int] = None,
        row_header_ids: Optional[List[str]] = None,
        row_header_texts: Optional[List[str]] = None,
        row_header_texts_normalized: Optional[List[str]] = None,
        column_header_ids: Optional[List[str]] = None,
        column_header_texts: Optional[List[str]] = None,
        column_header_texts_normalized: Optional[List[str]] = None,
        attributes: Optional[List['DocumentAttribute']] = None,
    ) -> None:
        """
        Initialize a TableBodyCells object.

        :param str cell_id: (optional) The unique ID of the cell in the current
               table.
        :param TableElementLocation location: (optional) The numeric location of
               the identified element in the document, represented with two integers
               labeled `begin` and `end`.
        :param str text: (optional) The textual contents of this cell from the
               input document without associated markup content.
        :param int row_index_begin: (optional) The `begin` index of this cell's
               `row` location in the current table.
        :param int row_index_end: (optional) The `end` index of this cell's `row`
               location in the current table.
        :param int column_index_begin: (optional) The `begin` index of this cell's
               `column` location in the current table.
        :param int column_index_end: (optional) The `end` index of this cell's
               `column` location in the current table.
        :param List[str] row_header_ids: (optional) A list of ID values that
               represent the table row headers that are associated with this body cell.
        :param List[str] row_header_texts: (optional) A list of row header values
               that are associated with this body cell.
        :param List[str] row_header_texts_normalized: (optional) A list of
               normalized row header values that are associated with this body cell.
        :param List[str] column_header_ids: (optional) A list of ID values that
               represent the column headers that are associated with this body cell.
        :param List[str] column_header_texts: (optional) A list of column header
               values that are associated with this body cell.
        :param List[str] column_header_texts_normalized: (optional) A list of
               normalized column header values that are associated with this body cell.
        :param List[DocumentAttribute] attributes: (optional) A list of document
               attributes.
        """
        self.cell_id = cell_id
        self.location = location
        self.text = text
        self.row_index_begin = row_index_begin
        self.row_index_end = row_index_end
        self.column_index_begin = column_index_begin
        self.column_index_end = column_index_end
        self.row_header_ids = row_header_ids
        self.row_header_texts = row_header_texts
        self.row_header_texts_normalized = row_header_texts_normalized
        self.column_header_ids = column_header_ids
        self.column_header_texts = column_header_texts
        self.column_header_texts_normalized = column_header_texts_normalized
        self.attributes = attributes

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'TableBodyCells':
        """Initialize a TableBodyCells object from a json dictionary."""
        args = {}
        if (cell_id := _dict.get('cell_id')) is not None:
            args['cell_id'] = cell_id
        if (location := _dict.get('location')) is not None:
            args['location'] = TableElementLocation.from_dict(location)
        if (text := _dict.get('text')) is not None:
            args['text'] = text
        if (row_index_begin := _dict.get('row_index_begin')) is not None:
            args['row_index_begin'] = row_index_begin
        if (row_index_end := _dict.get('row_index_end')) is not None:
            args['row_index_end'] = row_index_end
        if (column_index_begin := _dict.get('column_index_begin')) is not None:
            args['column_index_begin'] = column_index_begin
        if (column_index_end := _dict.get('column_index_end')) is not None:
            args['column_index_end'] = column_index_end
        if (row_header_ids := _dict.get('row_header_ids')) is not None:
            args['row_header_ids'] = row_header_ids
        if (row_header_texts := _dict.get('row_header_texts')) is not None:
            args['row_header_texts'] = row_header_texts
        if (row_header_texts_normalized :=
                _dict.get('row_header_texts_normalized')) is not None:
            args['row_header_texts_normalized'] = row_header_texts_normalized
        if (column_header_ids := _dict.get('column_header_ids')) is not None:
            args['column_header_ids'] = column_header_ids
        if (column_header_texts :=
                _dict.get('column_header_texts')) is not None:
            args['column_header_texts'] = column_header_texts
        if (column_header_texts_normalized :=
                _dict.get('column_header_texts_normalized')) is not None:
            args[
                'column_header_texts_normalized'] = column_header_texts_normalized
        if (attributes := _dict.get('attributes')) is not None:
            args['attributes'] = [
                DocumentAttribute.from_dict(v) for v in attributes
            ]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a TableBodyCells object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'cell_id') and self.cell_id is not None:
            _dict['cell_id'] = self.cell_id
        if hasattr(self, 'location') and self.location is not None:
            if isinstance(self.location, dict):
                _dict['location'] = self.location
            else:
                _dict['location'] = self.location.to_dict()
        if hasattr(self, 'text') and self.text is not None:
            _dict['text'] = self.text
        if hasattr(self,
                   'row_index_begin') and self.row_index_begin is not None:
            _dict['row_index_begin'] = self.row_index_begin
        if hasattr(self, 'row_index_end') and self.row_index_end is not None:
            _dict['row_index_end'] = self.row_index_end
        if hasattr(
                self,
                'column_index_begin') and self.column_index_begin is not None:
            _dict['column_index_begin'] = self.column_index_begin
        if hasattr(self,
                   'column_index_end') and self.column_index_end is not None:
            _dict['column_index_end'] = self.column_index_end
        if hasattr(self, 'row_header_ids') and self.row_header_ids is not None:
            _dict['row_header_ids'] = self.row_header_ids
        if hasattr(self,
                   'row_header_texts') and self.row_header_texts is not None:
            _dict['row_header_texts'] = self.row_header_texts
        if hasattr(self, 'row_header_texts_normalized'
                  ) and self.row_header_texts_normalized is not None:
            _dict[
                'row_header_texts_normalized'] = self.row_header_texts_normalized
        if hasattr(self,
                   'column_header_ids') and self.column_header_ids is not None:
            _dict['column_header_ids'] = self.column_header_ids
        if hasattr(
                self,
                'column_header_texts') and self.column_header_texts is not None:
            _dict['column_header_texts'] = self.column_header_texts
        if hasattr(self, 'column_header_texts_normalized'
                  ) and self.column_header_texts_normalized is not None:
            _dict[
                'column_header_texts_normalized'] = self.column_header_texts_normalized
        if hasattr(self, 'attributes') and self.attributes is not None:
            attributes_list = []
            for v in self.attributes:
                if isinstance(v, dict):
                    attributes_list.append(v)
                else:
                    attributes_list.append(v.to_dict())
            _dict['attributes'] = attributes_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this TableBodyCells object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'TableBodyCells') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'TableBodyCells') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class TableCellKey:
    """
    A key in a key-value pair.

    :param str cell_id: (optional) The unique ID of the key in the table.
    :param TableElementLocation location: (optional) The numeric location of the
          identified element in the document, represented with two integers labeled
          `begin` and `end`.
    :param str text: (optional) The text content of the table cell without HTML
          markup.
    """

    def __init__(
        self,
        *,
        cell_id: Optional[str] = None,
        location: Optional['TableElementLocation'] = None,
        text: Optional[str] = None,
    ) -> None:
        """
        Initialize a TableCellKey object.

        :param str cell_id: (optional) The unique ID of the key in the table.
        :param TableElementLocation location: (optional) The numeric location of
               the identified element in the document, represented with two integers
               labeled `begin` and `end`.
        :param str text: (optional) The text content of the table cell without HTML
               markup.
        """
        self.cell_id = cell_id
        self.location = location
        self.text = text

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'TableCellKey':
        """Initialize a TableCellKey object from a json dictionary."""
        args = {}
        if (cell_id := _dict.get('cell_id')) is not None:
            args['cell_id'] = cell_id
        if (location := _dict.get('location')) is not None:
            args['location'] = TableElementLocation.from_dict(location)
        if (text := _dict.get('text')) is not None:
            args['text'] = text
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a TableCellKey object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'cell_id') and self.cell_id is not None:
            _dict['cell_id'] = self.cell_id
        if hasattr(self, 'location') and self.location is not None:
            if isinstance(self.location, dict):
                _dict['location'] = self.location
            else:
                _dict['location'] = self.location.to_dict()
        if hasattr(self, 'text') and self.text is not None:
            _dict['text'] = self.text
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this TableCellKey object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'TableCellKey') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'TableCellKey') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class TableCellValues:
    """
    A value in a key-value pair.

    :param str cell_id: (optional) The unique ID of the value in the table.
    :param TableElementLocation location: (optional) The numeric location of the
          identified element in the document, represented with two integers labeled
          `begin` and `end`.
    :param str text: (optional) The text content of the table cell without HTML
          markup.
    """

    def __init__(
        self,
        *,
        cell_id: Optional[str] = None,
        location: Optional['TableElementLocation'] = None,
        text: Optional[str] = None,
    ) -> None:
        """
        Initialize a TableCellValues object.

        :param str cell_id: (optional) The unique ID of the value in the table.
        :param TableElementLocation location: (optional) The numeric location of
               the identified element in the document, represented with two integers
               labeled `begin` and `end`.
        :param str text: (optional) The text content of the table cell without HTML
               markup.
        """
        self.cell_id = cell_id
        self.location = location
        self.text = text

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'TableCellValues':
        """Initialize a TableCellValues object from a json dictionary."""
        args = {}
        if (cell_id := _dict.get('cell_id')) is not None:
            args['cell_id'] = cell_id
        if (location := _dict.get('location')) is not None:
            args['location'] = TableElementLocation.from_dict(location)
        if (text := _dict.get('text')) is not None:
            args['text'] = text
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a TableCellValues object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'cell_id') and self.cell_id is not None:
            _dict['cell_id'] = self.cell_id
        if hasattr(self, 'location') and self.location is not None:
            if isinstance(self.location, dict):
                _dict['location'] = self.location
            else:
                _dict['location'] = self.location.to_dict()
        if hasattr(self, 'text') and self.text is not None:
            _dict['text'] = self.text
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this TableCellValues object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'TableCellValues') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'TableCellValues') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class TableColumnHeaders:
    """
    Column-level cells, each applicable as a header to other cells in the same column as
    itself, of the current table.

