File: speech_to_text_v1.py

package info (click to toggle)
python-watson-developer-cloud 9.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,204 kB
  • sloc: python: 39,056; makefile: 7
file content (9536 lines) | stat: -rw-r--r-- 475,966 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
# coding: utf-8

# (C) Copyright IBM Corp. 2015, 2024.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# IBM OpenAPI SDK Code Generator Version: 3.97.0-0e90eab1-20241120-170029
"""
The IBM Watson™ Speech to Text service provides APIs that use IBM's
speech-recognition capabilities to produce transcripts of spoken audio. The service can
transcribe speech from various languages and audio formats. In addition to basic
transcription, the service can produce detailed information about many different aspects
of the audio. It returns all JSON response content in the UTF-8 character set.
The service supports two types of models: previous-generation models that include the
terms `Broadband` and `Narrowband` in their names, and next-generation models that include
the terms `Multimedia` and `Telephony` in their names. Broadband and multimedia models
have minimum sampling rates of 16 kHz. Narrowband and telephony models have minimum
sampling rates of 8 kHz. The next-generation models offer high throughput and greater
transcription accuracy.
Effective **31 July 2023**, all previous-generation models will be removed from the
service and the documentation. Most previous-generation models were deprecated on 15 March
2022. You must migrate to the equivalent large speech model or next-generation model by 31
July 2023. For more information, see [Migrating to large speech
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-migrate).{:
deprecated}
For speech recognition, the service supports synchronous and asynchronous HTTP
Representational State Transfer (REST) interfaces. It also supports a WebSocket interface
that provides a full-duplex, low-latency communication channel: Clients send requests and
audio to the service and receive results over a single connection asynchronously.
The service also offers two customization interfaces. Use language model customization to
expand the vocabulary of a base model with domain-specific terminology. Use acoustic model
customization to adapt a base model for the acoustic characteristics of your audio. For
language model customization, the service also supports grammars. A grammar is a formal
language specification that lets you restrict the phrases that the service can recognize.
Language model customization and grammars are available for most previous- and
next-generation models. Acoustic model customization is available for all
previous-generation models.

API Version: 1.0.0
See: https://cloud.ibm.com/docs/speech-to-text
"""

from enum import Enum
from typing import BinaryIO, Dict, List, Optional
import json

from ibm_cloud_sdk_core import BaseService, DetailedResponse
from ibm_cloud_sdk_core.authenticators.authenticator import Authenticator
from ibm_cloud_sdk_core.get_authenticator import get_authenticator_from_environment
from ibm_cloud_sdk_core.utils import convert_list, convert_model

from .common import get_sdk_headers

##############################################################################
# Service
##############################################################################


class SpeechToTextV1(BaseService):
    """The Speech to Text V1 service."""

    DEFAULT_SERVICE_URL = 'https://api.us-south.speech-to-text.watson.cloud.ibm.com'
    DEFAULT_SERVICE_NAME = 'speech_to_text'

    def __init__(
        self,
        authenticator: Authenticator = None,
        service_name: str = DEFAULT_SERVICE_NAME,
    ) -> None:
        """
        Construct a new client for the Speech to Text service.

        :param Authenticator authenticator: The authenticator specifies the authentication mechanism.
               Get up to date information from https://github.com/IBM/python-sdk-core/blob/main/README.md
               about initializing the authenticator of your choice.
        """
        if not authenticator:
            authenticator = get_authenticator_from_environment(service_name)
        BaseService.__init__(self,
                             service_url=self.DEFAULT_SERVICE_URL,
                             authenticator=authenticator)
        self.configure_service(service_name)

    #########################
    # Models
    #########################

    def list_models(
        self,
        **kwargs,
    ) -> DetailedResponse:
        """
        List models.

        Lists all language models that are available for use with the service. The
        information includes the name of the model and its minimum sampling rate in Hertz,
        among other things. The ordering of the list of models can change from call to
        call; do not rely on an alphabetized or static list of models.
        **See also:** [Listing all
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-list#models-list-all).

        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `SpeechModels` object
        """

        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='list_models',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        url = '/v1/models'
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    def get_model(
        self,
        model_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Get a model.

        Gets information for a single specified language model that is available for use
        with the service. The information includes the name of the model and its minimum
        sampling rate in Hertz, among other things.
        **See also:** [Listing a specific
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-list#models-list-specific).

        :param str model_id: The identifier of the model in the form of its name
               from the output of the [List models](#listmodels) method.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `SpeechModel` object
        """

        if not model_id:
            raise ValueError('model_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='get_model',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['model_id']
        path_param_values = self.encode_path_vars(model_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/models/{model_id}'.format(**path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    #########################
    # Synchronous
    #########################

    def recognize(
        self,
        audio: BinaryIO,
        *,
        content_type: Optional[str] = None,
        model: Optional[str] = None,
        speech_begin_event: Optional[bool] = None,
        language_customization_id: Optional[str] = None,
        acoustic_customization_id: Optional[str] = None,
        base_model_version: Optional[str] = None,
        customization_weight: Optional[float] = None,
        inactivity_timeout: Optional[int] = None,
        keywords: Optional[List[str]] = None,
        keywords_threshold: Optional[float] = None,
        max_alternatives: Optional[int] = None,
        word_alternatives_threshold: Optional[float] = None,
        word_confidence: Optional[bool] = None,
        timestamps: Optional[bool] = None,
        profanity_filter: Optional[bool] = None,
        smart_formatting: Optional[bool] = None,
        smart_formatting_version: Optional[int] = None,
        speaker_labels: Optional[bool] = None,
        grammar_name: Optional[str] = None,
        redaction: Optional[bool] = None,
        audio_metrics: Optional[bool] = None,
        end_of_phrase_silence_time: Optional[float] = None,
        split_transcript_at_phrase_end: Optional[bool] = None,
        speech_detector_sensitivity: Optional[float] = None,
        background_audio_suppression: Optional[float] = None,
        low_latency: Optional[bool] = None,
        character_insertion_bias: Optional[float] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Recognize audio.

        Sends audio and returns transcription results for a recognition request. You can
        pass a maximum of 100 MB and a minimum of 100 bytes of audio with a request. The
        service automatically detects the endianness of the incoming audio and, for audio
        that includes multiple channels, downmixes the audio to one-channel mono during
        transcoding. The method returns only final results; to enable interim results, use
        the WebSocket API. (With the `curl` command, use the `--data-binary` option to
        upload the file for the request.)
        **See also:** [Making a basic HTTP
        request](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-http#HTTP-basic).
        ### Streaming mode
         For requests to transcribe live audio as it becomes available, you must set the
        `Transfer-Encoding` header to `chunked` to use streaming mode. In streaming mode,
        the service closes the connection (status code 408) if it does not receive at
        least 15 seconds of audio (including silence) in any 30-second period. The service
        also closes the connection (status code 400) if it detects no speech for
        `inactivity_timeout` seconds of streaming audio; use the `inactivity_timeout`
        parameter to change the default of 30 seconds.
        **See also:**
        * [Audio
        transmission](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-input#transmission)
        *
        [Timeouts](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-input#timeouts)
        ### Audio formats (content types)
         The service accepts audio in the following formats (MIME types).
        * For formats that are labeled **Required**, you must use the `Content-Type`
        header with the request to specify the format of the audio.
        * For all other formats, you can omit the `Content-Type` header or specify
        `application/octet-stream` with the header to have the service automatically
        detect the format of the audio. (With the `curl` command, you can specify either
        `"Content-Type:"` or `"Content-Type: application/octet-stream"`.)
        Where indicated, the format that you specify must include the sampling rate and
        can optionally include the number of channels and the endianness of the audio.
        * `audio/alaw` (**Required.** Specify the sampling rate (`rate`) of the audio.)
        * `audio/basic` (**Required.** Use only with narrowband models.)
        * `audio/flac`
        * `audio/g729` (Use only with narrowband models.)
        * `audio/l16` (**Required.** Specify the sampling rate (`rate`) and optionally the
        number of channels (`channels`) and endianness (`endianness`) of the audio.)
        * `audio/mp3`
        * `audio/mpeg`
        * `audio/mulaw` (**Required.** Specify the sampling rate (`rate`) of the audio.)
        * `audio/ogg` (The service automatically detects the codec of the input audio.)
        * `audio/ogg;codecs=opus`
        * `audio/ogg;codecs=vorbis`
        * `audio/wav` (Provide audio with a maximum of nine channels.)
        * `audio/webm` (The service automatically detects the codec of the input audio.)
        * `audio/webm;codecs=opus`
        * `audio/webm;codecs=vorbis`
        The sampling rate of the audio must match the sampling rate of the model for the
        recognition request: for broadband models, at least 16 kHz; for narrowband models,
        at least 8 kHz. If the sampling rate of the audio is higher than the minimum
        required rate, the service down-samples the audio to the appropriate rate. If the
        sampling rate of the audio is lower than the minimum required rate, the request
        fails.
         **See also:** [Supported audio
        formats](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-audio-formats).
        ### Large speech models and Next-generation models
         The service supports large speech models and next-generation `Multimedia` (16
        kHz) and `Telephony` (8 kHz) models for many languages. Large speech models and
        next-generation models have higher throughput than the service's previous
        generation of `Broadband` and `Narrowband` models. When you use large speech
        models and next-generation models, the service can return transcriptions more
        quickly and also provide noticeably better transcription accuracy.
        You specify a large speech model or next-generation model by using the `model`
        query parameter, as you do a previous-generation model. Only the next-generation
        models support the `low_latency` parameter, and all large speech models and
        next-generation models support the `character_insertion_bias` parameter. These
        parameters are not available with previous-generation models.
        Large speech models and next-generation models do not support all of the speech
        recognition parameters that are available for use with previous-generation models.
        Next-generation models do not support the following parameters:
        * `acoustic_customization_id`
        * `keywords` and `keywords_threshold`
        * `processing_metrics` and `processing_metrics_interval`
        * `word_alternatives_threshold`
        **Important:** Effective **31 July 2023**, all previous-generation models will be
        removed from the service and the documentation. Most previous-generation models
        were deprecated on 15 March 2022. You must migrate to the equivalent large speech
        model or next-generation model by 31 July 2023. For more information, see
        [Migrating to large speech
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-migrate).
        **See also:**
        * [Large speech languages and
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-large-speech-languages)
        * [Supported features for large speech
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-large-speech-languages#models-lsm-supported-features)
        * [Next-generation languages and
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-ng)
        * [Supported features for next-generation
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-ng#models-ng-features)
        ### Multipart speech recognition
         **Note:** The asynchronous HTTP interface, WebSocket interface, and Watson SDKs
        do not support multipart speech recognition.
        The HTTP `POST` method of the service also supports multipart speech recognition.
        With multipart requests, you pass all audio data as multipart form data. You
        specify some parameters as request headers and query parameters, but you pass JSON
        metadata as form data to control most aspects of the transcription. You can use
        multipart recognition to pass multiple audio files with a single request.
        Use the multipart approach with browsers for which JavaScript is disabled or when
        the parameters used with the request are greater than the 8 KB limit imposed by
        most HTTP servers and proxies. You can encounter this limit, for example, if you
        want to spot a very large number of keywords.
        **See also:** [Making a multipart HTTP
        request](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-http#HTTP-multi).