    :param str cell_id: (optional) The unique ID of the cell in the current table.
    :param TableElementLocation location: (optional) The numeric location of the
          identified element in the document, represented with two integers labeled
          `begin` and `end`.
    :param str text: (optional) The textual contents of this cell from the input
          document without associated markup content.
    :param str text_normalized: (optional) Normalized column header text.
    :param int row_index_begin: (optional) The `begin` index of this cell's `row`
          location in the current table.
    :param int row_index_end: (optional) The `end` index of this cell's `row`
          location in the current table.
    :param int column_index_begin: (optional) The `begin` index of this cell's
          `column` location in the current table.
    :param int column_index_end: (optional) The `end` index of this cell's `column`
          location in the current table.
    """

    def __init__(
        self,
        *,
        cell_id: Optional[str] = None,
        location: Optional['TableElementLocation'] = None,
        text: Optional[str] = None,
        text_normalized: Optional[str] = None,
        row_index_begin: Optional[int] = None,
        row_index_end: Optional[int] = None,
        column_index_begin: Optional[int] = None,
        column_index_end: Optional[int] = None,
    ) -> None:
        """
        Initialize a TableColumnHeaders object.

        :param str cell_id: (optional) The unique ID of the cell in the current
               table.
        :param TableElementLocation location: (optional) The numeric location of
               the identified element in the document, represented with two integers
               labeled `begin` and `end`.
        :param str text: (optional) The textual contents of this cell from the
               input document without associated markup content.
        :param str text_normalized: (optional) Normalized column header text.
        :param int row_index_begin: (optional) The `begin` index of this cell's
               `row` location in the current table.
        :param int row_index_end: (optional) The `end` index of this cell's `row`
               location in the current table.
        :param int column_index_begin: (optional) The `begin` index of this cell's
               `column` location in the current table.
        :param int column_index_end: (optional) The `end` index of this cell's
               `column` location in the current table.
        """
        self.cell_id = cell_id
        self.location = location
        self.text = text
        self.text_normalized = text_normalized
        self.row_index_begin = row_index_begin
        self.row_index_end = row_index_end
        self.column_index_begin = column_index_begin
        self.column_index_end = column_index_end

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'TableColumnHeaders':
        """Initialize a TableColumnHeaders object from a json dictionary."""
        args = {}
        if (cell_id := _dict.get('cell_id')) is not None:
            args['cell_id'] = cell_id
        if (location := _dict.get('location')) is not None:
            args['location'] = TableElementLocation.from_dict(location)
        if (text := _dict.get('text')) is not None:
            args['text'] = text
        if (text_normalized := _dict.get('text_normalized')) is not None:
            args['text_normalized'] = text_normalized
        if (row_index_begin := _dict.get('row_index_begin')) is not None:
            args['row_index_begin'] = row_index_begin
        if (row_index_end := _dict.get('row_index_end')) is not None:
            args['row_index_end'] = row_index_end
        if (column_index_begin := _dict.get('column_index_begin')) is not None:
            args['column_index_begin'] = column_index_begin
        if (column_index_end := _dict.get('column_index_end')) is not None:
            args['column_index_end'] = column_index_end
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a TableColumnHeaders object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'cell_id') and self.cell_id is not None:
            _dict['cell_id'] = self.cell_id
        if hasattr(self, 'location') and self.location is not None:
            if isinstance(self.location, dict):
                _dict['location'] = self.location
            else:
                _dict['location'] = self.location.to_dict()
        if hasattr(self, 'text') and self.text is not None:
            _dict['text'] = self.text
        if hasattr(self,
                   'text_normalized') and self.text_normalized is not None:
            _dict['text_normalized'] = self.text_normalized
        if hasattr(self,
                   'row_index_begin') and self.row_index_begin is not None:
            _dict['row_index_begin'] = self.row_index_begin
        if hasattr(self, 'row_index_end') and self.row_index_end is not None:
            _dict['row_index_end'] = self.row_index_end
        if hasattr(
                self,
                'column_index_begin') and self.column_index_begin is not None:
            _dict['column_index_begin'] = self.column_index_begin
        if hasattr(self,
                   'column_index_end') and self.column_index_end is not None:
            _dict['column_index_end'] = self.column_index_end
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this TableColumnHeaders object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'TableColumnHeaders') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'TableColumnHeaders') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class TableElementLocation:
    """
    The numeric location of the identified element in the document, represented with two
    integers labeled `begin` and `end`.

    :param int begin: The element's `begin` index.
    :param int end: The element's `end` index.
    """

    def __init__(
        self,
        begin: int,
        end: int,
    ) -> None:
        """
        Initialize a TableElementLocation object.

        :param int begin: The element's `begin` index.
        :param int end: The element's `end` index.
        """
        self.begin = begin
        self.end = end

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'TableElementLocation':
        """Initialize a TableElementLocation object from a json dictionary."""
        args = {}
        if (begin := _dict.get('begin')) is not None:
            args['begin'] = begin
        else:
            raise ValueError(
                'Required property \'begin\' not present in TableElementLocation JSON'
            )
        if (end := _dict.get('end')) is not None:
            args['end'] = end
        else:
            raise ValueError(
                'Required property \'end\' not present in TableElementLocation JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a TableElementLocation object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'begin') and self.begin is not None:
            _dict['begin'] = self.begin
        if hasattr(self, 'end') and self.end is not None:
            _dict['end'] = self.end
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this TableElementLocation object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'TableElementLocation') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'TableElementLocation') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class TableHeaders:
    """
    The contents of the current table's header.

    :param str cell_id: (optional) The unique ID of the cell in the current table.
    :param TableElementLocation location: (optional) The numeric location of the
          identified element in the document, represented with two integers labeled
          `begin` and `end`.
    :param str text: (optional) The textual contents of the cell from the input
          document without associated markup content.
    :param int row_index_begin: (optional) The `begin` index of this cell's `row`
          location in the current table.
    :param int row_index_end: (optional) The `end` index of this cell's `row`
          location in the current table.
    :param int column_index_begin: (optional) The `begin` index of this cell's
          `column` location in the current table.
    :param int column_index_end: (optional) The `end` index of this cell's `column`
          location in the current table.
    """

    def __init__(
        self,
        *,
        cell_id: Optional[str] = None,
        location: Optional['TableElementLocation'] = None,
        text: Optional[str] = None,
        row_index_begin: Optional[int] = None,
        row_index_end: Optional[int] = None,
        column_index_begin: Optional[int] = None,
        column_index_end: Optional[int] = None,
    ) -> None:
        """
        Initialize a TableHeaders object.

        :param str cell_id: (optional) The unique ID of the cell in the current
               table.
        :param TableElementLocation location: (optional) The numeric location of
               the identified element in the document, represented with two integers
               labeled `begin` and `end`.
        :param str text: (optional) The textual contents of the cell from the input
               document without associated markup content.
        :param int row_index_begin: (optional) The `begin` index of this cell's
               `row` location in the current table.
        :param int row_index_end: (optional) The `end` index of this cell's `row`
               location in the current table.
        :param int column_index_begin: (optional) The `begin` index of this cell's
               `column` location in the current table.
        :param int column_index_end: (optional) The `end` index of this cell's
               `column` location in the current table.
        """
        self.cell_id = cell_id
        self.location = location
        self.text = text
        self.row_index_begin = row_index_begin
        self.row_index_end = row_index_end
        self.column_index_begin = column_index_begin
        self.column_index_end = column_index_end

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'TableHeaders':
        """Initialize a TableHeaders object from a json dictionary."""
        args = {}
        if (cell_id := _dict.get('cell_id')) is not None:
            args['cell_id'] = cell_id
        if (location := _dict.get('location')) is not None:
            args['location'] = TableElementLocation.from_dict(location)
        if (text := _dict.get('text')) is not None:
            args['text'] = text
        if (row_index_begin := _dict.get('row_index_begin')) is not None:
            args['row_index_begin'] = row_index_begin
        if (row_index_end := _dict.get('row_index_end')) is not None:
            args['row_index_end'] = row_index_end
        if (column_index_begin := _dict.get('column_index_begin')) is not None:
            args['column_index_begin'] = column_index_begin
        if (column_index_end := _dict.get('column_index_end')) is not None:
            args['column_index_end'] = column_index_end
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a TableHeaders object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'cell_id') and self.cell_id is not None:
            _dict['cell_id'] = self.cell_id
        if hasattr(self, 'location') and self.location is not None:
            if isinstance(self.location, dict):
                _dict['location'] = self.location
            else:
                _dict['location'] = self.location.to_dict()
        if hasattr(self, 'text') and self.text is not None:
            _dict['text'] = self.text
        if hasattr(self,
                   'row_index_begin') and self.row_index_begin is not None:
            _dict['row_index_begin'] = self.row_index_begin
        if hasattr(self, 'row_index_end') and self.row_index_end is not None:
            _dict['row_index_end'] = self.row_index_end
        if hasattr(
                self,
                'column_index_begin') and self.column_index_begin is not None:
            _dict['column_index_begin'] = self.column_index_begin
        if hasattr(self,
                   'column_index_end') and self.column_index_end is not None:
            _dict['column_index_end'] = self.column_index_end
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this TableHeaders object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'TableHeaders') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'TableHeaders') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class TableKeyValuePairs:
    """
    Key-value pairs detected across cell boundaries.

    :param TableCellKey key: (optional) A key in a key-value pair.
    :param List[TableCellValues] value: (optional) A list of values in a key-value
          pair.
    """

    def __init__(
        self,
        *,
        key: Optional['TableCellKey'] = None,
        value: Optional[List['TableCellValues']] = None,
    ) -> None:
        """
        Initialize a TableKeyValuePairs object.

        :param TableCellKey key: (optional) A key in a key-value pair.
        :param List[TableCellValues] value: (optional) A list of values in a
               key-value pair.
        """
        self.key = key
        self.value = value

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'TableKeyValuePairs':
        """Initialize a TableKeyValuePairs object from a json dictionary."""
        args = {}
        if (key := _dict.get('key')) is not None:
            args['key'] = TableCellKey.from_dict(key)
        if (value := _dict.get('value')) is not None:
            args['value'] = [TableCellValues.from_dict(v) for v in value]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a TableKeyValuePairs object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'key') and self.key is not None:
            if isinstance(self.key, dict):
                _dict['key'] = self.key
            else:
                _dict['key'] = self.key.to_dict()
        if hasattr(self, 'value') and self.value is not None:
            value_list = []
            for v in self.value:
                if isinstance(v, dict):
                    value_list.append(v)
                else:
                    value_list.append(v.to_dict())
            _dict['value'] = value_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this TableKeyValuePairs object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'TableKeyValuePairs') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'TableKeyValuePairs') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class TableResultTable:
    """
    Full table object retrieved from Table Understanding Enrichment.

    :param TableElementLocation location: (optional) The numeric location of the
          identified element in the document, represented with two integers labeled
          `begin` and `end`.
    :param str text: (optional) The textual contents of the current table from the
          input document without associated markup content.
    :param TableTextLocation section_title: (optional) Text and associated location
          within a table.
    :param TableTextLocation title: (optional) Text and associated location within a
          table.
    :param List[TableHeaders] table_headers: (optional) An array of table-level
          cells that apply as headers to all the other cells in the current table.
    :param List[TableRowHeaders] row_headers: (optional) An array of row-level
          cells, each applicable as a header to other cells in the same row as itself, of
          the current table.
    :param List[TableColumnHeaders] column_headers: (optional) An array of
          column-level cells, each applicable as a header to other cells in the same
          column as itself, of the current table.
    :param List[TableKeyValuePairs] key_value_pairs: (optional) An array of
          key-value pairs identified in the current table.
    :param List[TableBodyCells] body_cells: (optional) An array of cells that are
          neither table header nor column header nor row header cells, of the current
          table with corresponding row and column header associations.
    :param List[TableTextLocation] contexts: (optional) An array of lists of textual
          entries across the document related to the current table being parsed.
    """

    def __init__(
        self,
        *,
        location: Optional['TableElementLocation'] = None,
        text: Optional[str] = None,
        section_title: Optional['TableTextLocation'] = None,
        title: Optional['TableTextLocation'] = None,
        table_headers: Optional[List['TableHeaders']] = None,
        row_headers: Optional[List['TableRowHeaders']] = None,
        column_headers: Optional[List['TableColumnHeaders']] = None,
        key_value_pairs: Optional[List['TableKeyValuePairs']] = None,
        body_cells: Optional[List['TableBodyCells']] = None,
        contexts: Optional[List['TableTextLocation']] = None,
    ) -> None:
        """
        Initialize a TableResultTable object.

        :param TableElementLocation location: (optional) The numeric location of
               the identified element in the document, represented with two integers
               labeled `begin` and `end`.
        :param str text: (optional) The textual contents of the current table from
               the input document without associated markup content.
        :param TableTextLocation section_title: (optional) Text and associated
               location within a table.
        :param TableTextLocation title: (optional) Text and associated location
               within a table.
        :param List[TableHeaders] table_headers: (optional) An array of table-level
               cells that apply as headers to all the other cells in the current table.
        :param List[TableRowHeaders] row_headers: (optional) An array of row-level
               cells, each applicable as a header to other cells in the same row as
               itself, of the current table.
        :param List[TableColumnHeaders] column_headers: (optional) An array of
               column-level cells, each applicable as a header to other cells in the same
               column as itself, of the current table.
        :param List[TableKeyValuePairs] key_value_pairs: (optional) An array of
               key-value pairs identified in the current table.
        :param List[TableBodyCells] body_cells: (optional) An array of cells that
               are neither table header nor column header nor row header cells, of the
               current table with corresponding row and column header associations.
        :param List[TableTextLocation] contexts: (optional) An array of lists of
               textual entries across the document related to the current table being
               parsed.
        """
        self.location = location
        self.text = text
        self.section_title = section_title
        self.title = title
        self.table_headers = table_headers
        self.row_headers = row_headers
        self.column_headers = column_headers
        self.key_value_pairs = key_value_pairs
        self.body_cells = body_cells
        self.contexts = contexts

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'TableResultTable':
        """Initialize a TableResultTable object from a json dictionary."""
        args = {}
        if (location := _dict.get('location')) is not None:
            args['location'] = TableElementLocation.from_dict(location)
        if (text := _dict.get('text')) is not None:
            args['text'] = text
        if (section_title := _dict.get('section_title')) is not None:
            args['section_title'] = TableTextLocation.from_dict(section_title)
        if (title := _dict.get('title')) is not None:
            args['title'] = TableTextLocation.from_dict(title)
        if (table_headers := _dict.get('table_headers')) is not None:
            args['table_headers'] = [
                TableHeaders.from_dict(v) for v in table_headers
            ]
        if (row_headers := _dict.get('row_headers')) is not None:
            args['row_headers'] = [
                TableRowHeaders.from_dict(v) for v in row_headers
            ]
        if (column_headers := _dict.get('column_headers')) is not None:
            args['column_headers'] = [
                TableColumnHeaders.from_dict(v) for v in column_headers
            ]
        if (key_value_pairs := _dict.get('key_value_pairs')) is not None:
            args['key_value_pairs'] = [
                TableKeyValuePairs.from_dict(v) for v in key_value_pairs
            ]
        if (body_cells := _dict.get('body_cells')) is not None:
            args['body_cells'] = [
                TableBodyCells.from_dict(v) for v in body_cells
            ]
        if (contexts := _dict.get('contexts')) is not None:
            args['contexts'] = [
                TableTextLocation.from_dict(v) for v in contexts
            ]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a TableResultTable object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'location') and self.location is not None:
            if isinstance(self.location, dict):
                _dict['location'] = self.location
            else:
                _dict['location'] = self.location.to_dict()
        if hasattr(self, 'text') and self.text is not None:
            _dict['text'] = self.text
        if hasattr(self, 'section_title') and self.section_title is not None:
            if isinstance(self.section_title, dict):
                _dict['section_title'] = self.section_title
            else:
                _dict['section_title'] = self.section_title.to_dict()
        if hasattr(self, 'title') and self.title is not None:
            if isinstance(self.title, dict):
                _dict['title'] = self.title
            else:
                _dict['title'] = self.title.to_dict()
        if hasattr(self, 'table_headers') and self.table_headers is not None:
            table_headers_list = []
            for v in self.table_headers:
                if isinstance(v, dict):
                    table_headers_list.append(v)
                else:
                    table_headers_list.append(v.to_dict())
            _dict['table_headers'] = table_headers_list
        if hasattr(self, 'row_headers') and self.row_headers is not None:
            row_headers_list = []
            for v in self.row_headers:
                if isinstance(v, dict):
                    row_headers_list.append(v)
                else:
                    row_headers_list.append(v.to_dict())
            _dict['row_headers'] = row_headers_list
        if hasattr(self, 'column_headers') and self.column_headers is not None:
            column_headers_list = []
            for v in self.column_headers:
                if isinstance(v, dict):
                    column_headers_list.append(v)
                else:
                    column_headers_list.append(v.to_dict())
            _dict['column_headers'] = column_headers_list
        if hasattr(self,
                   'key_value_pairs') and self.key_value_pairs is not None:
            key_value_pairs_list = []
            for v in self.key_value_pairs:
                if isinstance(v, dict):
                    key_value_pairs_list.append(v)
                else:
                    key_value_pairs_list.append(v.to_dict())
            _dict['key_value_pairs'] = key_value_pairs_list
        if hasattr(self, 'body_cells') and self.body_cells is not None:
            body_cells_list = []
            for v in self.body_cells:
                if isinstance(v, dict):
                    body_cells_list.append(v)
                else:
                    body_cells_list.append(v.to_dict())
            _dict['body_cells'] = body_cells_list
        if hasattr(self, 'contexts') and self.contexts is not None:
            contexts_list = []
            for v in self.contexts:
                if isinstance(v, dict):
                    contexts_list.append(v)
                else:
                    contexts_list.append(v.to_dict())
            _dict['contexts'] = contexts_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this TableResultTable object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'TableResultTable') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'TableResultTable') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class TableRowHeaders:
    """
    Row-level cells, each applicable as a header to other cells in the same row as itself,
    of the current table.