        :param BinaryIO audio: The audio to transcribe.
        :param str content_type: (optional) The format (MIME type) of the audio.
               For more information about specifying an audio format, see **Audio formats
               (content types)** in the method description.
        :param str model: (optional) The model to use for speech recognition. If
               you omit the `model` parameter, the service uses the US English
               `en-US_BroadbandModel` by default.
               _For IBM Cloud Pak for Data,_ if you do not install the
               `en-US_BroadbandModel`, you must either specify a model with the request or
               specify a new default model for your installation of the service.
               **See also:**
               * [Using a model for speech
               recognition](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-use)
               * [Using the default
               model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-use#models-use-default).
        :param bool speech_begin_event: (optional) If `true`, the service returns a
               response object `SpeechActivity` which contains the time when a speech
               activity is detected in the stream. This can be used both in standard and
               low latency mode. This feature enables client applications to know that
               some words/speech has been detected and the service is in the process of
               decoding. This can be used in lieu of interim results in standard mode. See
               [Using speech recognition
               parameters](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-service-features#features-parameters).
        :param str language_customization_id: (optional) The customization ID
               (GUID) of a custom language model that is to be used with the recognition
               request. The base model of the specified custom language model must match
               the model specified with the `model` parameter. You must make the request
               with credentials for the instance of the service that owns the custom
               model. By default, no custom language model is used. See [Using a custom
               language model for speech
               recognition](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-languageUse).
               **Note:** Use this parameter instead of the deprecated `customization_id`
               parameter.
        :param str acoustic_customization_id: (optional) The customization ID
               (GUID) of a custom acoustic model that is to be used with the recognition
               request. The base model of the specified custom acoustic model must match
               the model specified with the `model` parameter. You must make the request
               with credentials for the instance of the service that owns the custom
               model. By default, no custom acoustic model is used. See [Using a custom
               acoustic model for speech
               recognition](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-acousticUse).
        :param str base_model_version: (optional) The version of the specified base
               model that is to be used with the recognition request. Multiple versions of
               a base model can exist when a model is updated for internal improvements.
               The parameter is intended primarily for use with custom models that have
               been upgraded for a new base model. The default value depends on whether
               the parameter is used with or without a custom model. See [Making speech
               recognition requests with upgraded custom
               models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-upgrade-use#custom-upgrade-use-recognition).
        :param float customization_weight: (optional) If you specify the
               customization ID (GUID) of a custom language model with the recognition
               request, the customization weight tells the service how much weight to give
               to words from the custom language model compared to those from the base
               model for the current request.
               Specify a value between 0.0 and 1.0. Unless a different customization
               weight was specified for the custom model when the model was trained, the
               default value is:
               * 0.5 for large speech models
               * 0.3 for previous-generation models
               * 0.2 for most next-generation models
               * 0.1 for next-generation English and Japanese models
               A customization weight that you specify overrides a weight that was
               specified when the custom model was trained. The default value yields the
               best performance in general. Assign a higher value if your audio makes
               frequent use of OOV words from the custom model. Use caution when setting
               the weight: a higher value can improve the accuracy of phrases from the
               custom model's domain, but it can negatively affect performance on
               non-domain phrases.
               See [Using customization
               weight](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-languageUse#weight).
        :param int inactivity_timeout: (optional) The time in seconds after which,
               if only silence (no speech) is detected in streaming audio, the connection
               is closed with a 400 error. The parameter is useful for stopping audio
               submission from a live microphone when a user simply walks away. Use `-1`
               for infinity. See [Inactivity
               timeout](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-input#timeouts-inactivity).
        :param List[str] keywords: (optional) An array of keyword strings to spot
               in the audio. Each keyword string can include one or more string tokens.
               Keywords are spotted only in the final results, not in interim hypotheses.
               If you specify any keywords, you must also specify a keywords threshold.
               Omit the parameter or specify an empty array if you do not need to spot
               keywords.
               You can spot a maximum of 1000 keywords with a single request. A single
               keyword can have a maximum length of 1024 characters, though the maximum
               effective length for double-byte languages might be shorter. Keywords are
               case-insensitive.
               See [Keyword
               spotting](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-spotting#keyword-spotting).
        :param float keywords_threshold: (optional) A confidence value that is the
               lower bound for spotting a keyword. A word is considered to match a keyword
               if its confidence is greater than or equal to the threshold. Specify a
               probability between 0.0 and 1.0. If you specify a threshold, you must also
               specify one or more keywords. The service performs no keyword spotting if
               you omit either parameter. See [Keyword
               spotting](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-spotting#keyword-spotting).
        :param int max_alternatives: (optional) The maximum number of alternative
               transcripts that the service is to return. By default, the service returns
               a single transcript. If you specify a value of `0`, the service uses the
               default value, `1`. See [Maximum
               alternatives](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-metadata#max-alternatives).
        :param float word_alternatives_threshold: (optional) A confidence value
               that is the lower bound for identifying a hypothesis as a possible word
               alternative (also known as "Confusion Networks"). An alternative word is
               considered if its confidence is greater than or equal to the threshold.
               Specify a probability between 0.0 and 1.0. By default, the service computes
               no alternative words. See [Word
               alternatives](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-spotting#word-alternatives).
        :param bool word_confidence: (optional) If `true`, the service returns a
               confidence measure in the range of 0.0 to 1.0 for each word. By default,
               the service returns no word confidence scores. See [Word
               confidence](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-metadata#word-confidence).
        :param bool timestamps: (optional) If `true`, the service returns time
               alignment for each word. By default, no timestamps are returned. See [Word
               timestamps](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-metadata#word-timestamps).
        :param bool profanity_filter: (optional) If `true`, the service filters
               profanity from all output except for keyword results by replacing
               inappropriate words with a series of asterisks. Set the parameter to
               `false` to return results with no censoring.
               **Note:** The parameter can be used with US English and Japanese
               transcription only. See [Profanity
               filtering](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-formatting#profanity-filtering).
        :param bool smart_formatting: (optional) If `true`, the service converts
               dates, times, series of digits and numbers, phone numbers, currency values,
               and internet addresses into more readable, conventional representations in
               the final transcript of a recognition request. For US English, the service
               also converts certain keyword strings to punctuation symbols. By default,
               the service performs no smart formatting.
               **Note:** The parameter can be used with US English, Japanese, and Spanish
               (all dialects) transcription only.
               See [Smart
               formatting](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-formatting#smart-formatting).
        :param int smart_formatting_version: (optional) Smart formatting version
               for large speech models and next-generation models is supported in US
               English, Brazilian Portuguese, French, German, Spanish and French Canadian
               languages.
        :param bool speaker_labels: (optional) If `true`, the response includes
               labels that identify which words were spoken by which participants in a
               multi-person exchange. By default, the service returns no speaker labels.
               Setting `speaker_labels` to `true` forces the `timestamps` parameter to be
               `true`, regardless of whether you specify `false` for the parameter.
               * _For previous-generation models,_ the parameter can be used with
               Australian English, US English, German, Japanese, Korean, and Spanish (both
               broadband and narrowband models) and UK English (narrowband model)
               transcription only.
               * _For large speech models and next-generation models,_ the parameter can
               be used with all available languages.
               See [Speaker
               labels](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-speaker-labels).
        :param str grammar_name: (optional) The name of a grammar that is to be
               used with the recognition request. If you specify a grammar, you must also
               use the `language_customization_id` parameter to specify the name of the
               custom language model for which the grammar is defined. The service
               recognizes only strings that are recognized by the specified grammar; it
               does not recognize other custom words from the model's words resource.
               See [Using a grammar for speech
               recognition](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-grammarUse).
        :param bool redaction: (optional) If `true`, the service redacts, or masks,
               numeric data from final transcripts. The feature redacts any number that
               has three or more consecutive digits by replacing each digit with an `X`
               character. It is intended to redact sensitive numeric data, such as credit
               card numbers. By default, the service performs no redaction.
               When you enable redaction, the service automatically enables smart
               formatting, regardless of whether you explicitly disable that feature. To
               ensure maximum security, the service also disables keyword spotting
               (ignores the `keywords` and `keywords_threshold` parameters) and returns
               only a single final transcript (forces the `max_alternatives` parameter to
               be `1`).
               **Note:** The parameter can be used with US English, Japanese, and Korean
               transcription only.
               See [Numeric
               redaction](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-formatting#numeric-redaction).
        :param bool audio_metrics: (optional) If `true`, requests detailed
               information about the signal characteristics of the input audio. The
               service returns audio metrics with the final transcription results. By
               default, the service returns no audio metrics.
               See [Audio
               metrics](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-metrics#audio-metrics).
        :param float end_of_phrase_silence_time: (optional) Specifies the duration
               of the pause interval at which the service splits a transcript into
               multiple final results. If the service detects pauses or extended silence
               before it reaches the end of the audio stream, its response can include
               multiple final results. Silence indicates a point at which the speaker
               pauses between spoken words or phrases.
               Specify a value for the pause interval in the range of 0.0 to 120.0.
               * A value greater than 0 specifies the interval that the service is to use
               for speech recognition.
               * A value of 0 indicates that the service is to use the default interval.
               It is equivalent to omitting the parameter.
               The default pause interval for most languages is 0.8 seconds; the default
               for Chinese is 0.6 seconds.
               See [End of phrase silence
               time](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-parsing#silence-time).
        :param bool split_transcript_at_phrase_end: (optional) If `true`, directs
               the service to split the transcript into multiple final results based on
               semantic features of the input, for example, at the conclusion of
               meaningful phrases such as sentences. The service bases its understanding
               of semantic features on the base language model that you use with a
               request. Custom language models and grammars can also influence how and
               where the service splits a transcript.
               By default, the service splits transcripts based solely on the pause
               interval. If the parameters are used together on the same request,
               `end_of_phrase_silence_time` has precedence over
               `split_transcript_at_phrase_end`.
               See [Split transcript at phrase
               end](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-parsing#split-transcript).
        :param float speech_detector_sensitivity: (optional) The sensitivity of
               speech activity detection that the service is to perform. Use the parameter
               to suppress word insertions from music, coughing, and other non-speech
               events. The service biases the audio it passes for speech recognition by
               evaluating the input audio against prior models of speech and non-speech
               activity.
               Specify a value between 0.0 and 1.0:
               * 0.0 suppresses all audio (no speech is transcribed).
               * 0.5 (the default) provides a reasonable compromise for the level of
               sensitivity.
               * 1.0 suppresses no audio (speech detection sensitivity is disabled).
               The values increase on a monotonic curve. Specifying one or two decimal
               places of precision (for example, `0.55`) is typically more than
               sufficient.
               The parameter is supported with all large speech models, next-generation
               models and with most previous-generation models. See [Speech detector
               sensitivity](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-detection#detection-parameters-sensitivity)
               and [Language model
               support](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-detection#detection-support).
        :param float background_audio_suppression: (optional) The level to which
               the service is to suppress background audio based on its volume to prevent
               it from being transcribed as speech. Use the parameter to suppress side
               conversations or background noise.
               Specify a value in the range of 0.0 to 1.0:
               * 0.0 (the default) provides no suppression (background audio suppression
               is disabled).
               * 0.5 provides a reasonable level of audio suppression for general usage.
               * 1.0 suppresses all audio (no audio is transcribed).
               The values increase on a monotonic curve. Specifying one or two decimal
               places of precision (for example, `0.55`) is typically more than
               sufficient.
               The parameter is supported with all large speech models, next-generation
               models and with most previous-generation models. See [Background audio
               suppression](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-detection#detection-parameters-suppression)
               and [Language model
               support](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-detection#detection-support).
        :param bool low_latency: (optional) If `true` for next-generation
               `Multimedia` and `Telephony` models that support low latency, directs the
               service to produce results even more quickly than it usually does.
               Next-generation models produce transcription results faster than
               previous-generation models. The `low_latency` parameter causes the models
               to produce results even more quickly, though the results might be less
               accurate when the parameter is used.
               The parameter is not available for large speech models and
               previous-generation `Broadband` and `Narrowband` models. It is available
               for most next-generation models.
               * For a list of next-generation models that support low latency, see
               [Supported next-generation language
               models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-ng#models-ng-supported).
               * For more information about the `low_latency` parameter, see [Low
               latency](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-interim#low-latency).
        :param float character_insertion_bias: (optional) For large speech models
               and next-generation models, an indication of whether the service is biased
               to recognize shorter or longer strings of characters when developing
               transcription hypotheses. By default, the service is optimized to produce
               the best balance of strings of different lengths.
               The default bias is 0.0. The allowable range of values is -1.0 to 1.0.
               * Negative values bias the service to favor hypotheses with shorter strings
               of characters.
               * Positive values bias the service to favor hypotheses with longer strings
               of characters.
               As the value approaches -1.0 or 1.0, the impact of the parameter becomes
               more pronounced. To determine the most effective value for your scenario,
               start by setting the value of the parameter to a small increment, such as
               -0.1, -0.05, 0.05, or 0.1, and assess how the value impacts the
               transcription results. Then experiment with different values as necessary,
               adjusting the value by small increments.
               The parameter is not available for previous-generation models.
               See [Character insertion
               bias](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-parsing#insertion-bias).
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `SpeechRecognitionResults` object
        """

        if audio is None:
            raise ValueError('audio must be provided')
        headers = {
            'Content-Type': content_type,
        }
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='recognize',
        )
        headers.update(sdk_headers)

        params = {
            'model': model,
            'speech_begin_event': speech_begin_event,
            'language_customization_id': language_customization_id,
            'acoustic_customization_id': acoustic_customization_id,
            'base_model_version': base_model_version,
            'customization_weight': customization_weight,
            'inactivity_timeout': inactivity_timeout,
            'keywords': convert_list(keywords),
            'keywords_threshold': keywords_threshold,
            'max_alternatives': max_alternatives,
            'word_alternatives_threshold': word_alternatives_threshold,
            'word_confidence': word_confidence,
            'timestamps': timestamps,
            'profanity_filter': profanity_filter,
            'smart_formatting': smart_formatting,
            'smart_formatting_version': smart_formatting_version,
            'speaker_labels': speaker_labels,
            'grammar_name': grammar_name,
            'redaction': redaction,
            'audio_metrics': audio_metrics,
            'end_of_phrase_silence_time': end_of_phrase_silence_time,
            'split_transcript_at_phrase_end': split_transcript_at_phrase_end,
            'speech_detector_sensitivity': speech_detector_sensitivity,
            'background_audio_suppression': background_audio_suppression,
            'low_latency': low_latency,
            'character_insertion_bias': character_insertion_bias,
        }

        data = audio

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        url = '/v1/recognize'
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            data=data,
        )

        response = self.send(request, **kwargs)
        return response

    #########################
    # Asynchronous
    #########################

    def register_callback(
        self,
        callback_url: str,
        *,
        user_secret: Optional[str] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Register a callback.

        Registers a callback URL with the service for use with subsequent asynchronous
        recognition requests. The service attempts to register, or allowlist, the callback
        URL if it is not already registered by sending a `GET` request to the callback
        URL. The service passes a random alphanumeric challenge string via the
        `challenge_string` parameter of the request. The request includes an `Accept`
        header that specifies `text/plain` as the required response type.
        To be registered successfully, the callback URL must respond to the `GET` request
        from the service. The response must send status code 200 and must include the
        challenge string in its body. Set the `Content-Type` response header to
        `text/plain`. Upon receiving this response, the service responds to the original
        registration request with response code 201.
        The service sends only a single `GET` request to the callback URL. If the service
        does not receive a reply with a response code of 200 and a body that echoes the
        challenge string sent by the service within five seconds, it does not allowlist
        the URL; it instead sends status code 400 in response to the request to register a
        callback. If the requested callback URL is already allowlisted, the service
        responds to the initial registration request with response code 200.
        If you specify a user secret with the request, the service uses it as a key to
        calculate an HMAC-SHA1 signature of the challenge string in its response to the
        `POST` request. It sends this signature in the `X-Callback-Signature` header of
        its `GET` request to the URL during registration. It also uses the secret to
        calculate a signature over the payload of every callback notification that uses
        the URL. The signature provides authentication and data integrity for HTTP
        communications.
        After you successfully register a callback URL, you can use it with an indefinite
        number of recognition requests. You can register a maximum of 20 callback URLS in
        a one-hour span of time.
        **See also:** [Registering a callback
        URL](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-async#register).

        :param str callback_url: An HTTP or HTTPS URL to which callback
               notifications are to be sent. To be allowlisted, the URL must successfully
               echo the challenge string during URL verification. During verification, the
               client can also check the signature that the service sends in the
               `X-Callback-Signature` header to verify the origin of the request.
        :param str user_secret: (optional) A user-specified string that the service
               uses to generate the HMAC-SHA1 signature that it sends via the
               `X-Callback-Signature` header. The service includes the header during URL
               verification and with every notification sent to the callback URL. It
               calculates the signature over the payload of the notification. If you omit
               the parameter, the service does not send the header.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `RegisterStatus` object
        """

        if not callback_url:
            raise ValueError('callback_url must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='register_callback',
        )
        headers.update(sdk_headers)

        params = {
            'callback_url': callback_url,
            'user_secret': user_secret,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        url = '/v1/register_callback'
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def unregister_callback(
        self,
        callback_url: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Unregister a callback.

        Unregisters a callback URL that was previously allowlisted with a [Register a
        callback](#registercallback) request for use with the asynchronous interface. Once
        unregistered, the URL can no longer be used with asynchronous recognition
        requests.
        **See also:** [Unregistering a callback
        URL](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-async#unregister).

        :param str callback_url: The callback URL that is to be unregistered.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not callback_url:
            raise ValueError('callback_url must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='unregister_callback',
        )
        headers.update(sdk_headers)

        params = {
            'callback_url': callback_url,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']

        url = '/v1/unregister_callback'
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def create_job(
        self,
        audio: BinaryIO,
        *,
        content_type: Optional[str] = None,
        model: Optional[str] = None,
        callback_url: Optional[str] = None,
        events: Optional[str] = None,
        user_token: Optional[str] = None,
        results_ttl: Optional[int] = None,
        language_customization_id: Optional[str] = None,
        acoustic_customization_id: Optional[str] = None,
        base_model_version: Optional[str] = None,
        customization_weight: Optional[float] = None,
        inactivity_timeout: Optional[int] = None,
        keywords: Optional[List[str]] = None,
        keywords_threshold: Optional[float] = None,
        max_alternatives: Optional[int] = None,
        word_alternatives_threshold: Optional[float] = None,
        word_confidence: Optional[bool] = None,
        timestamps: Optional[bool] = None,
        profanity_filter: Optional[bool] = None,
        smart_formatting: Optional[bool] = None,
        smart_formatting_version: Optional[int] = None,
        speaker_labels: Optional[bool] = None,
        grammar_name: Optional[str] = None,
        redaction: Optional[bool] = None,
        processing_metrics: Optional[bool] = None,
        processing_metrics_interval: Optional[float] = None,
        audio_metrics: Optional[bool] = None,
        end_of_phrase_silence_time: Optional[float] = None,
        split_transcript_at_phrase_end: Optional[bool] = None,
        speech_detector_sensitivity: Optional[float] = None,
        background_audio_suppression: Optional[float] = None,
        low_latency: Optional[bool] = None,
        character_insertion_bias: Optional[float] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Create a job.