    :param str cell_id: (optional) The unique ID of the cell in the current table.
    :param TableElementLocation location: (optional) The numeric location of the
          identified element in the document, represented with two integers labeled
          `begin` and `end`.
    :param str text: (optional) The textual contents of this cell from the input
          document without associated markup content.
    :param str text_normalized: (optional) Normalized row header text.
    :param int row_index_begin: (optional) The `begin` index of this cell's `row`
          location in the current table.
    :param int row_index_end: (optional) The `end` index of this cell's `row`
          location in the current table.
    :param int column_index_begin: (optional) The `begin` index of this cell's
          `column` location in the current table.
    :param int column_index_end: (optional) The `end` index of this cell's `column`
          location in the current table.
    """

    def __init__(
        self,
        *,
        cell_id: Optional[str] = None,
        location: Optional['TableElementLocation'] = None,
        text: Optional[str] = None,
        text_normalized: Optional[str] = None,
        row_index_begin: Optional[int] = None,
        row_index_end: Optional[int] = None,
        column_index_begin: Optional[int] = None,
        column_index_end: Optional[int] = None,
    ) -> None:
        """
        Initialize a TableRowHeaders object.

        :param str cell_id: (optional) The unique ID of the cell in the current
               table.
        :param TableElementLocation location: (optional) The numeric location of
               the identified element in the document, represented with two integers
               labeled `begin` and `end`.
        :param str text: (optional) The textual contents of this cell from the
               input document without associated markup content.
        :param str text_normalized: (optional) Normalized row header text.
        :param int row_index_begin: (optional) The `begin` index of this cell's
               `row` location in the current table.
        :param int row_index_end: (optional) The `end` index of this cell's `row`
               location in the current table.
        :param int column_index_begin: (optional) The `begin` index of this cell's
               `column` location in the current table.
        :param int column_index_end: (optional) The `end` index of this cell's
               `column` location in the current table.
        """
        self.cell_id = cell_id
        self.location = location
        self.text = text
        self.text_normalized = text_normalized
        self.row_index_begin = row_index_begin
        self.row_index_end = row_index_end
        self.column_index_begin = column_index_begin
        self.column_index_end = column_index_end

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'TableRowHeaders':
        """Initialize a TableRowHeaders object from a json dictionary."""
        args = {}
        if (cell_id := _dict.get('cell_id')) is not None:
            args['cell_id'] = cell_id
        if (location := _dict.get('location')) is not None:
            args['location'] = TableElementLocation.from_dict(location)
        if (text := _dict.get('text')) is not None:
            args['text'] = text
        if (text_normalized := _dict.get('text_normalized')) is not None:
            args['text_normalized'] = text_normalized
        if (row_index_begin := _dict.get('row_index_begin')) is not None:
            args['row_index_begin'] = row_index_begin
        if (row_index_end := _dict.get('row_index_end')) is not None:
            args['row_index_end'] = row_index_end
        if (column_index_begin := _dict.get('column_index_begin')) is not None:
            args['column_index_begin'] = column_index_begin
        if (column_index_end := _dict.get('column_index_end')) is not None:
            args['column_index_end'] = column_index_end
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a TableRowHeaders object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'cell_id') and self.cell_id is not None:
            _dict['cell_id'] = self.cell_id
        if hasattr(self, 'location') and self.location is not None:
            if isinstance(self.location, dict):
                _dict['location'] = self.location
            else:
                _dict['location'] = self.location.to_dict()
        if hasattr(self, 'text') and self.text is not None:
            _dict['text'] = self.text
        if hasattr(self,
                   'text_normalized') and self.text_normalized is not None:
            _dict['text_normalized'] = self.text_normalized
        if hasattr(self,
                   'row_index_begin') and self.row_index_begin is not None:
            _dict['row_index_begin'] = self.row_index_begin
        if hasattr(self, 'row_index_end') and self.row_index_end is not None:
            _dict['row_index_end'] = self.row_index_end
        if hasattr(
                self,
                'column_index_begin') and self.column_index_begin is not None:
            _dict['column_index_begin'] = self.column_index_begin
        if hasattr(self,
                   'column_index_end') and self.column_index_end is not None:
            _dict['column_index_end'] = self.column_index_end
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this TableRowHeaders object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'TableRowHeaders') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'TableRowHeaders') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class TableTextLocation:
    """
    Text and associated location within a table.

    :param str text: (optional) The text retrieved.
    :param TableElementLocation location: (optional) The numeric location of the
          identified element in the document, represented with two integers labeled
          `begin` and `end`.
    """

    def __init__(
        self,
        *,
        text: Optional[str] = None,
        location: Optional['TableElementLocation'] = None,
    ) -> None:
        """
        Initialize a TableTextLocation object.

        :param str text: (optional) The text retrieved.
        :param TableElementLocation location: (optional) The numeric location of
               the identified element in the document, represented with two integers
               labeled `begin` and `end`.
        """
        self.text = text
        self.location = location

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'TableTextLocation':
        """Initialize a TableTextLocation object from a json dictionary."""
        args = {}
        if (text := _dict.get('text')) is not None:
            args['text'] = text
        if (location := _dict.get('location')) is not None:
            args['location'] = TableElementLocation.from_dict(location)
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a TableTextLocation object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'text') and self.text is not None:
            _dict['text'] = self.text
        if hasattr(self, 'location') and self.location is not None:
            if isinstance(self.location, dict):
                _dict['location'] = self.location
            else:
                _dict['location'] = self.location.to_dict()
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this TableTextLocation object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'TableTextLocation') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'TableTextLocation') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class TrainingExample:
    """
    Object that contains example response details for a training query.

    :param str document_id: The document ID associated with this training example.
    :param str collection_id: The collection ID associated with this training
          example.
    :param int relevance: The relevance score of the training example. Scores range
          from `0` to `100`. Zero means not relevant. The higher the number, the more
          relevant the example.
    :param datetime created: (optional) The date and time the example was created.
    :param datetime updated: (optional) The date and time the example was updated.
    """

    def __init__(
        self,
        document_id: str,
        collection_id: str,
        relevance: int,
        *,
        created: Optional[datetime] = None,
        updated: Optional[datetime] = None,
    ) -> None:
        """
        Initialize a TrainingExample object.

        :param str document_id: The document ID associated with this training
               example.
        :param str collection_id: The collection ID associated with this training
               example.
        :param int relevance: The relevance score of the training example. Scores
               range from `0` to `100`. Zero means not relevant. The higher the number,
               the more relevant the example.
        """
        self.document_id = document_id
        self.collection_id = collection_id
        self.relevance = relevance
        self.created = created
        self.updated = updated

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'TrainingExample':
        """Initialize a TrainingExample object from a json dictionary."""
        args = {}
        if (document_id := _dict.get('document_id')) is not None:
            args['document_id'] = document_id
        else:
            raise ValueError(
                'Required property \'document_id\' not present in TrainingExample JSON'
            )
        if (collection_id := _dict.get('collection_id')) is not None:
            args['collection_id'] = collection_id
        else:
            raise ValueError(
                'Required property \'collection_id\' not present in TrainingExample JSON'
            )
        if (relevance := _dict.get('relevance')) is not None:
            args['relevance'] = relevance
        else:
            raise ValueError(
                'Required property \'relevance\' not present in TrainingExample JSON'
            )
        if (created := _dict.get('created')) is not None:
            args['created'] = string_to_datetime(created)
        if (updated := _dict.get('updated')) is not None:
            args['updated'] = string_to_datetime(updated)
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a TrainingExample object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'document_id') and self.document_id is not None:
            _dict['document_id'] = self.document_id
        if hasattr(self, 'collection_id') and self.collection_id is not None:
            _dict['collection_id'] = self.collection_id
        if hasattr(self, 'relevance') and self.relevance is not None:
            _dict['relevance'] = self.relevance
        if hasattr(self, 'created') and getattr(self, 'created') is not None:
            _dict['created'] = datetime_to_string(getattr(self, 'created'))
        if hasattr(self, 'updated') and getattr(self, 'updated') is not None:
            _dict['updated'] = datetime_to_string(getattr(self, 'updated'))
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this TrainingExample object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'TrainingExample') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'TrainingExample') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class TrainingQuery:
    """
    Object that contains training query details.

    :param str query_id: (optional) The query ID associated with the training query.
    :param str natural_language_query: The natural text query that is used as the
          training query.
    :param str filter: (optional) The filter used on the collection before the
          **natural_language_query** is applied. Only specify a filter if the documents
          that you consider to be most relevant are not included in the top 100 results
          when you submit test queries. If you specify a filter during training, apply the
          same filter to queries that are submitted at runtime for optimal ranking
          results.
    :param datetime created: (optional) The date and time the query was created.
    :param datetime updated: (optional) The date and time the query was updated.
    :param List[TrainingExample] examples: Array of training examples.
    """

    def __init__(
        self,
        natural_language_query: str,
        examples: List['TrainingExample'],
        *,
        query_id: Optional[str] = None,
        filter: Optional[str] = None,
        created: Optional[datetime] = None,
        updated: Optional[datetime] = None,
    ) -> None:
        """
        Initialize a TrainingQuery object.

        :param str natural_language_query: The natural text query that is used as
               the training query.
        :param List[TrainingExample] examples: Array of training examples.
        :param str filter: (optional) The filter used on the collection before the
               **natural_language_query** is applied. Only specify a filter if the
               documents that you consider to be most relevant are not included in the top
               100 results when you submit test queries. If you specify a filter during
               training, apply the same filter to queries that are submitted at runtime
               for optimal ranking results.
        """
        self.query_id = query_id
        self.natural_language_query = natural_language_query
        self.filter = filter
        self.created = created
        self.updated = updated
        self.examples = examples

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'TrainingQuery':
        """Initialize a TrainingQuery object from a json dictionary."""
        args = {}
        if (query_id := _dict.get('query_id')) is not None:
            args['query_id'] = query_id
        if (natural_language_query :=
                _dict.get('natural_language_query')) is not None:
            args['natural_language_query'] = natural_language_query
        else:
            raise ValueError(
                'Required property \'natural_language_query\' not present in TrainingQuery JSON'
            )
        if (filter := _dict.get('filter')) is not None:
            args['filter'] = filter
        if (created := _dict.get('created')) is not None:
            args['created'] = string_to_datetime(created)
        if (updated := _dict.get('updated')) is not None:
            args['updated'] = string_to_datetime(updated)
        if (examples := _dict.get('examples')) is not None:
            args['examples'] = [TrainingExample.from_dict(v) for v in examples]
        else:
            raise ValueError(
                'Required property \'examples\' not present in TrainingQuery JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a TrainingQuery object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'query_id') and getattr(self, 'query_id') is not None:
            _dict['query_id'] = getattr(self, 'query_id')
        if hasattr(self, 'natural_language_query'
                  ) and self.natural_language_query is not None:
            _dict['natural_language_query'] = self.natural_language_query
        if hasattr(self, 'filter') and self.filter is not None:
            _dict['filter'] = self.filter
        if hasattr(self, 'created') and getattr(self, 'created') is not None:
            _dict['created'] = datetime_to_string(getattr(self, 'created'))
        if hasattr(self, 'updated') and getattr(self, 'updated') is not None:
            _dict['updated'] = datetime_to_string(getattr(self, 'updated'))
        if hasattr(self, 'examples') and self.examples is not None:
            examples_list = []
            for v in self.examples:
                if isinstance(v, dict):
                    examples_list.append(v)
                else:
                    examples_list.append(v.to_dict())
            _dict['examples'] = examples_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this TrainingQuery object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'TrainingQuery') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'TrainingQuery') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class TrainingQuerySet:
    """
    Object specifying the training queries contained in the identified training set.

    :param List[TrainingQuery] queries: (optional) Array of training queries. At
          least 50 queries are required for training to begin. A maximum of 10,000 queries
          are returned.
    """

    def __init__(
        self,
        *,
        queries: Optional[List['TrainingQuery']] = None,
    ) -> None:
        """
        Initialize a TrainingQuerySet object.

        :param List[TrainingQuery] queries: (optional) Array of training queries.
               At least 50 queries are required for training to begin. A maximum of 10,000
               queries are returned.
        """
        self.queries = queries

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'TrainingQuerySet':
        """Initialize a TrainingQuerySet object from a json dictionary."""
        args = {}
        if (queries := _dict.get('queries')) is not None:
            args['queries'] = [TrainingQuery.from_dict(v) for v in queries]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a TrainingQuerySet object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'queries') and self.queries is not None:
            queries_list = []
            for v in self.queries:
                if isinstance(v, dict):
                    queries_list.append(v)
                else:
                    queries_list.append(v.to_dict())
            _dict['queries'] = queries_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this TrainingQuerySet object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'TrainingQuerySet') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'TrainingQuerySet') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class UpdateDocumentClassifier:
    """
    An object that contains a new name or description for a document classifier, updated
    training data, or new or updated test data.

    :param str name: (optional) A new name for the classifier.
    :param str description: (optional) A new description for the classifier.
    """

    def __init__(
        self,
        *,
        name: Optional[str] = None,
        description: Optional[str] = None,
    ) -> None:
        """
        Initialize a UpdateDocumentClassifier object.

        :param str name: (optional) A new name for the classifier.
        :param str description: (optional) A new description for the classifier.
        """
        self.name = name
        self.description = description

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'UpdateDocumentClassifier':
        """Initialize a UpdateDocumentClassifier object from a json dictionary."""
        args = {}
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        if (description := _dict.get('description')) is not None:
            args['description'] = description
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a UpdateDocumentClassifier object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'description') and self.description is not None:
            _dict['description'] = self.description
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this UpdateDocumentClassifier object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'UpdateDocumentClassifier') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'UpdateDocumentClassifier') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class WebhookHeader:
    """
    An array of headers to pass with the HTTP request. Optional when `type` is `webhook`.
    Not valid when creating any other type of enrichment.

    :param str name: The name of an HTTP header.
    :param str value: The value of an HTTP header.
    """

    def __init__(
        self,
        name: str,
        value: str,
    ) -> None:
        """
        Initialize a WebhookHeader object.

        :param str name: The name of an HTTP header.
        :param str value: The value of an HTTP header.
        """
        self.name = name
        self.value = value

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'WebhookHeader':
        """Initialize a WebhookHeader object from a json dictionary."""
        args = {}
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        else:
            raise ValueError(
                'Required property \'name\' not present in WebhookHeader JSON')
        if (value := _dict.get('value')) is not None:
            args['value'] = value
        else:
            raise ValueError(
                'Required property \'value\' not present in WebhookHeader JSON')
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a WebhookHeader object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'value') and self.value is not None:
            _dict['value'] = self.value
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this WebhookHeader object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'WebhookHeader') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'WebhookHeader') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class PullBatchesResponse:
    """
    A compressed newline delimited JSON (NDJSON) file containing the document. The NDJSON
    format is used to describe structured data. The file name format is
    `{batch_id}.ndjson.gz`. For more information, see [Binary attachment from the pull
    batches
    method](/docs/discovery-data?topic=discovery-data-external-enrichment#binary-attachment-pull-batches).

    :param str file: (optional) A compressed NDJSON file containing the document.
    """

    def __init__(
        self,
        *,
        file: Optional[str] = None,
    ) -> None:
        """
        Initialize a PullBatchesResponse object.

        :param str file: (optional) A compressed NDJSON file containing the
               document.
        """
        self.file = file

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'PullBatchesResponse':
        """Initialize a PullBatchesResponse object from a json dictionary."""
        args = {}
        if (file := _dict.get('file')) is not None:
            args['file'] = file
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a PullBatchesResponse object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'file') and self.file is not None:
            _dict['file'] = self.file
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this PullBatchesResponse object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'PullBatchesResponse') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'PullBatchesResponse') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryAggregationQueryCalculationAggregation(QueryAggregation):
    """
    Returns a scalar calculation across all documents for the field specified. Possible
    calculations include min, max, sum, average, and unique_count.

    :param str type: (optional) Specifies the calculation type, such as 'average`,
          `max`, `min`, `sum`, or `unique_count`.
    :param str field: The field to perform the calculation on.
    :param float value: (optional) The value of the calculation.
    """

    def __init__(
        self,
        field: str,
        *,
        type: Optional[str] = None,
        value: Optional[float] = None,
    ) -> None:
        """
        Initialize a QueryAggregationQueryCalculationAggregation object.

        :param str field: The field to perform the calculation on.
        :param str type: (optional) Specifies the calculation type, such as
               'average`, `max`, `min`, `sum`, or `unique_count`.
        :param float value: (optional) The value of the calculation.
        """
        # pylint: disable=super-init-not-called
        self.type = type
        self.field = field
        self.value = value

    @classmethod
    def from_dict(cls,
                  _dict: Dict) -> 'QueryAggregationQueryCalculationAggregation':
        """Initialize a QueryAggregationQueryCalculationAggregation object from a json dictionary."""
        args = {}
        if (type := _dict.get('type')) is not None:
            args['type'] = type
        if (field := _dict.get('field')) is not None:
            args['field'] = field
        else:
            raise ValueError(
                'Required property \'field\' not present in QueryAggregationQueryCalculationAggregation JSON'
            )
        if (value := _dict.get('value')) is not None:
            args['value'] = value
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryAggregationQueryCalculationAggregation object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'type') and self.type is not None:
            _dict['type'] = self.type
        if hasattr(self, 'field') and self.field is not None:
            _dict['field'] = self.field
        if hasattr(self, 'value') and self.value is not None:
            _dict['value'] = self.value
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryAggregationQueryCalculationAggregation object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self,
               other: 'QueryAggregationQueryCalculationAggregation') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self,
               other: 'QueryAggregationQueryCalculationAggregation') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryAggregationQueryFilterAggregation(QueryAggregation):
    """
    A modifier that narrows the document set of the subaggregations it precedes.

    :param str type: (optional) Specifies that the aggregation type is `filter`.
    :param str match: The filter that is written in Discovery Query Language syntax
          and is applied to the documents before subaggregations are run.
    :param int matching_results: Number of documents that match the filter.
    :param List[dict] aggregations: (optional) An array of subaggregations.
    """

    def __init__(
        self,
        match: str,
        matching_results: int,
        *,
        type: Optional[str] = None,
        aggregations: Optional[List[dict]] = None,
    ) -> None:
        """
        Initialize a QueryAggregationQueryFilterAggregation object.