        Creates a job for a new asynchronous recognition request. The job is owned by the
        instance of the service whose credentials are used to create it. How you learn the
        status and results of a job depends on the parameters you include with the job
        creation request:
        * By callback notification: Include the `callback_url` parameter to specify a URL
        to which the service is to send callback notifications when the status of the job
        changes. Optionally, you can also include the `events` and `user_token` parameters
        to subscribe to specific events and to specify a string that is to be included
        with each notification for the job.
        * By polling the service: Omit the `callback_url`, `events`, and `user_token`
        parameters. You must then use the [Check jobs](#checkjobs) or [Check a
        job](#checkjob) methods to check the status of the job, using the latter to
        retrieve the results when the job is complete.
        The two approaches are not mutually exclusive. You can poll the service for job
        status or obtain results from the service manually even if you include a callback
        URL. In both cases, you can include the `results_ttl` parameter to specify how
        long the results are to remain available after the job is complete. Using the
        HTTPS [Check a job](#checkjob) method to retrieve results is more secure than
        receiving them via callback notification over HTTP because it provides
        confidentiality in addition to authentication and data integrity.
        The method supports the same basic parameters as other HTTP and WebSocket
        recognition requests. It also supports the following parameters specific to the
        asynchronous interface:
        * `callback_url`
        * `events`
        * `user_token`
        * `results_ttl`
        You can pass a maximum of 1 GB and a minimum of 100 bytes of audio with a request.
        The service automatically detects the endianness of the incoming audio and, for
        audio that includes multiple channels, downmixes the audio to one-channel mono
        during transcoding. The method returns only final results; to enable interim
        results, use the WebSocket API. (With the `curl` command, use the `--data-binary`
        option to upload the file for the request.)
        **See also:** [Creating a
        job](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-async#create).
        ### Streaming mode
         For requests to transcribe live audio as it becomes available, you must set the
        `Transfer-Encoding` header to `chunked` to use streaming mode. In streaming mode,
        the service closes the connection (status code 408) if it does not receive at
        least 15 seconds of audio (including silence) in any 30-second period. The service
        also closes the connection (status code 400) if it detects no speech for
        `inactivity_timeout` seconds of streaming audio; use the `inactivity_timeout`
        parameter to change the default of 30 seconds.
        **See also:**
        * [Audio
        transmission](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-input#transmission)
        *
        [Timeouts](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-input#timeouts)
        ### Audio formats (content types)
         The service accepts audio in the following formats (MIME types).
        * For formats that are labeled **Required**, you must use the `Content-Type`
        header with the request to specify the format of the audio.
        * For all other formats, you can omit the `Content-Type` header or specify
        `application/octet-stream` with the header to have the service automatically
        detect the format of the audio. (With the `curl` command, you can specify either
        `"Content-Type:"` or `"Content-Type: application/octet-stream"`.)
        Where indicated, the format that you specify must include the sampling rate and
        can optionally include the number of channels and the endianness of the audio.
        * `audio/alaw` (**Required.** Specify the sampling rate (`rate`) of the audio.)
        * `audio/basic` (**Required.** Use only with narrowband models.)
        * `audio/flac`
        * `audio/g729` (Use only with narrowband models.)
        * `audio/l16` (**Required.** Specify the sampling rate (`rate`) and optionally the
        number of channels (`channels`) and endianness (`endianness`) of the audio.)
        * `audio/mp3`
        * `audio/mpeg`
        * `audio/mulaw` (**Required.** Specify the sampling rate (`rate`) of the audio.)
        * `audio/ogg` (The service automatically detects the codec of the input audio.)
        * `audio/ogg;codecs=opus`
        * `audio/ogg;codecs=vorbis`
        * `audio/wav` (Provide audio with a maximum of nine channels.)
        * `audio/webm` (The service automatically detects the codec of the input audio.)
        * `audio/webm;codecs=opus`
        * `audio/webm;codecs=vorbis`
        The sampling rate of the audio must match the sampling rate of the model for the
        recognition request: for broadband models, at least 16 kHz; for narrowband models,
        at least 8 kHz. If the sampling rate of the audio is higher than the minimum
        required rate, the service down-samples the audio to the appropriate rate. If the
        sampling rate of the audio is lower than the minimum required rate, the request
        fails.
         **See also:** [Supported audio
        formats](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-audio-formats).
        ### Large speech models and Next-generation models
         The service supports large speech models and next-generation `Multimedia` (16
        kHz) and `Telephony` (8 kHz) models for many languages. Large speech models and
        next-generation models have higher throughput than the service's previous
        generation of `Broadband` and `Narrowband` models. When you use large speech
        models and next-generation models, the service can return transcriptions more
        quickly and also provide noticeably better transcription accuracy.
        You specify a large speech model or next-generation model by using the `model`
        query parameter, as you do a previous-generation model. Only the next-generation
        models support the `low_latency` parameter, and all large speech models and
        next-generation models support the `character_insertion_bias` parameter. These
        parameters are not available with previous-generation models.
        Large speech models and next-generation models do not support all of the speech
        recognition parameters that are available for use with previous-generation models.
        Next-generation models do not support the following parameters:
        * `acoustic_customization_id`
        * `keywords` and `keywords_threshold`
        * `processing_metrics` and `processing_metrics_interval`
        * `word_alternatives_threshold`
        **Important:** Effective **31 July 2023**, all previous-generation models will be
        removed from the service and the documentation. Most previous-generation models
        were deprecated on 15 March 2022. You must migrate to the equivalent large speech
        model or next-generation model by 31 July 2023. For more information, see
        [Migrating to large speech
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-migrate).
        **See also:**
        * [Large speech languages and
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-large-speech-languages)
        * [Supported features for large speech
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-large-speech-languages#models-lsm-supported-features)
        * [Next-generation languages and
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-ng)
        * [Supported features for next-generation
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-ng#models-ng-features).

        :param BinaryIO audio: The audio to transcribe.
        :param str content_type: (optional) The format (MIME type) of the audio.
               For more information about specifying an audio format, see **Audio formats
               (content types)** in the method description.
        :param str model: (optional) The model to use for speech recognition. If
               you omit the `model` parameter, the service uses the US English
               `en-US_BroadbandModel` by default.
               _For IBM Cloud Pak for Data,_ if you do not install the
               `en-US_BroadbandModel`, you must either specify a model with the request or
               specify a new default model for your installation of the service.
               **See also:**
               * [Using a model for speech
               recognition](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-use)
               * [Using the default
               model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-use#models-use-default).
        :param str callback_url: (optional) A URL to which callback notifications
               are to be sent. The URL must already be successfully allowlisted by using
               the [Register a callback](#registercallback) method. You can include the
               same callback URL with any number of job creation requests. Omit the
               parameter to poll the service for job completion and results.
               Use the `user_token` parameter to specify a unique user-specified string
               with each job to differentiate the callback notifications for the jobs.
        :param str events: (optional) If the job includes a callback URL, a
               comma-separated list of notification events to which to subscribe. Valid
               events are
               * `recognitions.started` generates a callback notification when the service
               begins to process the job.
               * `recognitions.completed` generates a callback notification when the job
               is complete. You must use the [Check a job](#checkjob) method to retrieve
               the results before they time out or are deleted.
               * `recognitions.completed_with_results` generates a callback notification
               when the job is complete. The notification includes the results of the
               request.
               * `recognitions.failed` generates a callback notification if the service
               experiences an error while processing the job.
               The `recognitions.completed` and `recognitions.completed_with_results`
               events are incompatible. You can specify only of the two events.
               If the job includes a callback URL, omit the parameter to subscribe to the
               default events: `recognitions.started`, `recognitions.completed`, and
               `recognitions.failed`. If the job does not include a callback URL, omit the
               parameter.
        :param str user_token: (optional) If the job includes a callback URL, a
               user-specified string that the service is to include with each callback
               notification for the job; the token allows the user to maintain an internal
               mapping between jobs and notification events. If the job does not include a
               callback URL, omit the parameter.
        :param int results_ttl: (optional) The number of minutes for which the
               results are to be available after the job has finished. If not delivered
               via a callback, the results must be retrieved within this time. Omit the
               parameter to use a time to live of one week. The parameter is valid with or
               without a callback URL.
        :param str language_customization_id: (optional) The customization ID
               (GUID) of a custom language model that is to be used with the recognition
               request. The base model of the specified custom language model must match
               the model specified with the `model` parameter. You must make the request
               with credentials for the instance of the service that owns the custom
               model. By default, no custom language model is used. See [Using a custom
               language model for speech
               recognition](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-languageUse).
               **Note:** Use this parameter instead of the deprecated `customization_id`
               parameter.
        :param str acoustic_customization_id: (optional) The customization ID
               (GUID) of a custom acoustic model that is to be used with the recognition
               request. The base model of the specified custom acoustic model must match
               the model specified with the `model` parameter. You must make the request
               with credentials for the instance of the service that owns the custom
               model. By default, no custom acoustic model is used. See [Using a custom
               acoustic model for speech
               recognition](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-acousticUse).
        :param str base_model_version: (optional) The version of the specified base
               model that is to be used with the recognition request. Multiple versions of
               a base model can exist when a model is updated for internal improvements.
               The parameter is intended primarily for use with custom models that have
               been upgraded for a new base model. The default value depends on whether
               the parameter is used with or without a custom model. See [Making speech
               recognition requests with upgraded custom
               models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-upgrade-use#custom-upgrade-use-recognition).
        :param float customization_weight: (optional) If you specify the
               customization ID (GUID) of a custom language model with the recognition
               request, the customization weight tells the service how much weight to give
               to words from the custom language model compared to those from the base
               model for the current request.
               Specify a value between 0.0 and 1.0. Unless a different customization
               weight was specified for the custom model when the model was trained, the
               default value is:
               * 0.5 for large speech models
               * 0.3 for previous-generation models
               * 0.2 for most next-generation models
               * 0.1 for next-generation English and Japanese models
               A customization weight that you specify overrides a weight that was
               specified when the custom model was trained. The default value yields the
               best performance in general. Assign a higher value if your audio makes
               frequent use of OOV words from the custom model. Use caution when setting
               the weight: a higher value can improve the accuracy of phrases from the
               custom model's domain, but it can negatively affect performance on
               non-domain phrases.
               See [Using customization
               weight](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-languageUse#weight).
        :param int inactivity_timeout: (optional) The time in seconds after which,
               if only silence (no speech) is detected in streaming audio, the connection
               is closed with a 400 error. The parameter is useful for stopping audio
               submission from a live microphone when a user simply walks away. Use `-1`
               for infinity. See [Inactivity
               timeout](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-input#timeouts-inactivity).
        :param List[str] keywords: (optional) An array of keyword strings to spot
               in the audio. Each keyword string can include one or more string tokens.
               Keywords are spotted only in the final results, not in interim hypotheses.
               If you specify any keywords, you must also specify a keywords threshold.
               Omit the parameter or specify an empty array if you do not need to spot
               keywords.
               You can spot a maximum of 1000 keywords with a single request. A single
               keyword can have a maximum length of 1024 characters, though the maximum
               effective length for double-byte languages might be shorter. Keywords are
               case-insensitive.
               See [Keyword
               spotting](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-spotting#keyword-spotting).
        :param float keywords_threshold: (optional) A confidence value that is the
               lower bound for spotting a keyword. A word is considered to match a keyword
               if its confidence is greater than or equal to the threshold. Specify a
               probability between 0.0 and 1.0. If you specify a threshold, you must also
               specify one or more keywords. The service performs no keyword spotting if
               you omit either parameter. See [Keyword
               spotting](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-spotting#keyword-spotting).
        :param int max_alternatives: (optional) The maximum number of alternative
               transcripts that the service is to return. By default, the service returns
               a single transcript. If you specify a value of `0`, the service uses the
               default value, `1`. See [Maximum
               alternatives](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-metadata#max-alternatives).
        :param float word_alternatives_threshold: (optional) A confidence value
               that is the lower bound for identifying a hypothesis as a possible word
               alternative (also known as "Confusion Networks"). An alternative word is
               considered if its confidence is greater than or equal to the threshold.
               Specify a probability between 0.0 and 1.0. By default, the service computes
               no alternative words. See [Word
               alternatives](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-spotting#word-alternatives).
        :param bool word_confidence: (optional) If `true`, the service returns a
               confidence measure in the range of 0.0 to 1.0 for each word. By default,
               the service returns no word confidence scores. See [Word
               confidence](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-metadata#word-confidence).
        :param bool timestamps: (optional) If `true`, the service returns time
               alignment for each word. By default, no timestamps are returned. See [Word
               timestamps](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-metadata#word-timestamps).
        :param bool profanity_filter: (optional) If `true`, the service filters
               profanity from all output except for keyword results by replacing
               inappropriate words with a series of asterisks. Set the parameter to
               `false` to return results with no censoring.
               **Note:** The parameter can be used with US English and Japanese
               transcription only. See [Profanity
               filtering](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-formatting#profanity-filtering).
        :param bool smart_formatting: (optional) If `true`, the service converts
               dates, times, series of digits and numbers, phone numbers, currency values,
               and internet addresses into more readable, conventional representations in
               the final transcript of a recognition request. For US English, the service
               also converts certain keyword strings to punctuation symbols. By default,
               the service performs no smart formatting.
               **Note:** The parameter can be used with US English, Japanese, and Spanish
               (all dialects) transcription only.
               See [Smart
               formatting](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-formatting#smart-formatting).
        :param int smart_formatting_version: (optional) Smart formatting version
               for large speech models and next-generation models is supported in US
               English, Brazilian Portuguese, French, German, Spanish and French Canadian
               languages.
        :param bool speaker_labels: (optional) If `true`, the response includes
               labels that identify which words were spoken by which participants in a
               multi-person exchange. By default, the service returns no speaker labels.
               Setting `speaker_labels` to `true` forces the `timestamps` parameter to be
               `true`, regardless of whether you specify `false` for the parameter.
               * _For previous-generation models,_ the parameter can be used with
               Australian English, US English, German, Japanese, Korean, and Spanish (both
               broadband and narrowband models) and UK English (narrowband model)
               transcription only.
               * _For large speech models and next-generation models,_ the parameter can
               be used with all available languages.
               See [Speaker
               labels](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-speaker-labels).
        :param str grammar_name: (optional) The name of a grammar that is to be
               used with the recognition request. If you specify a grammar, you must also
               use the `language_customization_id` parameter to specify the name of the
               custom language model for which the grammar is defined. The service
               recognizes only strings that are recognized by the specified grammar; it
               does not recognize other custom words from the model's words resource.
               See [Using a grammar for speech
               recognition](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-grammarUse).
        :param bool redaction: (optional) If `true`, the service redacts, or masks,
               numeric data from final transcripts. The feature redacts any number that
               has three or more consecutive digits by replacing each digit with an `X`
               character. It is intended to redact sensitive numeric data, such as credit
               card numbers. By default, the service performs no redaction.
               When you enable redaction, the service automatically enables smart
               formatting, regardless of whether you explicitly disable that feature. To
               ensure maximum security, the service also disables keyword spotting
               (ignores the `keywords` and `keywords_threshold` parameters) and returns
               only a single final transcript (forces the `max_alternatives` parameter to
               be `1`).
               **Note:** The parameter can be used with US English, Japanese, and Korean
               transcription only.
               See [Numeric
               redaction](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-formatting#numeric-redaction).
        :param bool processing_metrics: (optional) If `true`, requests processing
               metrics about the service's transcription of the input audio. The service
               returns processing metrics at the interval specified by the
               `processing_metrics_interval` parameter. It also returns processing metrics
               for transcription events, for example, for final and interim results. By
               default, the service returns no processing metrics.
               See [Processing
               metrics](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-metrics#processing-metrics).
        :param float processing_metrics_interval: (optional) Specifies the interval
               in real wall-clock seconds at which the service is to return processing
               metrics. The parameter is ignored unless the `processing_metrics` parameter
               is set to `true`.
               The parameter accepts a minimum value of 0.1 seconds. The level of
               precision is not restricted, so you can specify values such as 0.25 and
               0.125.
               The service does not impose a maximum value. If you want to receive
               processing metrics only for transcription events instead of at periodic
               intervals, set the value to a large number. If the value is larger than the
               duration of the audio, the service returns processing metrics only for
               transcription events.
               See [Processing
               metrics](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-metrics#processing-metrics).
        :param bool audio_metrics: (optional) If `true`, requests detailed
               information about the signal characteristics of the input audio. The
               service returns audio metrics with the final transcription results. By
               default, the service returns no audio metrics.
               See [Audio
               metrics](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-metrics#audio-metrics).
        :param float end_of_phrase_silence_time: (optional) Specifies the duration
               of the pause interval at which the service splits a transcript into
               multiple final results. If the service detects pauses or extended silence
               before it reaches the end of the audio stream, its response can include
               multiple final results. Silence indicates a point at which the speaker
               pauses between spoken words or phrases.
               Specify a value for the pause interval in the range of 0.0 to 120.0.
               * A value greater than 0 specifies the interval that the service is to use
               for speech recognition.
               * A value of 0 indicates that the service is to use the default interval.
               It is equivalent to omitting the parameter.
               The default pause interval for most languages is 0.8 seconds; the default
               for Chinese is 0.6 seconds.
               See [End of phrase silence
               time](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-parsing#silence-time).
        :param bool split_transcript_at_phrase_end: (optional) If `true`, directs
               the service to split the transcript into multiple final results based on
               semantic features of the input, for example, at the conclusion of
               meaningful phrases such as sentences. The service bases its understanding
               of semantic features on the base language model that you use with a
               request. Custom language models and grammars can also influence how and
               where the service splits a transcript.
               By default, the service splits transcripts based solely on the pause
               interval. If the parameters are used together on the same request,
               `end_of_phrase_silence_time` has precedence over
               `split_transcript_at_phrase_end`.
               See [Split transcript at phrase
               end](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-parsing#split-transcript).
        :param float speech_detector_sensitivity: (optional) The sensitivity of
               speech activity detection that the service is to perform. Use the parameter
               to suppress word insertions from music, coughing, and other non-speech
               events. The service biases the audio it passes for speech recognition by
               evaluating the input audio against prior models of speech and non-speech
               activity.
               Specify a value between 0.0 and 1.0:
               * 0.0 suppresses all audio (no speech is transcribed).
               * 0.5 (the default) provides a reasonable compromise for the level of
               sensitivity.
               * 1.0 suppresses no audio (speech detection sensitivity is disabled).
               The values increase on a monotonic curve. Specifying one or two decimal
               places of precision (for example, `0.55`) is typically more than
               sufficient.
               The parameter is supported with all large speech models, next-generation
               models and with most previous-generation models. See [Speech detector
               sensitivity](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-detection#detection-parameters-sensitivity)
               and [Language model
               support](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-detection#detection-support).
        :param float background_audio_suppression: (optional) The level to which
               the service is to suppress background audio based on its volume to prevent
               it from being transcribed as speech. Use the parameter to suppress side
               conversations or background noise.
               Specify a value in the range of 0.0 to 1.0:
               * 0.0 (the default) provides no suppression (background audio suppression
               is disabled).
               * 0.5 provides a reasonable level of audio suppression for general usage.
               * 1.0 suppresses all audio (no audio is transcribed).
               The values increase on a monotonic curve. Specifying one or two decimal
               places of precision (for example, `0.55`) is typically more than
               sufficient.
               The parameter is supported with all large speech models, next-generation
               models and with most previous-generation models. See [Background audio
               suppression](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-detection#detection-parameters-suppression)
               and [Language model
               support](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-detection#detection-support).
        :param bool low_latency: (optional) If `true` for next-generation
               `Multimedia` and `Telephony` models that support low latency, directs the
               service to produce results even more quickly than it usually does.
               Next-generation models produce transcription results faster than
               previous-generation models. The `low_latency` parameter causes the models
               to produce results even more quickly, though the results might be less
               accurate when the parameter is used.
               The parameter is not available for large speech models and
               previous-generation `Broadband` and `Narrowband` models. It is available
               for most next-generation models.
               * For a list of next-generation models that support low latency, see
               [Supported next-generation language
               models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-ng#models-ng-supported).
               * For more information about the `low_latency` parameter, see [Low
               latency](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-interim#low-latency).
        :param float character_insertion_bias: (optional) For large speech models
               and next-generation models, an indication of whether the service is biased
               to recognize shorter or longer strings of characters when developing
               transcription hypotheses. By default, the service is optimized to produce
               the best balance of strings of different lengths.
               The default bias is 0.0. The allowable range of values is -1.0 to 1.0.
               * Negative values bias the service to favor hypotheses with shorter strings
               of characters.
               * Positive values bias the service to favor hypotheses with longer strings
               of characters.
               As the value approaches -1.0 or 1.0, the impact of the parameter becomes
               more pronounced. To determine the most effective value for your scenario,
               start by setting the value of the parameter to a small increment, such as
               -0.1, -0.05, 0.05, or 0.1, and assess how the value impacts the
               transcription results. Then experiment with different values as necessary,
               adjusting the value by small increments.
               The parameter is not available for previous-generation models.
               See [Character insertion
               bias](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-parsing#insertion-bias).
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `RecognitionJob` object
        """