        :param str match: The filter that is written in Discovery Query Language
               syntax and is applied to the documents before subaggregations are run.
        :param int matching_results: Number of documents that match the filter.
        :param str type: (optional) Specifies that the aggregation type is
               `filter`.
        :param List[dict] aggregations: (optional) An array of subaggregations.
        """
        # pylint: disable=super-init-not-called
        self.type = type
        self.match = match
        self.matching_results = matching_results
        self.aggregations = aggregations

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryAggregationQueryFilterAggregation':
        """Initialize a QueryAggregationQueryFilterAggregation object from a json dictionary."""
        args = {}
        if (type := _dict.get('type')) is not None:
            args['type'] = type
        if (match := _dict.get('match')) is not None:
            args['match'] = match
        else:
            raise ValueError(
                'Required property \'match\' not present in QueryAggregationQueryFilterAggregation JSON'
            )
        if (matching_results := _dict.get('matching_results')) is not None:
            args['matching_results'] = matching_results
        else:
            raise ValueError(
                'Required property \'matching_results\' not present in QueryAggregationQueryFilterAggregation JSON'
            )
        if (aggregations := _dict.get('aggregations')) is not None:
            args['aggregations'] = aggregations
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryAggregationQueryFilterAggregation object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'type') and self.type is not None:
            _dict['type'] = self.type
        if hasattr(self, 'match') and self.match is not None:
            _dict['match'] = self.match
        if hasattr(self,
                   'matching_results') and self.matching_results is not None:
            _dict['matching_results'] = self.matching_results
        if hasattr(self, 'aggregations') and self.aggregations is not None:
            _dict['aggregations'] = self.aggregations
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryAggregationQueryFilterAggregation object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryAggregationQueryFilterAggregation') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryAggregationQueryFilterAggregation') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryAggregationQueryGroupByAggregation(QueryAggregation):
    """
    Separates document results into groups that meet the conditions you specify.

    :param str type: (optional) Specifies that the aggregation type is `group_by`.
    :param List[QueryGroupByAggregationResult] results: (optional) An array of
          results.
    """

    def __init__(
        self,
        *,
        type: Optional[str] = None,
        results: Optional[List['QueryGroupByAggregationResult']] = None,
    ) -> None:
        """
        Initialize a QueryAggregationQueryGroupByAggregation object.

        :param str type: (optional) Specifies that the aggregation type is
               `group_by`.
        :param List[QueryGroupByAggregationResult] results: (optional) An array of
               results.
        """
        # pylint: disable=super-init-not-called
        self.type = type
        self.results = results

    @classmethod
    def from_dict(cls,
                  _dict: Dict) -> 'QueryAggregationQueryGroupByAggregation':
        """Initialize a QueryAggregationQueryGroupByAggregation object from a json dictionary."""
        args = {}
        if (type := _dict.get('type')) is not None:
            args['type'] = type
        if (results := _dict.get('results')) is not None:
            args['results'] = [
                QueryGroupByAggregationResult.from_dict(v) for v in results
            ]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryAggregationQueryGroupByAggregation object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'type') and self.type is not None:
            _dict['type'] = self.type
        if hasattr(self, 'results') and self.results is not None:
            results_list = []
            for v in self.results:
                if isinstance(v, dict):
                    results_list.append(v)
                else:
                    results_list.append(v.to_dict())
            _dict['results'] = results_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryAggregationQueryGroupByAggregation object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryAggregationQueryGroupByAggregation') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryAggregationQueryGroupByAggregation') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryAggregationQueryHistogramAggregation(QueryAggregation):
    """
    Numeric interval segments to categorize documents by using field values from a single
    numeric field to describe the category.

    :param str type: (optional) Specifies that the aggregation type is `histogram`.
    :param str field: The numeric field name used to create the histogram.
    :param int interval: The size of the sections that the results are split into.
    :param str name: (optional) Identifier that can optionally be specified in the
          query request of this aggregation.
    :param List[QueryHistogramAggregationResult] results: (optional) Array of
          numeric intervals.
    """

    def __init__(
        self,
        field: str,
        interval: int,
        *,
        type: Optional[str] = None,
        name: Optional[str] = None,
        results: Optional[List['QueryHistogramAggregationResult']] = None,
    ) -> None:
        """
        Initialize a QueryAggregationQueryHistogramAggregation object.

        :param str field: The numeric field name used to create the histogram.
        :param int interval: The size of the sections that the results are split
               into.
        :param str type: (optional) Specifies that the aggregation type is
               `histogram`.
        :param str name: (optional) Identifier that can optionally be specified in
               the query request of this aggregation.
        :param List[QueryHistogramAggregationResult] results: (optional) Array of
               numeric intervals.
        """
        # pylint: disable=super-init-not-called
        self.type = type
        self.field = field
        self.interval = interval
        self.name = name
        self.results = results

    @classmethod
    def from_dict(cls,
                  _dict: Dict) -> 'QueryAggregationQueryHistogramAggregation':
        """Initialize a QueryAggregationQueryHistogramAggregation object from a json dictionary."""
        args = {}
        if (type := _dict.get('type')) is not None:
            args['type'] = type
        if (field := _dict.get('field')) is not None:
            args['field'] = field
        else:
            raise ValueError(
                'Required property \'field\' not present in QueryAggregationQueryHistogramAggregation JSON'
            )
        if (interval := _dict.get('interval')) is not None:
            args['interval'] = interval
        else:
            raise ValueError(
                'Required property \'interval\' not present in QueryAggregationQueryHistogramAggregation JSON'
            )
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        if (results := _dict.get('results')) is not None:
            args['results'] = [
                QueryHistogramAggregationResult.from_dict(v) for v in results
            ]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryAggregationQueryHistogramAggregation object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'type') and self.type is not None:
            _dict['type'] = self.type
        if hasattr(self, 'field') and self.field is not None:
            _dict['field'] = self.field
        if hasattr(self, 'interval') and self.interval is not None:
            _dict['interval'] = self.interval
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'results') and self.results is not None:
            results_list = []
            for v in self.results:
                if isinstance(v, dict):
                    results_list.append(v)
                else:
                    results_list.append(v.to_dict())
            _dict['results'] = results_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryAggregationQueryHistogramAggregation object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self,
               other: 'QueryAggregationQueryHistogramAggregation') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self,
               other: 'QueryAggregationQueryHistogramAggregation') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryAggregationQueryNestedAggregation(QueryAggregation):
    """
    A restriction that alters the document set that is used by the aggregations that it
    precedes. Subsequent aggregations are applied to nested documents from the specified
    field.

    :param str type: (optional) Specifies that the aggregation type is `nested`.
    :param str path: The path to the document field to scope subsequent aggregations
          to.
    :param int matching_results: Number of nested documents found in the specified
          field.
    :param List[dict] aggregations: (optional) An array of subaggregations.
    """

    def __init__(
        self,
        path: str,
        matching_results: int,
        *,
        type: Optional[str] = None,
        aggregations: Optional[List[dict]] = None,
    ) -> None:
        """
        Initialize a QueryAggregationQueryNestedAggregation object.

        :param str path: The path to the document field to scope subsequent
               aggregations to.
        :param int matching_results: Number of nested documents found in the
               specified field.
        :param str type: (optional) Specifies that the aggregation type is
               `nested`.
        :param List[dict] aggregations: (optional) An array of subaggregations.
        """
        # pylint: disable=super-init-not-called
        self.type = type
        self.path = path
        self.matching_results = matching_results
        self.aggregations = aggregations

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryAggregationQueryNestedAggregation':
        """Initialize a QueryAggregationQueryNestedAggregation object from a json dictionary."""
        args = {}
        if (type := _dict.get('type')) is not None:
            args['type'] = type
        if (path := _dict.get('path')) is not None:
            args['path'] = path
        else:
            raise ValueError(
                'Required property \'path\' not present in QueryAggregationQueryNestedAggregation JSON'
            )
        if (matching_results := _dict.get('matching_results')) is not None:
            args['matching_results'] = matching_results
        else:
            raise ValueError(
                'Required property \'matching_results\' not present in QueryAggregationQueryNestedAggregation JSON'
            )
        if (aggregations := _dict.get('aggregations')) is not None:
            args['aggregations'] = aggregations
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryAggregationQueryNestedAggregation object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'type') and self.type is not None:
            _dict['type'] = self.type
        if hasattr(self, 'path') and self.path is not None:
            _dict['path'] = self.path
        if hasattr(self,
                   'matching_results') and self.matching_results is not None:
            _dict['matching_results'] = self.matching_results
        if hasattr(self, 'aggregations') and self.aggregations is not None:
            _dict['aggregations'] = self.aggregations
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryAggregationQueryNestedAggregation object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryAggregationQueryNestedAggregation') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryAggregationQueryNestedAggregation') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryAggregationQueryPairAggregation(QueryAggregation):
    """
    Calculates relevancy values using combinations of document sets from results of the
    specified pair of aggregations.

    :param str type: (optional) Specifies that the aggregation type is `pair`.
    :param str first: (optional) Specifies the first aggregation in the pair. The
          aggregation must be a `term`, `group_by`, `histogram`, or `timeslice`
          aggregation type.
    :param str second: (optional) Specifies the second aggregation in the pair. The
          aggregation must be a `term`, `group_by`, `histogram`, or `timeslice`
          aggregation type.
    :param bool show_estimated_matching_results: (optional) Indicates whether to
          include estimated matching result information.
    :param bool show_total_matching_documents: (optional) Indicates whether to
          include total matching documents information.
    :param List[QueryPairAggregationResult] results: (optional) An array of
          aggregations.
    """

    def __init__(
        self,
        *,
        type: Optional[str] = None,
        first: Optional[str] = None,
        second: Optional[str] = None,
        show_estimated_matching_results: Optional[bool] = None,
        show_total_matching_documents: Optional[bool] = None,
        results: Optional[List['QueryPairAggregationResult']] = None,
    ) -> None:
        """
        Initialize a QueryAggregationQueryPairAggregation object.