        if audio is None:
            raise ValueError('audio must be provided')
        headers = {
            'Content-Type': content_type,
        }
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='create_job',
        )
        headers.update(sdk_headers)

        params = {
            'model': model,
            'callback_url': callback_url,
            'events': events,
            'user_token': user_token,
            'results_ttl': results_ttl,
            'language_customization_id': language_customization_id,
            'acoustic_customization_id': acoustic_customization_id,
            'base_model_version': base_model_version,
            'customization_weight': customization_weight,
            'inactivity_timeout': inactivity_timeout,
            'keywords': convert_list(keywords),
            'keywords_threshold': keywords_threshold,
            'max_alternatives': max_alternatives,
            'word_alternatives_threshold': word_alternatives_threshold,
            'word_confidence': word_confidence,
            'timestamps': timestamps,
            'profanity_filter': profanity_filter,
            'smart_formatting': smart_formatting,
            'smart_formatting_version': smart_formatting_version,
            'speaker_labels': speaker_labels,
            'grammar_name': grammar_name,
            'redaction': redaction,
            'processing_metrics': processing_metrics,
            'processing_metrics_interval': processing_metrics_interval,
            'audio_metrics': audio_metrics,
            'end_of_phrase_silence_time': end_of_phrase_silence_time,
            'split_transcript_at_phrase_end': split_transcript_at_phrase_end,
            'speech_detector_sensitivity': speech_detector_sensitivity,
            'background_audio_suppression': background_audio_suppression,
            'low_latency': low_latency,
            'character_insertion_bias': character_insertion_bias,
        }

        data = audio

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        url = '/v1/recognitions'
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            data=data,
        )

        response = self.send(request, **kwargs)
        return response

    def check_jobs(
        self,
        **kwargs,
    ) -> DetailedResponse:
        """
        Check jobs.

        Returns the ID and status of the latest 100 outstanding jobs associated with the
        credentials with which it is called. The method also returns the creation and
        update times of each job, and, if a job was created with a callback URL and a user
        token, the user token for the job. To obtain the results for a job whose status is
        `completed` or not one of the latest 100 outstanding jobs, use the [Check a
        job[(#checkjob) method. A job and its results remain available until you delete
        them with the [Delete a job](#deletejob) method or until the job's time to live
        expires, whichever comes first.
        **See also:** [Checking the status of the latest
        jobs](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-async#jobs).

        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `RecognitionJobs` object
        """

        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='check_jobs',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        url = '/v1/recognitions'
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    def check_job(
        self,
        id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Check a job.

        Returns information about the specified job. The response always includes the
        status of the job and its creation and update times. If the status is `completed`,
        the response includes the results of the recognition request. You must use
        credentials for the instance of the service that owns a job to list information
        about it.
        You can use the method to retrieve the results of any job, regardless of whether
        it was submitted with a callback URL and the `recognitions.completed_with_results`
        event, and you can retrieve the results multiple times for as long as they remain
        available. Use the [Check jobs](#checkjobs) method to request information about
        the most recent jobs associated with the calling credentials.
        **See also:** [Checking the status and retrieving the results of a
        job](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-async#job).

        :param str id: The identifier of the asynchronous job that is to be used
               for the request. You must make the request with credentials for the
               instance of the service that owns the job.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `RecognitionJob` object
        """

        if not id:
            raise ValueError('id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='check_job',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['id']
        path_param_values = self.encode_path_vars(id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/recognitions/{id}'.format(**path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    def delete_job(
        self,
        id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Delete a job.

        Deletes the specified job. You cannot delete a job that the service is actively
        processing. Once you delete a job, its results are no longer available. The
        service automatically deletes a job and its results when the time to live for the
        results expires. You must use credentials for the instance of the service that
        owns a job to delete it.
        **See also:** [Deleting a
        job](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-async#delete-async).

        :param str id: The identifier of the asynchronous job that is to be used
               for the request. You must make the request with credentials for the
               instance of the service that owns the job.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not id:
            raise ValueError('id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='delete_job',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']

        path_param_keys = ['id']
        path_param_values = self.encode_path_vars(id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/recognitions/{id}'.format(**path_param_dict)
        request = self.prepare_request(
            method='DELETE',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    #########################
    # Custom language models
    #########################

    def create_language_model(
        self,
        name: str,
        base_model_name: str,
        *,
        dialect: Optional[str] = None,
        description: Optional[str] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Create a custom language model.

        Creates a new custom language model for a specified base model. The custom
        language model can be used only with the base model for which it is created. The
        model is owned by the instance of the service whose credentials are used to create
        it.
        You can create a maximum of 1024 custom language models per owning credentials.
        The service returns an error if you attempt to create more than 1024 models. You
        do not lose any models, but you cannot create any more until your model count is
        below the limit.
        **Important:** Effective **31 July 2023**, all previous-generation models will be
        removed from the service and the documentation. Most previous-generation models
        were deprecated on 15 March 2022. You must migrate to the equivalent large speech
        model or next-generation model by 31 July 2023. For more information, see
        [Migrating to large speech
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-migrate).
        **See also:**
        * [Create a custom language
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-languageCreate#createModel-language)
        * [Language support for
        customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support)
        ### Large speech models and Next-generation models
         The service supports large speech models and next-generation `Multimedia` (16
        kHz) and `Telephony` (8 kHz) models for many languages. Large speech models and
        next-generation models have higher throughput than the service's previous
        generation of `Broadband` and `Narrowband` models. When you use large speech
        models and next-generation models, the service can return transcriptions more
        quickly and also provide noticeably better transcription accuracy.
        You specify a large speech model or next-generation model by using the `model`
        query parameter, as you do a previous-generation model. Only the next-generation
        models support the `low_latency` parameter, and all large speech models and
        next-generation models support the `character_insertion_bias` parameter. These
        parameters are not available with previous-generation models.
        Large speech models and next-generation models do not support all of the speech
        recognition parameters that are available for use with previous-generation models.
        Next-generation models do not support the following parameters:
        * `acoustic_customization_id`
        * `keywords` and `keywords_threshold`
        * `processing_metrics` and `processing_metrics_interval`
        * `word_alternatives_threshold`
        **Important:** Effective **31 July 2023**, all previous-generation models will be
        removed from the service and the documentation. Most previous-generation models
        were deprecated on 15 March 2022. You must migrate to the equivalent large speech
        model or next-generation model by 31 July 2023. For more information, see
        [Migrating to large speech
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-migrate).
        **See also:**
        * [Large speech languages and
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-large-speech-languages)
        * [Supported features for large speech
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-large-speech-languages#models-lsm-supported-features)
        * [Next-generation languages and
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-ng)
        * [Supported features for next-generation
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-ng#models-ng-features).

        :param str name: A user-defined name for the new custom language model. Use
               a localized name that matches the language of the custom model. Use a name
               that describes the domain of the custom model, such as `Medical custom
               model` or `Legal custom model`. Use a name that is unique among all custom
               language models that you own.
               Include a maximum of 256 characters in the name. Do not use backslashes,
               slashes, colons, equal signs, ampersands, or question marks in the name.
        :param str base_model_name: The name of the base language model that is to
               be customized by the new custom language model. The new custom model can be
               used only with the base model that it customizes.
               To determine whether a base model supports language model customization,
               use the [Get a model](#getmodel) method and check that the attribute
               `custom_language_model` is set to `true`. You can also refer to [Language
               support for
               customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).
        :param str dialect: (optional) The dialect of the specified language that
               is to be used with the custom language model. _For all languages, it is
               always safe to omit this field._ The service automatically uses the
               language identifier from the name of the base model. For example, the
               service automatically uses `en-US` for all US English models.
               If you specify the `dialect` for a new custom model, follow these
               guidelines. _For non-Spanish previous-generation models and for
               next-generation models,_ you must specify a value that matches the
               five-character language identifier from the name of the base model. _For
               Spanish previous-generation models,_ you must specify one of the following
               values:
               * `es-ES` for Castilian Spanish (`es-ES` models)
               * `es-LA` for Latin American Spanish (`es-AR`, `es-CL`, `es-CO`, and
               `es-PE` models)
               * `es-US` for Mexican (North American) Spanish (`es-MX` models)
               All values that you pass for the `dialect` field are case-insensitive.
        :param str description: (optional) A recommended description of the new
               custom language model. Use a localized description that matches the
               language of the custom model. Include a maximum of 128 characters in the
               description.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `LanguageModel` object
        """

        if name is None:
            raise ValueError('name must be provided')
        if base_model_name is None:
            raise ValueError('base_model_name must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='create_language_model',
        )
        headers.update(sdk_headers)

        data = {
            'name': name,
            'base_model_name': base_model_name,
            'dialect': dialect,
            'description': description,
        }
        data = {k: v for (k, v) in data.items() if v is not None}
        data = json.dumps(data)
        headers['content-type'] = 'application/json'

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        url = '/v1/customizations'
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            data=data,
        )

        response = self.send(request, **kwargs)
        return response

    def list_language_models(
        self,
        *,
        language: Optional[str] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        List custom language models.

        Lists information about all custom language models that are owned by an instance
        of the service. Use the `language` parameter to see all custom language models for
        the specified language. Omit the parameter to see all custom language models for
        all languages. You must use credentials for the instance of the service that owns
        a model to list information about it.
        **See also:**
        * [Listing custom language
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageLanguageModels#listModels-language)
        * [Language support for
        customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).

        :param str language: (optional) The identifier of the language for which
               custom language or custom acoustic models are to be returned. Specify the
               five-character language identifier; for example, specify `en-US` to see all
               custom language or custom acoustic models that are based on US English
               models. Omit the parameter to see all custom language or custom acoustic
               models that are owned by the requesting credentials.
               To determine the languages for which customization is available, see
               [Language support for
               customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `LanguageModels` object
        """

        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='list_language_models',
        )
        headers.update(sdk_headers)

        params = {
            'language': language,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        url = '/v1/customizations'
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def get_language_model(
        self,
        customization_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Get a custom language model.

        Gets information about a specified custom language model. You must use credentials
        for the instance of the service that owns a model to list information about it.
        **See also:**
        * [Listing custom language
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageLanguageModels#listModels-language)
        * [Language support for
        customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).

        :param str customization_id: The customization ID (GUID) of the custom
               language model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `LanguageModel` object
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='get_language_model',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id']
        path_param_values = self.encode_path_vars(customization_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/customizations/{customization_id}'.format(**path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    def delete_language_model(
        self,
        customization_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Delete a custom language model.

        Deletes an existing custom language model. The custom model cannot be deleted if
        another request, such as adding a corpus or grammar to the model, is currently
        being processed. You must use credentials for the instance of the service that
        owns a model to delete it.
        **See also:**
        * [Deleting a custom language
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageLanguageModels#deleteModel-language)
        * [Language support for
        customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).

        :param str customization_id: The customization ID (GUID) of the custom
               language model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='delete_language_model',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id']
        path_param_values = self.encode_path_vars(customization_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/customizations/{customization_id}'.format(**path_param_dict)
        request = self.prepare_request(
            method='DELETE',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    def train_language_model(
        self,
        customization_id: str,
        *,
        word_type_to_add: Optional[str] = None,
        customization_weight: Optional[float] = None,
        strict: Optional[bool] = None,
        force: Optional[bool] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Train a custom language model.

        Initiates the training of a custom language model with new resources such as
        corpora, grammars, and custom words. After adding, modifying, or deleting
        resources for a custom language model, use this method to begin the actual
        training of the model on the latest data. You can specify whether the custom
        language model is to be trained with all words from its words resource or only
        with words that were added or modified by the user directly. You must use
        credentials for the instance of the service that owns a model to train it.
        The training method is asynchronous. It can take on the order of minutes to
        complete depending on the amount of data on which the service is being trained and
        the current load on the service. The method returns an HTTP 200 response code to
        indicate that the training process has begun.
        You can monitor the status of the training by using the [Get a custom language
        model](#getlanguagemodel) method to poll the model's status. Use a loop to check
        the status every 10 seconds. If you added custom words directly to a custom model
        that is based on a next-generation model, allow for some minutes of extra training
        time for the model.
        The method returns a `LanguageModel` object that includes `status` and `progress`
        fields. A status of `available` means that the custom model is trained and ready
        to use. The service cannot accept subsequent training requests or requests to add
        new resources until the existing request completes.
        For custom models that are based on improved base language models, training also
        performs an automatic upgrade to a newer version of the base model. You do not
        need to use the [Upgrade a custom language model](#upgradelanguagemodel) method to
        perform the upgrade.
        **See also:**
        * [Language support for
        customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support)
        * [Train the custom language
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-languageCreate#trainModel-language)
        * [Upgrading custom language models that are based on improved next-generation
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-upgrade#custom-upgrade-language-ng)
        ### Training failures
         Training can fail to start for the following reasons:
        * The service is currently handling another request for the custom model, such as
        another training request or a request to add a corpus or grammar to the model.
        * No training data have been added to the custom model.
        * The custom model contains one or more invalid corpora, grammars, or words (for
        example, a custom word has an invalid sounds-like pronunciation). You can correct
        the invalid resources or set the `strict` parameter to `false` to exclude the
        invalid resources from the training. The model must contain at least one valid
        resource for training to succeed.