        :param str type: (optional) Specifies that the aggregation type is `pair`.
        :param str first: (optional) Specifies the first aggregation in the pair.
               The aggregation must be a `term`, `group_by`, `histogram`, or `timeslice`
               aggregation type.
        :param str second: (optional) Specifies the second aggregation in the pair.
               The aggregation must be a `term`, `group_by`, `histogram`, or `timeslice`
               aggregation type.
        :param bool show_estimated_matching_results: (optional) Indicates whether
               to include estimated matching result information.
        :param bool show_total_matching_documents: (optional) Indicates whether to
               include total matching documents information.
        :param List[QueryPairAggregationResult] results: (optional) An array of
               aggregations.
        """
        # pylint: disable=super-init-not-called
        self.type = type
        self.first = first
        self.second = second
        self.show_estimated_matching_results = show_estimated_matching_results
        self.show_total_matching_documents = show_total_matching_documents
        self.results = results

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryAggregationQueryPairAggregation':
        """Initialize a QueryAggregationQueryPairAggregation object from a json dictionary."""
        args = {}
        if (type := _dict.get('type')) is not None:
            args['type'] = type
        if (first := _dict.get('first')) is not None:
            args['first'] = first
        if (second := _dict.get('second')) is not None:
            args['second'] = second
        if (show_estimated_matching_results :=
                _dict.get('show_estimated_matching_results')) is not None:
            args[
                'show_estimated_matching_results'] = show_estimated_matching_results
        if (show_total_matching_documents :=
                _dict.get('show_total_matching_documents')) is not None:
            args[
                'show_total_matching_documents'] = show_total_matching_documents
        if (results := _dict.get('results')) is not None:
            args['results'] = [
                QueryPairAggregationResult.from_dict(v) for v in results
            ]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryAggregationQueryPairAggregation object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'type') and self.type is not None:
            _dict['type'] = self.type
        if hasattr(self, 'first') and self.first is not None:
            _dict['first'] = self.first
        if hasattr(self, 'second') and self.second is not None:
            _dict['second'] = self.second
        if hasattr(self, 'show_estimated_matching_results'
                  ) and self.show_estimated_matching_results is not None:
            _dict[
                'show_estimated_matching_results'] = self.show_estimated_matching_results
        if hasattr(self, 'show_total_matching_documents'
                  ) and self.show_total_matching_documents is not None:
            _dict[
                'show_total_matching_documents'] = self.show_total_matching_documents
        if hasattr(self, 'results') and self.results is not None:
            results_list = []
            for v in self.results:
                if isinstance(v, dict):
                    results_list.append(v)
                else:
                    results_list.append(v.to_dict())
            _dict['results'] = results_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryAggregationQueryPairAggregation object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryAggregationQueryPairAggregation') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryAggregationQueryPairAggregation') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryAggregationQueryTermAggregation(QueryAggregation):
    """
    Returns results from the field that is specified.

    :param str type: (optional) Specifies that the aggregation type is `term`.
    :param str field: (optional) The field in the document where the values come
          from.
    :param int count: (optional) The number of results returned. Not returned if
          `relevancy:true` is specified in the request.
    :param str name: (optional) Identifier specified in the query request of this
          aggregation. Not returned if `relevancy:true` is specified in the request.
    :param List[QueryTermAggregationResult] results: (optional) An array of results.
    """

    def __init__(
        self,
        *,
        type: Optional[str] = None,
        field: Optional[str] = None,
        count: Optional[int] = None,
        name: Optional[str] = None,
        results: Optional[List['QueryTermAggregationResult']] = None,
    ) -> None:
        """
        Initialize a QueryAggregationQueryTermAggregation object.

        :param str type: (optional) Specifies that the aggregation type is `term`.
        :param str field: (optional) The field in the document where the values
               come from.
        :param int count: (optional) The number of results returned. Not returned
               if `relevancy:true` is specified in the request.
        :param str name: (optional) Identifier specified in the query request of
               this aggregation. Not returned if `relevancy:true` is specified in the
               request.
        :param List[QueryTermAggregationResult] results: (optional) An array of
               results.
        """
        # pylint: disable=super-init-not-called
        self.type = type
        self.field = field
        self.count = count
        self.name = name
        self.results = results

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryAggregationQueryTermAggregation':
        """Initialize a QueryAggregationQueryTermAggregation object from a json dictionary."""
        args = {}
        if (type := _dict.get('type')) is not None:
            args['type'] = type
        if (field := _dict.get('field')) is not None:
            args['field'] = field
        if (count := _dict.get('count')) is not None:
            args['count'] = count
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        if (results := _dict.get('results')) is not None:
            args['results'] = [
                QueryTermAggregationResult.from_dict(v) for v in results
            ]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryAggregationQueryTermAggregation object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'type') and self.type is not None:
            _dict['type'] = self.type
        if hasattr(self, 'field') and self.field is not None:
            _dict['field'] = self.field
        if hasattr(self, 'count') and self.count is not None:
            _dict['count'] = self.count
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'results') and self.results is not None:
            results_list = []
            for v in self.results:
                if isinstance(v, dict):
                    results_list.append(v)
                else:
                    results_list.append(v.to_dict())
            _dict['results'] = results_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryAggregationQueryTermAggregation object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryAggregationQueryTermAggregation') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryAggregationQueryTermAggregation') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryAggregationQueryTimesliceAggregation(QueryAggregation):
    """
    A specialized histogram aggregation that uses dates to create interval segments.

    :param str type: (optional) Specifies that the aggregation type is `timeslice`.
    :param str field: The date field name used to create the timeslice.
    :param str interval: The date interval value. Valid values are seconds, minutes,
          hours, days, weeks, and years.
    :param str name: (optional) Identifier that can optionally be specified in the
          query request of this aggregation.
    :param List[QueryTimesliceAggregationResult] results: (optional) Array of
          aggregation results.
    """

    def __init__(
        self,
        field: str,
        interval: str,
        *,
        type: Optional[str] = None,
        name: Optional[str] = None,
        results: Optional[List['QueryTimesliceAggregationResult']] = None,
    ) -> None:
        """
        Initialize a QueryAggregationQueryTimesliceAggregation object.

        :param str field: The date field name used to create the timeslice.
        :param str interval: The date interval value. Valid values are seconds,
               minutes, hours, days, weeks, and years.
        :param str type: (optional) Specifies that the aggregation type is
               `timeslice`.
        :param str name: (optional) Identifier that can optionally be specified in
               the query request of this aggregation.
        :param List[QueryTimesliceAggregationResult] results: (optional) Array of
               aggregation results.
        """
        # pylint: disable=super-init-not-called
        self.type = type
        self.field = field
        self.interval = interval
        self.name = name
        self.results = results

    @classmethod
    def from_dict(cls,
                  _dict: Dict) -> 'QueryAggregationQueryTimesliceAggregation':
        """Initialize a QueryAggregationQueryTimesliceAggregation object from a json dictionary."""
        args = {}
        if (type := _dict.get('type')) is not None:
            args['type'] = type
        if (field := _dict.get('field')) is not None:
            args['field'] = field
        else:
            raise ValueError(
                'Required property \'field\' not present in QueryAggregationQueryTimesliceAggregation JSON'
            )
        if (interval := _dict.get('interval')) is not None:
            args['interval'] = interval
        else:
            raise ValueError(
                'Required property \'interval\' not present in QueryAggregationQueryTimesliceAggregation JSON'
            )
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        if (results := _dict.get('results')) is not None:
            args['results'] = [
                QueryTimesliceAggregationResult.from_dict(v) for v in results
            ]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryAggregationQueryTimesliceAggregation object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'type') and self.type is not None:
            _dict['type'] = self.type
        if hasattr(self, 'field') and self.field is not None:
            _dict['field'] = self.field
        if hasattr(self, 'interval') and self.interval is not None:
            _dict['interval'] = self.interval
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'results') and self.results is not None:
            results_list = []
            for v in self.results:
                if isinstance(v, dict):
                    results_list.append(v)
                else:
                    results_list.append(v.to_dict())
            _dict['results'] = results_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryAggregationQueryTimesliceAggregation object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self,
               other: 'QueryAggregationQueryTimesliceAggregation') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self,
               other: 'QueryAggregationQueryTimesliceAggregation') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryAggregationQueryTopHitsAggregation(QueryAggregation):
    """
    Returns the top documents ranked by the score of the query.

    :param str type: (optional) Specifies that the aggregation type is `top_hits`.
    :param int size: The number of documents to return.
    :param str name: (optional) Identifier specified in the query request of this
          aggregation.
    :param QueryTopHitsAggregationResult hits: (optional) A query response that
          contains the matching documents for the preceding aggregations.
    """

    def __init__(
        self,
        size: int,
        *,
        type: Optional[str] = None,
        name: Optional[str] = None,
        hits: Optional['QueryTopHitsAggregationResult'] = None,
    ) -> None:
        """
        Initialize a QueryAggregationQueryTopHitsAggregation object.

        :param int size: The number of documents to return.
        :param str type: (optional) Specifies that the aggregation type is
               `top_hits`.
        :param str name: (optional) Identifier specified in the query request of
               this aggregation.
        :param QueryTopHitsAggregationResult hits: (optional) A query response that
               contains the matching documents for the preceding aggregations.
        """
        # pylint: disable=super-init-not-called
        self.type = type
        self.size = size
        self.name = name
        self.hits = hits

    @classmethod
    def from_dict(cls,
                  _dict: Dict) -> 'QueryAggregationQueryTopHitsAggregation':
        """Initialize a QueryAggregationQueryTopHitsAggregation object from a json dictionary."""
        args = {}
        if (type := _dict.get('type')) is not None:
            args['type'] = type
        if (size := _dict.get('size')) is not None:
            args['size'] = size
        else:
            raise ValueError(
                'Required property \'size\' not present in QueryAggregationQueryTopHitsAggregation JSON'
            )
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        if (hits := _dict.get('hits')) is not None:
            args['hits'] = QueryTopHitsAggregationResult.from_dict(hits)
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryAggregationQueryTopHitsAggregation object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'type') and self.type is not None:
            _dict['type'] = self.type
        if hasattr(self, 'size') and self.size is not None:
            _dict['size'] = self.size
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'hits') and self.hits is not None:
            if isinstance(self.hits, dict):
                _dict['hits'] = self.hits
            else:
                _dict['hits'] = self.hits.to_dict()
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryAggregationQueryTopHitsAggregation object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryAggregationQueryTopHitsAggregation') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryAggregationQueryTopHitsAggregation') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryAggregationQueryTopicAggregation(QueryAggregation):
    """
    Detects how much the frequency of a given facet value deviates from the expected
    average for the given time period. This aggregation type does not use data from
    previous time periods. It calculates an index by using the averages of frequency
    counts of other facet values for the given time period.

    :param str type: (optional) Specifies that the aggregation type is `topic`.
    :param str facet: (optional) Specifies the `term` or `group_by` aggregation for
          the facet that you want to analyze.
    :param str time_segments: (optional) Specifies the `timeslice` aggregation that
          defines the time segments.
    :param bool show_estimated_matching_results: (optional) Indicates whether to
          include estimated matching result information.
    :param bool show_total_matching_documents: (optional) Indicates whether to
          include total matching documents information.
    :param List[QueryTopicAggregationResult] results: (optional) An array of
          aggregations.
    """

    def __init__(
        self,
        *,
        type: Optional[str] = None,
        facet: Optional[str] = None,
        time_segments: Optional[str] = None,
        show_estimated_matching_results: Optional[bool] = None,
        show_total_matching_documents: Optional[bool] = None,
        results: Optional[List['QueryTopicAggregationResult']] = None,
    ) -> None:
        """
        Initialize a QueryAggregationQueryTopicAggregation object.

        :param str type: (optional) Specifies that the aggregation type is `topic`.
        :param str facet: (optional) Specifies the `term` or `group_by` aggregation
               for the facet that you want to analyze.
        :param str time_segments: (optional) Specifies the `timeslice` aggregation
               that defines the time segments.
        :param bool show_estimated_matching_results: (optional) Indicates whether
               to include estimated matching result information.
        :param bool show_total_matching_documents: (optional) Indicates whether to
               include total matching documents information.
        :param List[QueryTopicAggregationResult] results: (optional) An array of
               aggregations.
        """
        # pylint: disable=super-init-not-called
        self.type = type
        self.facet = facet
        self.time_segments = time_segments
        self.show_estimated_matching_results = show_estimated_matching_results
        self.show_total_matching_documents = show_total_matching_documents
        self.results = results

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryAggregationQueryTopicAggregation':
        """Initialize a QueryAggregationQueryTopicAggregation object from a json dictionary."""
        args = {}
        if (type := _dict.get('type')) is not None:
            args['type'] = type
        if (facet := _dict.get('facet')) is not None:
            args['facet'] = facet
        if (time_segments := _dict.get('time_segments')) is not None:
            args['time_segments'] = time_segments
        if (show_estimated_matching_results :=
                _dict.get('show_estimated_matching_results')) is not None:
            args[
                'show_estimated_matching_results'] = show_estimated_matching_results
        if (show_total_matching_documents :=
                _dict.get('show_total_matching_documents')) is not None:
            args[
                'show_total_matching_documents'] = show_total_matching_documents
        if (results := _dict.get('results')) is not None:
            args['results'] = [
                QueryTopicAggregationResult.from_dict(v) for v in results
            ]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryAggregationQueryTopicAggregation object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'type') and self.type is not None:
            _dict['type'] = self.type
        if hasattr(self, 'facet') and self.facet is not None:
            _dict['facet'] = self.facet
        if hasattr(self, 'time_segments') and self.time_segments is not None:
            _dict['time_segments'] = self.time_segments
        if hasattr(self, 'show_estimated_matching_results'
                  ) and self.show_estimated_matching_results is not None:
            _dict[
                'show_estimated_matching_results'] = self.show_estimated_matching_results
        if hasattr(self, 'show_total_matching_documents'
                  ) and self.show_total_matching_documents is not None:
            _dict[
                'show_total_matching_documents'] = self.show_total_matching_documents
        if hasattr(self, 'results') and self.results is not None:
            results_list = []
            for v in self.results:
                if isinstance(v, dict):
                    results_list.append(v)
                else:
                    results_list.append(v.to_dict())
            _dict['results'] = results_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryAggregationQueryTopicAggregation object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryAggregationQueryTopicAggregation') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryAggregationQueryTopicAggregation') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class QueryAggregationQueryTrendAggregation(QueryAggregation):
    """
    Detects sharp and unexpected changes in the frequency of a facet or facet value over
    time based on the past history of frequency changes of the facet value.

    :param str type: (optional) Specifies that the aggregation type is `trend`.
    :param str facet: (optional) Specifies the `term` or `group_by` aggregation for
          the facet that you want to analyze.
    :param str time_segments: (optional) Specifies the `timeslice` aggregation that
          defines the time segments.
    :param bool show_estimated_matching_results: (optional) Indicates whether to
          include estimated matching result information.
    :param bool show_total_matching_documents: (optional) Indicates whether to
          include total matching documents information.
    :param List[QueryTrendAggregationResult] results: (optional) An array of
          aggregations.
    """

    def __init__(
        self,
        *,
        type: Optional[str] = None,
        facet: Optional[str] = None,
        time_segments: Optional[str] = None,
        show_estimated_matching_results: Optional[bool] = None,
        show_total_matching_documents: Optional[bool] = None,
        results: Optional[List['QueryTrendAggregationResult']] = None,
    ) -> None:
        """
        Initialize a QueryAggregationQueryTrendAggregation object.

        :param str type: (optional) Specifies that the aggregation type is `trend`.
        :param str facet: (optional) Specifies the `term` or `group_by` aggregation
               for the facet that you want to analyze.
        :param str time_segments: (optional) Specifies the `timeslice` aggregation
               that defines the time segments.
        :param bool show_estimated_matching_results: (optional) Indicates whether
               to include estimated matching result information.
        :param bool show_total_matching_documents: (optional) Indicates whether to
               include total matching documents information.
        :param List[QueryTrendAggregationResult] results: (optional) An array of
               aggregations.
        """
        # pylint: disable=super-init-not-called
        self.type = type
        self.facet = facet
        self.time_segments = time_segments
        self.show_estimated_matching_results = show_estimated_matching_results
        self.show_total_matching_documents = show_total_matching_documents
        self.results = results

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'QueryAggregationQueryTrendAggregation':
        """Initialize a QueryAggregationQueryTrendAggregation object from a json dictionary."""
        args = {}
        if (type := _dict.get('type')) is not None:
            args['type'] = type
        if (facet := _dict.get('facet')) is not None:
            args['facet'] = facet
        if (time_segments := _dict.get('time_segments')) is not None:
            args['time_segments'] = time_segments
        if (show_estimated_matching_results :=
                _dict.get('show_estimated_matching_results')) is not None:
            args[
                'show_estimated_matching_results'] = show_estimated_matching_results
        if (show_total_matching_documents :=
                _dict.get('show_total_matching_documents')) is not None:
            args[
                'show_total_matching_documents'] = show_total_matching_documents
        if (results := _dict.get('results')) is not None:
            args['results'] = [
                QueryTrendAggregationResult.from_dict(v) for v in results
            ]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a QueryAggregationQueryTrendAggregation object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'type') and self.type is not None:
            _dict['type'] = self.type
        if hasattr(self, 'facet') and self.facet is not None:
            _dict['facet'] = self.facet
        if hasattr(self, 'time_segments') and self.time_segments is not None:
            _dict['time_segments'] = self.time_segments
        if hasattr(self, 'show_estimated_matching_results'
                  ) and self.show_estimated_matching_results is not None:
            _dict[
                'show_estimated_matching_results'] = self.show_estimated_matching_results
        if hasattr(self, 'show_total_matching_documents'
                  ) and self.show_total_matching_documents is not None:
            _dict[
                'show_total_matching_documents'] = self.show_total_matching_documents
        if hasattr(self, 'results') and self.results is not None:
            results_list = []
            for v in self.results:
                if isinstance(v, dict):
                    results_list.append(v)
                else:
                    results_list.append(v.to_dict())
            _dict['results'] = results_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this QueryAggregationQueryTrendAggregation object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'QueryAggregationQueryTrendAggregation') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'QueryAggregationQueryTrendAggregation') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other