        :param str customization_id: The customization ID (GUID) of the custom
               language model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param str word_type_to_add: (optional) _For custom models that are based
               on previous-generation models_, the type of words from the custom language
               model's words resource on which to train the model:
               * `all` (the default) trains the model on all new words, regardless of
               whether they were extracted from corpora or grammars or were added or
               modified by the user.
               * `user` trains the model only on custom words that were added or modified
               by the user directly. The model is not trained on new words extracted from
               corpora or grammars.
               _For custom models that are based on large speech models and
               next-generation models_, the service ignores the `word_type_to_add`
               parameter. The words resource contains only custom words that the user adds
               or modifies directly, so the parameter is unnecessary.
        :param float customization_weight: (optional) Specifies a customization
               weight for the custom language model. The customization weight tells the
               service how much weight to give to words from the custom language model
               compared to those from the base model for speech recognition. Specify a
               value between 0.0 and 1.0. The default value is:
               * 0.5 for large speech models
               * 0.3 for previous-generation models
               * 0.2 for most next-generation models
               * 0.1 for next-generation English and Japanese models
               The default value yields the best performance in general. Assign a higher
               value if your audio makes frequent use of OOV words from the custom model.
               Use caution when setting the weight: a higher value can improve the
               accuracy of phrases from the custom model's domain, but it can negatively
               affect performance on non-domain phrases.
               The value that you assign is used for all recognition requests that use the
               model. You can override it for any recognition request by specifying a
               customization weight for that request.
               See [Using customization
               weight](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-languageUse#weight).
        :param bool strict: (optional) If `false`, allows training of the custom
               language model to proceed as long as the model contains at least one valid
               resource. The method returns an array of `TrainingWarning` objects that
               lists any invalid resources. By default (`true`), training of a custom
               language model fails (status code 400) if the model contains one or more
               invalid resources (corpus files, grammar files, or custom words).
        :param bool force: (optional) If `true`, forces the training of the custom
               language model regardless of whether it contains any changes (is in the
               `ready` or `available` state). By default (`false`), the model must be in
               the `ready` state to be trained. You can use the parameter to train and
               thus upgrade a custom model that is based on an improved next-generation
               model. *The parameter is available only for IBM Cloud, not for IBM Cloud
               Pak for Data.*
               See [Upgrading a custom language model based on an improved next-generation
               model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-upgrade#custom-upgrade-language-ng).
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `TrainingResponse` object
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='train_language_model',
        )
        headers.update(sdk_headers)

        params = {
            'word_type_to_add': word_type_to_add,
            'customization_weight': customization_weight,
            'strict': strict,
            'force': force,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id']
        path_param_values = self.encode_path_vars(customization_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/customizations/{customization_id}/train'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def reset_language_model(
        self,
        customization_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Reset a custom language model.

        Resets a custom language model by removing all corpora, grammars, and words from
        the model. Resetting a custom language model initializes the model to its state
        when it was first created. Metadata such as the name and language of the model are
        preserved, but the model's words resource is removed and must be re-created. You
        must use credentials for the instance of the service that owns a model to reset
        it.
        **See also:**
        * [Resetting a custom language
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageLanguageModels#resetModel-language)
        * [Language support for
        customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).

        :param str customization_id: The customization ID (GUID) of the custom
               language model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='reset_language_model',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id']
        path_param_values = self.encode_path_vars(customization_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/customizations/{customization_id}/reset'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    def upgrade_language_model(
        self,
        customization_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Upgrade a custom language model.

        Initiates the upgrade of a custom language model to the latest version of its base
        language model. The upgrade method is asynchronous. It can take on the order of
        minutes to complete depending on the amount of data in the custom model and the
        current load on the service. A custom model must be in the `ready` or `available`
        state to be upgraded. You must use credentials for the instance of the service
        that owns a model to upgrade it.
        The method returns an HTTP 200 response code to indicate that the upgrade process
        has begun successfully. You can monitor the status of the upgrade by using the
        [Get a custom language model](#getlanguagemodel) method to poll the model's
        status. The method returns a `LanguageModel` object that includes `status` and
        `progress` fields. Use a loop to check the status every 10 seconds.
        While it is being upgraded, the custom model has the status `upgrading`. When the
        upgrade is complete, the model resumes the status that it had prior to upgrade.
        The service cannot accept subsequent requests for the model until the upgrade
        completes.
        For custom models that are based on improved base language models, the [Train a
        custom language model](#trainlanguagemodel) method also performs an automatic
        upgrade to a newer version of the base model. You do not need to use the upgrade
        method.
        **See also:**
        * [Language support for
        customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support)
        * [Upgrading a custom language
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-upgrade#custom-upgrade-language)
        * [Upgrading custom language models that are based on improved next-generation
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-upgrade#custom-upgrade-language-ng).

        :param str customization_id: The customization ID (GUID) of the custom
               language model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='upgrade_language_model',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id']
        path_param_values = self.encode_path_vars(customization_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/customizations/{customization_id}/upgrade_model'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    #########################
    # Custom corpora
    #########################

    def list_corpora(
        self,
        customization_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        List corpora.

        Lists information about all corpora from a custom language model. The information
        includes the name, status, and total number of words for each corpus. _For custom
        models that are based on previous-generation models_, it also includes the number
        of out-of-vocabulary (OOV) words from the corpus. You must use credentials for the
        instance of the service that owns a model to list its corpora.
        **See also:** [Listing corpora for a custom language
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageCorpora#listCorpora).

        :param str customization_id: The customization ID (GUID) of the custom
               language model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `Corpora` object
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='list_corpora',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id']
        path_param_values = self.encode_path_vars(customization_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/customizations/{customization_id}/corpora'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    def add_corpus(
        self,
        customization_id: str,
        corpus_name: str,
        corpus_file: BinaryIO,
        *,
        allow_overwrite: Optional[bool] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Add a corpus.

        Adds a single corpus text file of new training data to a custom language model.
        Use multiple requests to submit multiple corpus text files. You must use
        credentials for the instance of the service that owns a model to add a corpus to
        it. Adding a corpus does not affect the custom language model until you train the
        model for the new data by using the [Train a custom language
        model](#trainlanguagemodel) method.
        Submit a plain text file that contains sample sentences from the domain of
        interest to enable the service to parse the words in context. The more sentences
        you add that represent the context in which speakers use words from the domain,
        the better the service's recognition accuracy.
        The call returns an HTTP 201 response code if the corpus is valid. The service
        then asynchronously processes and automatically extracts data from the contents of
        the corpus. This operation can take on the order of minutes to complete depending
        on the current load on the service, the total number of words in the corpus, and,
        _for custom models that are based on previous-generation models_, the number of
        new (out-of-vocabulary) words in the corpus. You cannot submit requests to add
        additional resources to the custom model or to train the model until the service's
        analysis of the corpus for the current request completes. Use the [Get a
        corpus](#getcorpus) method to check the status of the analysis.
        _For custom models that are based on large speech models_, the service parses and
        extracts word sequences from one or multiple corpora files. The characters help
        the service learn and predict character sequences from audio.
        _For custom models that are based on previous-generation models_, the service
        auto-populates the model's words resource with words from the corpus that are not
        found in its base vocabulary. These words are referred to as out-of-vocabulary
        (OOV) words. After adding a corpus, you must validate the words resource to ensure
        that each OOV word's definition is complete and valid. You can use the [List
        custom words](#listwords) method to examine the words resource. You can use other
        words method to eliminate typos and modify how words are pronounced and displayed
        as needed.
        To add a corpus file that has the same name as an existing corpus, set the
        `allow_overwrite` parameter to `true`; otherwise, the request fails. Overwriting
        an existing corpus causes the service to process the corpus text file and extract
        its data anew. _For a custom model that is based on a previous-generation model_,
        the service first removes any OOV words that are associated with the existing
        corpus from the model's words resource unless they were also added by another
        corpus or grammar, or they have been modified in some way with the [Add custom
        words](#addwords) or [Add a custom word](#addword) method.
        The service limits the overall amount of data that you can add to a custom model
        to a maximum of 10 million total words from all sources combined. _For a custom
        model that is based on a previous-generation model_, you can add no more than 90
        thousand custom (OOV) words to a model. This includes words that the service
        extracts from corpora and grammars, and words that you add directly.
        **See also:**
        * [Add a corpus to the custom language
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-languageCreate#addCorpus)
        * [Working with corpora for previous-generation
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords#workingCorpora)
        * [Working with corpora for large speech models and next-generation
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords-ng#workingCorpora-ng)
        * [Validating a words resource for previous-generation
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords#validateModel)
        * [Validating a words resource for large speech models and next-generation
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords-ng#validateModel-ng).

        :param str customization_id: The customization ID (GUID) of the custom
               language model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param str corpus_name: The name of the new corpus for the custom language
               model. Use a localized name that matches the language of the custom model
               and reflects the contents of the corpus.
               * Include a maximum of 128 characters in the name.
               * Do not use characters that need to be URL-encoded. For example, do not
               use spaces, slashes, backslashes, colons, ampersands, double quotes, plus
               signs, equals signs, questions marks, and so on in the name. (The service
               does not prevent the use of these characters. But because they must be
               URL-encoded wherever used, their use is strongly discouraged.)
               * Do not use the name of an existing corpus or grammar that is already
               defined for the custom model.
               * Do not use the name `user`, which is reserved by the service to denote
               custom words that are added or modified by the user.
               * Do not use the name `base_lm` or `default_lm`. Both names are reserved
               for future use by the service.
        :param BinaryIO corpus_file: A plain text file that contains the training
               data for the corpus. Encode the file in UTF-8 if it contains non-ASCII
               characters; the service assumes UTF-8 encoding if it encounters non-ASCII
               characters.
               Make sure that you know the character encoding of the file. You must use
               that same encoding when working with the words in the custom language
               model. For more information, see [Character encoding for custom
               words](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageWords#charEncoding).
               With the `curl` command, use the `--data-binary` option to upload the file
               for the request.
        :param bool allow_overwrite: (optional) If `true`, the specified corpus
               overwrites an existing corpus with the same name. If `false`, the request
               fails if a corpus with the same name already exists. The parameter has no
               effect if a corpus with the same name does not already exist.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        if not corpus_name:
            raise ValueError('corpus_name must be provided')
        if corpus_file is None:
            raise ValueError('corpus_file must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='add_corpus',
        )
        headers.update(sdk_headers)

        params = {
            'allow_overwrite': allow_overwrite,
        }

        form_data = []
        form_data.append(('corpus_file', (None, corpus_file, 'text/plain')))

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id', 'corpus_name']
        path_param_values = self.encode_path_vars(customization_id, corpus_name)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/customizations/{customization_id}/corpora/{corpus_name}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            files=form_data,
        )

        response = self.send(request, **kwargs)
        return response

    def get_corpus(
        self,
        customization_id: str,
        corpus_name: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Get a corpus.

        Gets information about a corpus from a custom language model. The information
        includes the name, status, and total number of words for the corpus. _For custom
        models that are based on previous-generation models_, it also includes the number
        of out-of-vocabulary (OOV) words from the corpus. You must use credentials for the
        instance of the service that owns a model to list its corpora.
        **See also:** [Listing corpora for a custom language
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageCorpora#listCorpora).

        :param str customization_id: The customization ID (GUID) of the custom
               language model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param str corpus_name: The name of the corpus for the custom language
               model.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `Corpus` object
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        if not corpus_name:
            raise ValueError('corpus_name must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='get_corpus',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id', 'corpus_name']
        path_param_values = self.encode_path_vars(customization_id, corpus_name)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/customizations/{customization_id}/corpora/{corpus_name}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    def delete_corpus(
        self,
        customization_id: str,
        corpus_name: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Delete a corpus.

        Deletes an existing corpus from a custom language model. Removing a corpus does
        not affect the custom model until you train the model with the [Train a custom
        language model](#trainlanguagemodel) method. You must use credentials for the
        instance of the service that owns a model to delete its corpora.
        _For custom models that are based on previous-generation models_, the service
        removes any out-of-vocabulary (OOV) words that are associated with the corpus from
        the custom model's words resource unless they were also added by another corpus or
        grammar, or they were modified in some way with the [Add custom words](#addwords)
        or [Add a custom word](#addword) method.
        **See also:** [Deleting a corpus from a custom language
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageCorpora#deleteCorpus).

        :param str customization_id: The customization ID (GUID) of the custom
               language model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param str corpus_name: The name of the corpus for the custom language
               model.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        if not corpus_name:
            raise ValueError('corpus_name must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='delete_corpus',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id', 'corpus_name']
        path_param_values = self.encode_path_vars(customization_id, corpus_name)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/customizations/{customization_id}/corpora/{corpus_name}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='DELETE',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    #########################
    # Custom words
    #########################

    def list_words(
        self,
        customization_id: str,
        *,
        word_type: Optional[str] = None,
        sort: Optional[str] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        List custom words.

        Lists information about custom words from a custom language model. You can list
        all words from the custom model's words resource, only custom words that were
        added or modified by the user, or, _for a custom model that is based on a
        previous-generation model_, only out-of-vocabulary (OOV) words that were extracted
        from corpora or are recognized by grammars. _For a custom model that is based on a
        next-generation model_, you can list all words or only those words that were added
        directly by a user, which return the same results.
        You can also indicate the order in which the service is to return words; by
        default, the service lists words in ascending alphabetical order. You must use
        credentials for the instance of the service that owns a model to list information
        about its words.
        **See also:** [Listing words from a custom language
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageWords#listWords).

        :param str customization_id: The customization ID (GUID) of the custom
               language model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param str word_type: (optional) The type of words to be listed from the
               custom language model's words resource:
               * `all` (the default) shows all words.
               * `user` shows only custom words that were added or modified by the user
               directly.
               * `corpora` shows only OOV that were extracted from corpora.
               * `grammars` shows only OOV words that are recognized by grammars.
               _For a custom model that is based on a next-generation model_, only `all`
               and `user` apply. Both options return the same results. Words from other
               sources are not added to custom models that are based on next-generation
               models.
        :param str sort: (optional) Indicates the order in which the words are to
               be listed, `alphabetical` or by `count`. You can prepend an optional `+` or
               `-` to an argument to indicate whether the results are to be sorted in
               ascending or descending order. By default, words are sorted in ascending
               alphabetical order. For alphabetical ordering, the lexicographical
               precedence is numeric values, uppercase letters, and lowercase letters. For
               count ordering, values with the same count are ordered alphabetically. With
               the `curl` command, URL-encode the `+` symbol as `%2B`.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `Words` object
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='list_words',
        )
        headers.update(sdk_headers)

        params = {
            'word_type': word_type,
            'sort': sort,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id']
        path_param_values = self.encode_path_vars(customization_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/customizations/{customization_id}/words'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def add_words(
        self,
        customization_id: str,
        words: List['CustomWord'],
        **kwargs,
    ) -> DetailedResponse:
        """
        Add custom words.

        Adds one or more custom words to a custom language model. You can use this method
        to add words or to modify existing words in a custom model's words resource. _For
        custom models that are based on previous-generation models_, the service populates
        the words resource for a custom model with out-of-vocabulary (OOV) words from each
        corpus or grammar that is added to the model. You can use this method to modify
        OOV words in the model's words resource.
        _For a custom model that is based on a previous-generation model_, the words
        resource for a model can contain a maximum of 90 thousand custom (OOV) words. This
        includes words that the service extracts from corpora and grammars and words that
        you add directly.
        You must use credentials for the instance of the service that owns a model to add
        or modify custom words for the model. Adding or modifying custom words does not
        affect the custom model until you train the model for the new data by using the
        [Train a custom language model](#trainlanguagemodel) method.
        You add custom words by providing a `CustomWords` object, which is an array of
        `CustomWord` objects, one per word. Use the object's `word` parameter to identify
        the word that is to be added. You can also provide one or both of the optional
        `display_as` or `sounds_like` fields for each word.
        * The `display_as` field provides a different way of spelling the word in a
        transcript. Use the parameter when you want the word to appear different from its
        usual representation or from its spelling in training data. For example, you might
        indicate that the word `IBM` is to be displayed as `IBM™`.
        * The `sounds_like` field provides an array of one or more pronunciations for the
        word. Use the parameter to specify how the word can be pronounced by users. Use
        the parameter for words that are difficult to pronounce, foreign words, acronyms,
        and so on. For example, you might specify that the word `IEEE` can sound like `I
        triple E`. You can specify a maximum of five sounds-like pronunciations for a
        word. _For a custom model that is based on a previous-generation model_, if you
        omit the `sounds_like` field, the service attempts to set the field to its
        pronunciation of the word. It cannot generate a pronunciation for all words, so
        you must review the word's definition to ensure that it is complete and valid.
        * The `mapping_only` field provides parameter for custom words. You can use the
        'mapping_only' key in custom words as a form of post processing. This key
        parameter has a boolean value to determine whether 'sounds_like' (for non-Japanese
        models) or word (for Japanese) is not used for the model fine-tuning, but for the
        replacement for 'display_as'. This feature helps you when you use custom words
        exclusively to map 'sounds_like' (or word) to 'display_as' value. When you use
        custom words solely for post-processing purposes that does not need fine-tuning.
        If you add a custom word that already exists in the words resource for the custom
        model, the new definition overwrites the existing data for the word. If the
        service encounters an error with the input data, it returns a failure code and
        does not add any of the words to the words resource.
        The call returns an HTTP 201 response code if the input data is valid. It then
        asynchronously processes the words to add them to the model's words resource. The
        time that it takes for the analysis to complete depends on the number of new words
        that you add but is generally faster than adding a corpus or grammar.
        You can monitor the status of the request by using the [Get a custom language
        model](#getlanguagemodel) method to poll the model's status. Use a loop to check
        the status every 10 seconds. The method returns a `Customization` object that
        includes a `status` field. A status of `ready` means that the words have been
        added to the custom model. The service cannot accept requests to add new data or
        to train the model until the existing request completes.
        You can use the [List custom words](#listwords) or [Get a custom word](#getword)
        method to review the words that you add. Words with an invalid `sounds_like` field
        include an `error` field that describes the problem. You can use other
        words-related methods to correct errors, eliminate typos, and modify how words are
        pronounced as needed.
        **See also:**
        * [Add words to the custom language
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-languageCreate#addWords)
        * [Working with custom words for previous-generation
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords#workingWords)
        * [Working with custom words for large speech models and next-generation
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords-ng#workingWords-ng)
        * [Validating a words resource for previous-generation
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords#validateModel)
        * [Validating a words resource for large speech models and next-generation
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords-ng#validateModel-ng).

        :param str customization_id: The customization ID (GUID) of the custom
               language model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param List[CustomWord] words: An array of `CustomWord` objects that
               provides information about each custom word that is to be added to or
               updated in the custom language model.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        if words is None:
            raise ValueError('words must be provided')
        words = [convert_model(x) for x in words]
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='add_words',
        )
        headers.update(sdk_headers)

        data = {
            'words': words,
        }
        data = {k: v for (k, v) in data.items() if v is not None}
        data = json.dumps(data)
        headers['content-type'] = 'application/json'

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id']
        path_param_values = self.encode_path_vars(customization_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/customizations/{customization_id}/words'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            data=data,
        )

        response = self.send(request, **kwargs)
        return response

    def add_word(
        self,
        customization_id: str,
        word_name: str,
        *,
        word: Optional[str] = None,
        mapping_only: Optional[List[str]] = None,
        sounds_like: Optional[List[str]] = None,
        display_as: Optional[str] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Add a custom word.

        Adds a custom word to a custom language model. You can use this method to add a
        word or to modify an existing word in the words resource. _For custom models that
        are based on previous-generation models_, the service populates the words resource
        for a custom model with out-of-vocabulary (OOV) words from each corpus or grammar
        that is added to the model. You can use this method to modify OOV words in the
        model's words resource.
        _For a custom model that is based on a previous-generation models_, the words
        resource for a model can contain a maximum of 90 thousand custom (OOV) words. This
        includes words that the service extracts from corpora and grammars and words that
        you add directly.
        You must use credentials for the instance of the service that owns a model to add
        or modify a custom word for the model. Adding or modifying a custom word does not
        affect the custom model until you train the model for the new data by using the
        [Train a custom language model](#trainlanguagemodel) method.
        Use the `word_name` parameter to specify the custom word that is to be added or
        modified. Use the `CustomWord` object to provide one or both of the optional
        `display_as` or `sounds_like` fields for the word.
        * The `display_as` field provides a different way of spelling the word in a
        transcript. Use the parameter when you want the word to appear different from its
        usual representation or from its spelling in training data. For example, you might
        indicate that the word `IBM` is to be displayed as `IBM™`.
        * The `sounds_like` field provides an array of one or more pronunciations for the
        word. Use the parameter to specify how the word can be pronounced by users. Use
        the parameter for words that are difficult to pronounce, foreign words, acronyms,
        and so on. For example, you might specify that the word `IEEE` can sound like `i
        triple e`. You can specify a maximum of five sounds-like pronunciations for a
        word. _For custom models that are based on previous-generation models_, if you
        omit the `sounds_like` field, the service attempts to set the field to its
        pronunciation of the word. It cannot generate a pronunciation for all words, so
        you must review the word's definition to ensure that it is complete and valid.
        If you add a custom word that already exists in the words resource for the custom
        model, the new definition overwrites the existing data for the word. If the
        service encounters an error, it does not add the word to the words resource. Use
        the [Get a custom word](#getword) method to review the word that you add.
        **See also:**
        * [Add words to the custom language
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-languageCreate#addWords)
        * [Working with custom words for previous-generation
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords#workingWords)
        * [Working with custom words for large speech models and next-generation
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords-ng#workingWords-ng)
        * [Validating a words resource for previous-generation
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords#validateModel)
        * [Validating a words resource for large speech models and next-generation
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords-ng#validateModel-ng).

        :param str customization_id: The customization ID (GUID) of the custom
               language model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param str word_name: The custom word that is to be added to or updated in
               the custom language model. Do not use characters that need to be
               URL-encoded, for example, spaces, slashes, backslashes, colons, ampersands,
               double quotes, plus signs, equals signs, or question marks. Use a `-`
               (dash) or `_` (underscore) to connect the tokens of compound words.
               URL-encode the word if it includes non-ASCII characters. For more
               information, see [Character
               encoding](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords#charEncoding).
        :param str word: (optional) For the [Add custom words](#addwords) method,
               you must specify the custom word that is to be added to or updated in the
               custom model. Do not use characters that need to be URL-encoded, for
               example, spaces, slashes, backslashes, colons, ampersands, double quotes,
               plus signs, equals signs, or question marks. Use a `-` (dash) or `_`
               (underscore) to connect the tokens of compound words. A Japanese custom
               word can include at most 25 characters, not including leading or trailing
               spaces.
               Omit this parameter for the [Add a custom word](#addword) method.
        :param List[str] mapping_only: (optional) Parameter for custom words. You
               can use the 'mapping_only' key in custom words as a form of post
               processing. This key parameter has a boolean value to determine whether
               'sounds_like' (for non-Japanese models) or word (for Japanese) is not used
               for the model fine-tuning, but for the replacement for 'display_as'. This
               feature helps you when you use custom words exclusively to map
               'sounds_like' (or word) to 'display_as' value. When you use custom words
               solely for post-processing purposes that does not need fine-tuning.
        :param List[str] sounds_like: (optional) As array of sounds-like
               pronunciations for the custom word. Specify how words that are difficult to
               pronounce, foreign words, acronyms, and so on can be pronounced by users.
               * _For custom models that are based on previous-generation models_, for a
               word that is not in the service's base vocabulary, omit the parameter to
               have the service automatically generate a sounds-like pronunciation for the
               word.
               * For a word that is in the service's base vocabulary, use the parameter to
               specify additional pronunciations for the word. You cannot override the
               default pronunciation of a word; pronunciations you add augment the
               pronunciation from the base vocabulary.
               A word can have at most five sounds-like pronunciations. A pronunciation
               can include at most 40 characters, not including leading or trailing
               spaces. A Japanese pronunciation can include at most 25 characters, not
               including leading or trailing spaces.
        :param str display_as: (optional) An alternative spelling for the custom
               word when it appears in a transcript. Use the parameter when you want the
               word to have a spelling that is different from its usual representation or
               from its spelling in corpora training data.
               _For custom models that are based on next-generation models_, the service
               uses the spelling of the word as the display-as value if you omit the
               field.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        if not word_name:
            raise ValueError('word_name must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='add_word',
        )
        headers.update(sdk_headers)

        data = {
            'word': word,
            'mapping_only': mapping_only,
            'sounds_like': sounds_like,
            'display_as': display_as,
        }
        data = {k: v for (k, v) in data.items() if v is not None}
        data = json.dumps(data)
        headers['content-type'] = 'application/json'

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id', 'word_name']
        path_param_values = self.encode_path_vars(customization_id, word_name)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/customizations/{customization_id}/words/{word_name}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='PUT',
            url=url,
            headers=headers,
            data=data,
        )

        response = self.send(request, **kwargs)
        return response

    def get_word(
        self,
        customization_id: str,
        word_name: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Get a custom word.

        Gets information about a custom word from a custom language model. You must use
        credentials for the instance of the service that owns a model to list information
        about its words.
        **See also:** [Listing words from a custom language
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageWords#listWords).

        :param str customization_id: The customization ID (GUID) of the custom
               language model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param str word_name: The custom word that is to be read from the custom
               language model. URL-encode the word if it includes non-ASCII characters.
               For more information, see [Character
               encoding](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords#charEncoding).
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `Word` object
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        if not word_name:
            raise ValueError('word_name must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='get_word',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id', 'word_name']
        path_param_values = self.encode_path_vars(customization_id, word_name)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/customizations/{customization_id}/words/{word_name}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    def delete_word(
        self,
        customization_id: str,
        word_name: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Delete a custom word.

        Deletes a custom word from a custom language model. You can remove any word that
        you added to the custom model's words resource via any means. However, if the word
        also exists in the service's base vocabulary, the service removes the word only
        from the words resource; the word remains in the base vocabulary. Removing a
        custom word does not affect the custom model until you train the model with the
        [Train a custom language model](#trainlanguagemodel) method. You must use
        credentials for the instance of the service that owns a model to delete its words.
        **See also:** [Deleting a word from a custom language
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageWords#deleteWord).

        :param str customization_id: The customization ID (GUID) of the custom
               language model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param str word_name: The custom word that is to be deleted from the custom
               language model. URL-encode the word if it includes non-ASCII characters.
               For more information, see [Character
               encoding](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords#charEncoding).
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        if not word_name:
            raise ValueError('word_name must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='delete_word',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id', 'word_name']
        path_param_values = self.encode_path_vars(customization_id, word_name)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/customizations/{customization_id}/words/{word_name}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='DELETE',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    #########################
    # Custom grammars
    #########################

    def list_grammars(
        self,
        customization_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        List grammars.

        Lists information about all grammars from a custom language model. For each
        grammar, the information includes the name, status, and (for grammars that are
        based on previous-generation models) the total number of out-of-vocabulary (OOV)
        words. You must use credentials for the instance of the service that owns a model
        to list its grammars.
        **See also:**
        * [Listing grammars from a custom language
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageGrammars#listGrammars)
        * [Language support for
        customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).

        :param str customization_id: The customization ID (GUID) of the custom
               language model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `Grammars` object
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='list_grammars',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id']
        path_param_values = self.encode_path_vars(customization_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/customizations/{customization_id}/grammars'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    def add_grammar(
        self,
        customization_id: str,
        grammar_name: str,
        grammar_file: BinaryIO,
        content_type: str,
        *,
        allow_overwrite: Optional[bool] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Add a grammar.

        Adds a single grammar file to a custom language model. Submit a plain text file in
        UTF-8 format that defines the grammar. Use multiple requests to submit multiple
        grammar files. You must use credentials for the instance of the service that owns
        a model to add a grammar to it. Adding a grammar does not affect the custom
        language model until you train the model for the new data by using the [Train a
        custom language model](#trainlanguagemodel) method.
        The call returns an HTTP 201 response code if the grammar is valid. The service
        then asynchronously processes the contents of the grammar and automatically
        extracts new words that it finds. This operation can take a few seconds or minutes
        to complete depending on the size and complexity of the grammar, as well as the
        current load on the service. You cannot submit requests to add additional
        resources to the custom model or to train the model until the service's analysis
        of the grammar for the current request completes. Use the [Get a
        grammar](#getgrammar) method to check the status of the analysis.
        _For grammars that are based on previous-generation models,_ the service populates
        the model's words resource with any word that is recognized by the grammar that is
        not found in the model's base vocabulary. These are referred to as
        out-of-vocabulary (OOV) words. You can use the [List custom words](#listwords)
        method to examine the words resource and use other words-related methods to
        eliminate typos and modify how words are pronounced as needed. _For grammars that
        are based on next-generation models,_ the service extracts no OOV words from the
        grammars.
        To add a grammar that has the same name as an existing grammar, set the
        `allow_overwrite` parameter to `true`; otherwise, the request fails. Overwriting
        an existing grammar causes the service to process the grammar file and extract OOV
        words anew. Before doing so, it removes any OOV words associated with the existing
        grammar from the model's words resource unless they were also added by another
        resource or they have been modified in some way with the [Add custom
        words](#addwords) or [Add a custom word](#addword) method.
        _For grammars that are based on previous-generation models,_ the service limits
        the overall amount of data that you can add to a custom model to a maximum of 10
        million total words from all sources combined. Also, you can add no more than 90
        thousand OOV words to a model. This includes words that the service extracts from
        corpora and grammars and words that you add directly.
        **See also:**
        * [Understanding
        grammars](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-grammarUnderstand#grammarUnderstand)
        * [Add a grammar to the custom language
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-grammarAdd#addGrammar)
        * [Language support for
        customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).

        :param str customization_id: The customization ID (GUID) of the custom
               language model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param str grammar_name: The name of the new grammar for the custom
               language model. Use a localized name that matches the language of the
               custom model and reflects the contents of the grammar.
               * Include a maximum of 128 characters in the name.
               * Do not use characters that need to be URL-encoded. For example, do not
               use spaces, slashes, backslashes, colons, ampersands, double quotes, plus
               signs, equals signs, questions marks, and so on in the name. (The service
               does not prevent the use of these characters. But because they must be
               URL-encoded wherever used, their use is strongly discouraged.)
               * Do not use the name of an existing grammar or corpus that is already
               defined for the custom model.
               * Do not use the name `user`, which is reserved by the service to denote
               custom words that are added or modified by the user.
               * Do not use the name `base_lm` or `default_lm`. Both names are reserved
               for future use by the service.
        :param BinaryIO grammar_file: A plain text file that contains the grammar
               in the format specified by the `Content-Type` header. Encode the file in
               UTF-8 (ASCII is a subset of UTF-8). Using any other encoding can lead to
               issues when compiling the grammar or to unexpected results in decoding. The
               service ignores an encoding that is specified in the header of the grammar.
               With the `curl` command, use the `--data-binary` option to upload the file
               for the request.
        :param str content_type: The format (MIME type) of the grammar file:
               * `application/srgs` for Augmented Backus-Naur Form (ABNF), which uses a
               plain-text representation that is similar to traditional BNF grammars.
               * `application/srgs+xml` for XML Form, which uses XML elements to represent
               the grammar.
        :param bool allow_overwrite: (optional) If `true`, the specified grammar
               overwrites an existing grammar with the same name. If `false`, the request
               fails if a grammar with the same name already exists. The parameter has no
               effect if a grammar with the same name does not already exist.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        if not grammar_name:
            raise ValueError('grammar_name must be provided')
        if grammar_file is None:
            raise ValueError('grammar_file must be provided')
        if not content_type:
            raise ValueError('content_type must be provided')
        headers = {
            'Content-Type': content_type,
        }
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='add_grammar',
        )
        headers.update(sdk_headers)

        params = {
            'allow_overwrite': allow_overwrite,
        }

        data = grammar_file

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id', 'grammar_name']
        path_param_values = self.encode_path_vars(customization_id,
                                                  grammar_name)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/customizations/{customization_id}/grammars/{grammar_name}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            data=data,
        )

        response = self.send(request, **kwargs)
        return response

    def get_grammar(
        self,
        customization_id: str,
        grammar_name: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Get a grammar.

        Gets information about a grammar from a custom language model. For each grammar,
        the information includes the name, status, and (for grammars that are based on
        previous-generation models) the total number of out-of-vocabulary (OOV) words. You
        must use credentials for the instance of the service that owns a model to list its
        grammars.
        **See also:**
        * [Listing grammars from a custom language
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageGrammars#listGrammars)
        * [Language support for
        customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).

        :param str customization_id: The customization ID (GUID) of the custom
               language model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param str grammar_name: The name of the grammar for the custom language
               model.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `Grammar` object
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        if not grammar_name:
            raise ValueError('grammar_name must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='get_grammar',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id', 'grammar_name']
        path_param_values = self.encode_path_vars(customization_id,
                                                  grammar_name)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/customizations/{customization_id}/grammars/{grammar_name}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    def delete_grammar(
        self,
        customization_id: str,
        grammar_name: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Delete a grammar.

        Deletes an existing grammar from a custom language model. _For grammars that are
        based on previous-generation models,_ the service removes any out-of-vocabulary
        (OOV) words associated with the grammar from the custom model's words resource
        unless they were also added by another resource or they were modified in some way
        with the [Add custom words](#addwords) or [Add a custom word](#addword) method.
        Removing a grammar does not affect the custom model until you train the model with
        the [Train a custom language model](#trainlanguagemodel) method. You must use
        credentials for the instance of the service that owns a model to delete its
        grammar.
        **See also:**
        * [Deleting a grammar from a custom language
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageGrammars#deleteGrammar)
        * [Language support for
        customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).

        :param str customization_id: The customization ID (GUID) of the custom
               language model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param str grammar_name: The name of the grammar for the custom language
               model.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        if not grammar_name:
            raise ValueError('grammar_name must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='delete_grammar',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id', 'grammar_name']
        path_param_values = self.encode_path_vars(customization_id,
                                                  grammar_name)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/customizations/{customization_id}/grammars/{grammar_name}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='DELETE',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    #########################
    # Custom acoustic models
    #########################

    def create_acoustic_model(
        self,
        name: str,
        base_model_name: str,
        *,
        description: Optional[str] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Create a custom acoustic model.

        Creates a new custom acoustic model for a specified base model. The custom
        acoustic model can be used only with the base model for which it is created. The
        model is owned by the instance of the service whose credentials are used to create
        it.
        You can create a maximum of 1024 custom acoustic models per owning credentials.
        The service returns an error if you attempt to create more than 1024 models. You
        do not lose any models, but you cannot create any more until your model count is
        below the limit.
        **Note:** Acoustic model customization is supported only for use with
        previous-generation models. It is not supported for large speech models and
        next-generation models.
        **Important:** Effective **31 July 2023**, all previous-generation models will be
        removed from the service and the documentation. Most previous-generation models
        were deprecated on 15 March 2022. You must migrate to the equivalent large speech
        model or next-generation model by 31 July 2023. For more information, see
        [Migrating to large speech
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-migrate).
        **See also:** [Create a custom acoustic
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-acoustic#createModel-acoustic).

        :param str name: A user-defined name for the new custom acoustic model. Use
               a localized name that matches the language of the custom model. Use a name
               that describes the acoustic environment of the custom model, such as
               `Mobile custom model` or `Noisy car custom model`. Use a name that is
               unique among all custom acoustic models that you own.
               Include a maximum of 256 characters in the name. Do not use backslashes,
               slashes, colons, equal signs, ampersands, or question marks in the name.
        :param str base_model_name: The name of the base language model that is to
               be customized by the new custom acoustic model. The new custom model can be
               used only with the base model that it customizes.
               To determine whether a base model supports acoustic model customization,
               refer to [Language support for
               customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).
        :param str description: (optional) A recommended description of the new
               custom acoustic model. Use a localized description that matches the
               language of the custom model. Include a maximum of 128 characters in the
               description.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `AcousticModel` object
        """

        if name is None:
            raise ValueError('name must be provided')
        if base_model_name is None:
            raise ValueError('base_model_name must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='create_acoustic_model',
        )
        headers.update(sdk_headers)

        data = {
            'name': name,
            'base_model_name': base_model_name,
            'description': description,
        }
        data = {k: v for (k, v) in data.items() if v is not None}
        data = json.dumps(data)
        headers['content-type'] = 'application/json'

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        url = '/v1/acoustic_customizations'
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            data=data,
        )

        response = self.send(request, **kwargs)
        return response

    def list_acoustic_models(
        self,
        *,
        language: Optional[str] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        List custom acoustic models.

        Lists information about all custom acoustic models that are owned by an instance
        of the service. Use the `language` parameter to see all custom acoustic models for
        the specified language. Omit the parameter to see all custom acoustic models for
        all languages. You must use credentials for the instance of the service that owns
        a model to list information about it.
        **Note:** Acoustic model customization is supported only for use with
        previous-generation models. It is not supported for large speech models and
        next-generation models.
        **See also:** [Listing custom acoustic
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageAcousticModels#listModels-acoustic).

        :param str language: (optional) The identifier of the language for which
               custom language or custom acoustic models are to be returned. Specify the
               five-character language identifier; for example, specify `en-US` to see all
               custom language or custom acoustic models that are based on US English
               models. Omit the parameter to see all custom language or custom acoustic
               models that are owned by the requesting credentials.
               To determine the languages for which customization is available, see
               [Language support for
               customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `AcousticModels` object
        """

        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='list_acoustic_models',
        )
        headers.update(sdk_headers)

        params = {
            'language': language,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        url = '/v1/acoustic_customizations'
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def get_acoustic_model(
        self,
        customization_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Get a custom acoustic model.

        Gets information about a specified custom acoustic model. You must use credentials
        for the instance of the service that owns a model to list information about it.
        **Note:** Acoustic model customization is supported only for use with
        previous-generation models. It is not supported for large speech models and
        next-generation models.
        **See also:** [Listing custom acoustic
        models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageAcousticModels#listModels-acoustic).

        :param str customization_id: The customization ID (GUID) of the custom
               acoustic model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `AcousticModel` object
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='get_acoustic_model',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id']
        path_param_values = self.encode_path_vars(customization_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/acoustic_customizations/{customization_id}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    def delete_acoustic_model(
        self,
        customization_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Delete a custom acoustic model.

        Deletes an existing custom acoustic model. The custom model cannot be deleted if
        another request, such as adding an audio resource to the model, is currently being
        processed. You must use credentials for the instance of the service that owns a
        model to delete it.
        **Note:** Acoustic model customization is supported only for use with
        previous-generation models. It is not supported for large speech models and
        next-generation models.
        **See also:** [Deleting a custom acoustic
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageAcousticModels#deleteModel-acoustic).

        :param str customization_id: The customization ID (GUID) of the custom
               acoustic model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='delete_acoustic_model',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id']
        path_param_values = self.encode_path_vars(customization_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/acoustic_customizations/{customization_id}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='DELETE',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    def train_acoustic_model(
        self,
        customization_id: str,
        *,
        custom_language_model_id: Optional[str] = None,
        strict: Optional[bool] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Train a custom acoustic model.

        Initiates the training of a custom acoustic model with new or changed audio
        resources. After adding or deleting audio resources for a custom acoustic model,
        use this method to begin the actual training of the model on the latest audio
        data. The custom acoustic model does not reflect its changed data until you train
        it. You must use credentials for the instance of the service that owns a model to
        train it.
        The training method is asynchronous. Training time depends on the cumulative
        amount of audio data that the custom acoustic model contains and the current load
        on the service. When you train or retrain a model, the service uses all of the
        model's audio data in the training. Training a custom acoustic model takes
        approximately as long as the length of its cumulative audio data. For example, it
        takes approximately 2 hours to train a model that contains a total of 2 hours of
        audio. The method returns an HTTP 200 response code to indicate that the training
        process has begun.
        You can monitor the status of the training by using the [Get a custom acoustic
        model](#getacousticmodel) method to poll the model's status. Use a loop to check
        the status once a minute. The method returns an `AcousticModel` object that
        includes `status` and `progress` fields. A status of `available` indicates that
        the custom model is trained and ready to use. The service cannot train a model
        while it is handling another request for the model. The service cannot accept
        subsequent training requests, or requests to add new audio resources, until the
        existing training request completes.
        You can use the optional `custom_language_model_id` parameter to specify the GUID
        of a separately created custom language model that is to be used during training.
        Train with a custom language model if you have verbatim transcriptions of the
        audio files that you have added to the custom model or you have either corpora
        (text files) or a list of words that are relevant to the contents of the audio
        files. For training to succeed, both of the custom models must be based on the
        same version of the same base model, and the custom language model must be fully
        trained and available.
        **Note:** Acoustic model customization is supported only for use with
        previous-generation models. It is not supported for large speech models and
        next-generation models.
        **See also:**
        * [Train the custom acoustic
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-acoustic#trainModel-acoustic)
        * [Using custom acoustic and custom language models
        together](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-useBoth#useBoth)
        ### Training failures
         Training can fail to start for the following reasons:
        * The service is currently handling another request for the custom model, such as
        another training request or a request to add audio resources to the model.
        * The custom model contains less than 10 minutes of audio that includes speech,
        not silence.
        * The custom model contains more than 50 hours of audio (for IBM Cloud) or more
        that 200 hours of audio (for IBM Cloud Pak for Data). **Note:** For IBM Cloud, the
        maximum hours of audio for a custom acoustic model was reduced from 200 to 50
        hours in August and September 2022. For more information, see [Maximum hours of
        audio](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-audioResources#audioMaximum).
        * You passed a custom language model with the `custom_language_model_id` query
        parameter that is not in the available state. A custom language model must be
        fully trained and available to be used to train a custom acoustic model.
        * You passed an incompatible custom language model with the
        `custom_language_model_id` query parameter. Both custom models must be based on
        the same version of the same base model.
        * The custom model contains one or more invalid audio resources. You can correct
        the invalid audio resources or set the `strict` parameter to `false` to exclude
        the invalid resources from the training. The model must contain at least one valid
        resource for training to succeed.

        :param str customization_id: The customization ID (GUID) of the custom
               acoustic model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param str custom_language_model_id: (optional) The customization ID (GUID)
               of a custom language model that is to be used during training of the custom
               acoustic model. Specify a custom language model that has been trained with
               verbatim transcriptions of the audio resources or that contains words that
               are relevant to the contents of the audio resources. The custom language
               model must be based on the same version of the same base model as the
               custom acoustic model, and the custom language model must be fully trained
               and available. The credentials specified with the request must own both
               custom models.
        :param bool strict: (optional) If `false`, allows training of the custom
               acoustic model to proceed as long as the model contains at least one valid
               audio resource. The method returns an array of `TrainingWarning` objects
               that lists any invalid resources. By default (`true`), training of a custom
               acoustic model fails (status code 400) if the model contains one or more
               invalid audio resources.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `TrainingResponse` object
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='train_acoustic_model',
        )
        headers.update(sdk_headers)

        params = {
            'custom_language_model_id': custom_language_model_id,
            'strict': strict,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id']
        path_param_values = self.encode_path_vars(customization_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/acoustic_customizations/{customization_id}/train'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    def reset_acoustic_model(
        self,
        customization_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Reset a custom acoustic model.

        Resets a custom acoustic model by removing all audio resources from the model.
        Resetting a custom acoustic model initializes the model to its state when it was
        first created. Metadata such as the name and language of the model are preserved,
        but the model's audio resources are removed and must be re-created. The service
        cannot reset a model while it is handling another request for the model. The
        service cannot accept subsequent requests for the model until the existing reset
        request completes. You must use credentials for the instance of the service that
        owns a model to reset it.
        **Note:** Acoustic model customization is supported only for use with
        previous-generation models. It is not supported for large speech models and
        next-generation models.
        **See also:** [Resetting a custom acoustic
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageAcousticModels#resetModel-acoustic).

        :param str customization_id: The customization ID (GUID) of the custom
               acoustic model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='reset_acoustic_model',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id']
        path_param_values = self.encode_path_vars(customization_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/acoustic_customizations/{customization_id}/reset'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    def upgrade_acoustic_model(
        self,
        customization_id: str,
        *,
        custom_language_model_id: Optional[str] = None,
        force: Optional[bool] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Upgrade a custom acoustic model.

        Initiates the upgrade of a custom acoustic model to the latest version of its base
        language model. The upgrade method is asynchronous. It can take on the order of
        minutes or hours to complete depending on the amount of data in the custom model
        and the current load on the service; typically, upgrade takes approximately twice
        the length of the total audio contained in the custom model. A custom model must
        be in the `ready` or `available` state to be upgraded. You must use credentials
        for the instance of the service that owns a model to upgrade it.
        The method returns an HTTP 200 response code to indicate that the upgrade process
        has begun successfully. You can monitor the status of the upgrade by using the
        [Get a custom acoustic model](#getacousticmodel) method to poll the model's
        status. The method returns an `AcousticModel` object that includes `status` and
        `progress` fields. Use a loop to check the status once a minute.
        While it is being upgraded, the custom model has the status `upgrading`. When the
        upgrade is complete, the model resumes the status that it had prior to upgrade.
        The service cannot upgrade a model while it is handling another request for the
        model. The service cannot accept subsequent requests for the model until the
        existing upgrade request completes.
        If the custom acoustic model was trained with a separately created custom language
        model, you must use the `custom_language_model_id` parameter to specify the GUID
        of that custom language model. The custom language model must be upgraded before
        the custom acoustic model can be upgraded. Omit the parameter if the custom
        acoustic model was not trained with a custom language model.
        **Note:** Acoustic model customization is supported only for use with
        previous-generation models. It is not supported for large speech models and
        next-generation models.
        **See also:** [Upgrading a custom acoustic
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-upgrade#custom-upgrade-acoustic).

        :param str customization_id: The customization ID (GUID) of the custom
               acoustic model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param str custom_language_model_id: (optional) If the custom acoustic
               model was trained with a custom language model, the customization ID (GUID)
               of that custom language model. The custom language model must be upgraded
               before the custom acoustic model can be upgraded. The custom language model
               must be fully trained and available. The credentials specified with the
               request must own both custom models.
        :param bool force: (optional) If `true`, forces the upgrade of a custom
               acoustic model for which no input data has been modified since it was last
               trained. Use this parameter only to force the upgrade of a custom acoustic
               model that is trained with a custom language model, and only if you receive
               a 400 response code and the message `No input data modified since last
               training`. See [Upgrading a custom acoustic
               model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-upgrade#custom-upgrade-acoustic).
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='upgrade_acoustic_model',
        )
        headers.update(sdk_headers)

        params = {
            'custom_language_model_id': custom_language_model_id,
            'force': force,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id']
        path_param_values = self.encode_path_vars(customization_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/acoustic_customizations/{customization_id}/upgrade_model'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response

    #########################
    # Custom audio resources
    #########################

    def list_audio(
        self,
        customization_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        List audio resources.

        Lists information about all audio resources from a custom acoustic model. The
        information includes the name of the resource and information about its audio
        data, such as its duration. It also includes the status of the audio resource,
        which is important for checking the service's analysis of the resource in response
        to a request to add it to the custom acoustic model. You must use credentials for
        the instance of the service that owns a model to list its audio resources.
        **Note:** Acoustic model customization is supported only for use with
        previous-generation models. It is not supported for large speech models and
        next-generation models.
        **See also:** [Listing audio resources for a custom acoustic
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageAudio#listAudio).

        :param str customization_id: The customization ID (GUID) of the custom
               acoustic model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `AudioResources` object
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='list_audio',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id']
        path_param_values = self.encode_path_vars(customization_id)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/acoustic_customizations/{customization_id}/audio'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    def add_audio(
        self,
        customization_id: str,
        audio_name: str,
        audio_resource: BinaryIO,
        *,
        content_type: Optional[str] = None,
        contained_content_type: Optional[str] = None,
        allow_overwrite: Optional[bool] = None,
        **kwargs,
    ) -> DetailedResponse:
        """
        Add an audio resource.

        Adds an audio resource to a custom acoustic model. Add audio content that reflects
        the acoustic characteristics of the audio that you plan to transcribe. You must
        use credentials for the instance of the service that owns a model to add an audio
        resource to it. Adding audio data does not affect the custom acoustic model until
        you train the model for the new data by using the [Train a custom acoustic
        model](#trainacousticmodel) method.
        You can add individual audio files or an archive file that contains multiple audio
        files. Adding multiple audio files via a single archive file is significantly more
        efficient than adding each file individually. You can add audio resources in any
        format that the service supports for speech recognition.
        You can use this method to add any number of audio resources to a custom model by
        calling the method once for each audio or archive file. You can add multiple
        different audio resources at the same time. You must add a minimum of 10 minutes
        of audio that includes speech, not just silence, to a custom acoustic model before
        you can train it. No audio resource, audio- or archive-type, can be larger than
        100 MB. To add an audio resource that has the same name as an existing audio
        resource, set the `allow_overwrite` parameter to `true`; otherwise, the request
        fails. A custom model can contain no more than 50 hours of audio (for IBM Cloud)
        or 200 hours of audio (for IBM Cloud Pak for Data). **Note:** For IBM Cloud, the
        maximum hours of audio for a custom acoustic model was reduced from 200 to 50
        hours in August and September 2022. For more information, see [Maximum hours of
        audio](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-audioResources#audioMaximum).
        The method is asynchronous. It can take several seconds or minutes to complete
        depending on the duration of the audio and, in the case of an archive file, the
        total number of audio files being processed. The service returns a 201 response
        code if the audio is valid. It then asynchronously analyzes the contents of the
        audio file or files and automatically extracts information about the audio such as
        its length, sampling rate, and encoding. You cannot submit requests to train or
        upgrade the model until the service's analysis of all audio resources for current
        requests completes.
        To determine the status of the service's analysis of the audio, use the [Get an
        audio resource](#getaudio) method to poll the status of the audio. The method
        accepts the customization ID of the custom model and the name of the audio
        resource, and it returns the status of the resource. Use a loop to check the
        status of the audio every few seconds until it becomes `ok`.
        **Note:** Acoustic model customization is supported only for use with
        previous-generation models. It is not supported for large speech models and
        next-generation models.
        **See also:** [Add audio to the custom acoustic
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-acoustic#addAudio).
        ### Content types for audio-type resources
         You can add an individual audio file in any format that the service supports for
        speech recognition. For an audio-type resource, use the `Content-Type` parameter
        to specify the audio format (MIME type) of the audio file, including specifying
        the sampling rate, channels, and endianness where indicated.
        * `audio/alaw` (Specify the sampling rate (`rate`) of the audio.)
        * `audio/basic` (Use only with narrowband models.)
        * `audio/flac`
        * `audio/g729` (Use only with narrowband models.)
        * `audio/l16` (Specify the sampling rate (`rate`) and optionally the number of
        channels (`channels`) and endianness (`endianness`) of the audio.)
        * `audio/mp3`
        * `audio/mpeg`
        * `audio/mulaw` (Specify the sampling rate (`rate`) of the audio.)
        * `audio/ogg` (The service automatically detects the codec of the input audio.)
        * `audio/ogg;codecs=opus`
        * `audio/ogg;codecs=vorbis`
        * `audio/wav` (Provide audio with a maximum of nine channels.)
        * `audio/webm` (The service automatically detects the codec of the input audio.)
        * `audio/webm;codecs=opus`
        * `audio/webm;codecs=vorbis`
        The sampling rate of an audio file must match the sampling rate of the base model
        for the custom model: for broadband models, at least 16 kHz; for narrowband
        models, at least 8 kHz. If the sampling rate of the audio is higher than the
        minimum required rate, the service down-samples the audio to the appropriate rate.
        If the sampling rate of the audio is lower than the minimum required rate, the
        service labels the audio file as `invalid`.
         **See also:** [Supported audio
        formats](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-audio-formats).
        ### Content types for archive-type resources
         You can add an archive file (**.zip** or **.tar.gz** file) that contains audio
        files in any format that the service supports for speech recognition. For an
        archive-type resource, use the `Content-Type` parameter to specify the media type
        of the archive file:
        * `application/zip` for a **.zip** file
        * `application/gzip` for a **.tar.gz** file.
        When you add an archive-type resource, the `Contained-Content-Type` header is
        optional depending on the format of the files that you are adding:
        * For audio files of type `audio/alaw`, `audio/basic`, `audio/l16`, or
        `audio/mulaw`, you must use the `Contained-Content-Type` header to specify the
        format of the contained audio files. Include the `rate`, `channels`, and
        `endianness` parameters where necessary. In this case, all audio files contained
        in the archive file must have the same audio format.
        * For audio files of all other types, you can omit the `Contained-Content-Type`
        header. In this case, the audio files contained in the archive file can have any
        of the formats not listed in the previous bullet. The audio files do not need to
        have the same format.
        Do not use the `Contained-Content-Type` header when adding an audio-type resource.
        ### Naming restrictions for embedded audio files
         The name of an audio file that is contained in an archive-type resource can
        include a maximum of 128 characters. This includes the file extension and all
        elements of the name (for example, slashes).

        :param str customization_id: The customization ID (GUID) of the custom
               acoustic model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param str audio_name: The name of the new audio resource for the custom
               acoustic model. Use a localized name that matches the language of the
               custom model and reflects the contents of the resource.
               * Include a maximum of 128 characters in the name.
               * Do not use characters that need to be URL-encoded. For example, do not
               use spaces, slashes, backslashes, colons, ampersands, double quotes, plus
               signs, equals signs, questions marks, and so on in the name. (The service
               does not prevent the use of these characters. But because they must be
               URL-encoded wherever used, their use is strongly discouraged.)
               * Do not use the name of an audio resource that has already been added to
               the custom model.
        :param BinaryIO audio_resource: The audio resource that is to be added to
               the custom acoustic model, an individual audio file or an archive file.
               With the `curl` command, use the `--data-binary` option to upload the file
               for the request.
        :param str content_type: (optional) For an audio-type resource, the format
               (MIME type) of the audio. For more information, see **Content types for
               audio-type resources** in the method description.
               For an archive-type resource, the media type of the archive file. For more
               information, see **Content types for archive-type resources** in the method
               description.
        :param str contained_content_type: (optional) _For an archive-type
               resource_, specify the format of the audio files that are contained in the
               archive file if they are of type `audio/alaw`, `audio/basic`, `audio/l16`,
               or `audio/mulaw`. Include the `rate`, `channels`, and `endianness`
               parameters where necessary. In this case, all audio files that are
               contained in the archive file must be of the indicated type.
               For all other audio formats, you can omit the header. In this case, the
               audio files can be of multiple types as long as they are not of the types
               listed in the previous paragraph.
               The parameter accepts all of the audio formats that are supported for use
               with speech recognition. For more information, see **Content types for
               audio-type resources** in the method description.
               _For an audio-type resource_, omit the header.
        :param bool allow_overwrite: (optional) If `true`, the specified audio
               resource overwrites an existing audio resource with the same name. If
               `false`, the request fails if an audio resource with the same name already
               exists. The parameter has no effect if an audio resource with the same name
               does not already exist.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        if not audio_name:
            raise ValueError('audio_name must be provided')
        if audio_resource is None:
            raise ValueError('audio_resource must be provided')
        headers = {
            'Content-Type': content_type,
            'Contained-Content-Type': contained_content_type,
        }
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='add_audio',
        )
        headers.update(sdk_headers)

        params = {
            'allow_overwrite': allow_overwrite,
        }

        data = audio_resource

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id', 'audio_name']
        path_param_values = self.encode_path_vars(customization_id, audio_name)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/acoustic_customizations/{customization_id}/audio/{audio_name}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='POST',
            url=url,
            headers=headers,
            params=params,
            data=data,
        )

        response = self.send(request, **kwargs)
        return response

    def get_audio(
        self,
        customization_id: str,
        audio_name: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Get an audio resource.

        Gets information about an audio resource from a custom acoustic model. The method
        returns an `AudioListing` object whose fields depend on the type of audio resource
        that you specify with the method's `audio_name` parameter:
        * _For an audio-type resource_, the object's fields match those of an
        `AudioResource` object: `duration`, `name`, `details`, and `status`.
        * _For an archive-type resource_, the object includes a `container` field whose
        fields match those of an `AudioResource` object. It also includes an `audio`
        field, which contains an array of `AudioResource` objects that provides
        information about the audio files that are contained in the archive.
        The information includes the status of the specified audio resource. The status is
        important for checking the service's analysis of a resource that you add to the
        custom model.
        * _For an audio-type resource_, the `status` field is located in the
        `AudioListing` object.
        * _For an archive-type resource_, the `status` field is located in the
        `AudioResource` object that is returned in the `container` field.
        You must use credentials for the instance of the service that owns a model to list
        its audio resources.
        **Note:** Acoustic model customization is supported only for use with
        previous-generation models. It is not supported for large speech models and
        next-generation models.
        **See also:** [Listing audio resources for a custom acoustic
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageAudio#listAudio).

        :param str customization_id: The customization ID (GUID) of the custom
               acoustic model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param str audio_name: The name of the audio resource for the custom
               acoustic model.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse with `dict` result representing a `AudioListing` object
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        if not audio_name:
            raise ValueError('audio_name must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='get_audio',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id', 'audio_name']
        path_param_values = self.encode_path_vars(customization_id, audio_name)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/acoustic_customizations/{customization_id}/audio/{audio_name}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='GET',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    def delete_audio(
        self,
        customization_id: str,
        audio_name: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Delete an audio resource.

        Deletes an existing audio resource from a custom acoustic model. Deleting an
        archive-type audio resource removes the entire archive of files. The service does
        not allow deletion of individual files from an archive resource.
        Removing an audio resource does not affect the custom model until you train the
        model on its updated data by using the [Train a custom acoustic
        model](#trainacousticmodel) method. You can delete an existing audio resource from
        a model while a different resource is being added to the model. You must use
        credentials for the instance of the service that owns a model to delete its audio
        resources.
        **Note:** Acoustic model customization is supported only for use with
        previous-generation models. It is not supported for large speech models and
        next-generation models.
        **See also:** [Deleting an audio resource from a custom acoustic
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageAudio#deleteAudio).

        :param str customization_id: The customization ID (GUID) of the custom
               acoustic model that is to be used for the request. You must make the
               request with credentials for the instance of the service that owns the
               custom model.
        :param str audio_name: The name of the audio resource for the custom
               acoustic model.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not customization_id:
            raise ValueError('customization_id must be provided')
        if not audio_name:
            raise ValueError('audio_name must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='delete_audio',
        )
        headers.update(sdk_headers)

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']
        headers['Accept'] = 'application/json'

        path_param_keys = ['customization_id', 'audio_name']
        path_param_values = self.encode_path_vars(customization_id, audio_name)
        path_param_dict = dict(zip(path_param_keys, path_param_values))
        url = '/v1/acoustic_customizations/{customization_id}/audio/{audio_name}'.format(
            **path_param_dict)
        request = self.prepare_request(
            method='DELETE',
            url=url,
            headers=headers,
        )

        response = self.send(request, **kwargs)
        return response

    #########################
    # User data
    #########################

    def delete_user_data(
        self,
        customer_id: str,
        **kwargs,
    ) -> DetailedResponse:
        """
        Delete labeled data.

        Deletes all data that is associated with a specified customer ID. The method
        deletes all data for the customer ID, regardless of the method by which the
        information was added. The method has no effect if no data is associated with the
        customer ID. You must issue the request with credentials for the same instance of
        the service that was used to associate the customer ID with the data. You
        associate a customer ID with data by passing the `X-Watson-Metadata` header with a
        request that passes the data.
        **Note:** If you delete an instance of the service from the service console, all
        data associated with that service instance is automatically deleted. This includes
        all custom language models, corpora, grammars, and words; all custom acoustic
        models and audio resources; all registered endpoints for the asynchronous HTTP
        interface; and all data related to speech recognition requests.
        **See also:** [Information
        security](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-information-security#information-security).

        :param str customer_id: The customer ID for which all data is to be
               deleted.
        :param dict headers: A `dict` containing the request headers
        :return: A `DetailedResponse` containing the result, headers and HTTP status code.
        :rtype: DetailedResponse
        """

        if not customer_id:
            raise ValueError('customer_id must be provided')
        headers = {}
        sdk_headers = get_sdk_headers(
            service_name=self.DEFAULT_SERVICE_NAME,
            service_version='V1',
            operation_id='delete_user_data',
        )
        headers.update(sdk_headers)

        params = {
            'customer_id': customer_id,
        }

        if 'headers' in kwargs:
            headers.update(kwargs.get('headers'))
            del kwargs['headers']

        url = '/v1/user_data'
        request = self.prepare_request(
            method='DELETE',
            url=url,
            headers=headers,
            params=params,
        )

        response = self.send(request, **kwargs)
        return response


class GetModelEnums:
    """
    Enums for get_model parameters.
    """

    class ModelId(str, Enum):
        """
        The identifier of the model in the form of its name from the output of the [List
        models](#listmodels) method.
        """

        AR_MS_BROADBANDMODEL = 'ar-MS_BroadbandModel'
        AR_MS_TELEPHONY = 'ar-MS_Telephony'
        CS_CZ_TELEPHONY = 'cs-CZ_Telephony'
        DE_DE_BROADBANDMODEL = 'de-DE_BroadbandModel'
        DE_DE_MULTIMEDIA = 'de-DE_Multimedia'
        DE_DE_NARROWBANDMODEL = 'de-DE_NarrowbandModel'
        DE_DE_TELEPHONY = 'de-DE_Telephony'
        EN_AU = 'en-AU'
        EN_AU_BROADBANDMODEL = 'en-AU_BroadbandModel'
        EN_AU_MULTIMEDIA = 'en-AU_Multimedia'
        EN_AU_NARROWBANDMODEL = 'en-AU_NarrowbandModel'
        EN_AU_TELEPHONY = 'en-AU_Telephony'
        EN_GB = 'en-GB'
        EN_GB_BROADBANDMODEL = 'en-GB_BroadbandModel'
        EN_GB_MULTIMEDIA = 'en-GB_Multimedia'
        EN_GB_NARROWBANDMODEL = 'en-GB_NarrowbandModel'
        EN_GB_TELEPHONY = 'en-GB_Telephony'
        EN_IN = 'en-IN'
        EN_IN_TELEPHONY = 'en-IN_Telephony'
        EN_US = 'en-US'
        EN_US_BROADBANDMODEL = 'en-US_BroadbandModel'
        EN_US_MULTIMEDIA = 'en-US_Multimedia'
        EN_US_NARROWBANDMODEL = 'en-US_NarrowbandModel'
        EN_US_SHORTFORM_NARROWBANDMODEL = 'en-US_ShortForm_NarrowbandModel'
        EN_US_TELEPHONY = 'en-US_Telephony'
        EN_WW_MEDICAL_TELEPHONY = 'en-WW_Medical_Telephony'
        ES_AR = 'es-AR'
        ES_AR_BROADBANDMODEL = 'es-AR_BroadbandModel'
        ES_AR_NARROWBANDMODEL = 'es-AR_NarrowbandModel'
        ES_CL = 'es-CL'
        ES_CL_BROADBANDMODEL = 'es-CL_BroadbandModel'
        ES_CL_NARROWBANDMODEL = 'es-CL_NarrowbandModel'
        ES_CO = 'es-CO'
        ES_CO_BROADBANDMODEL = 'es-CO_BroadbandModel'
        ES_CO_NARROWBANDMODEL = 'es-CO_NarrowbandModel'
        ES_ES = 'es-ES'
        ES_ES_BROADBANDMODEL = 'es-ES_BroadbandModel'
        ES_ES_NARROWBANDMODEL = 'es-ES_NarrowbandModel'
        ES_ES_MULTIMEDIA = 'es-ES_Multimedia'
        ES_ES_TELEPHONY = 'es-ES_Telephony'
        ES_LA_TELEPHONY = 'es-LA_Telephony'
        ES_MX = 'es-MX'
        ES_MX_BROADBANDMODEL = 'es-MX_BroadbandModel'
        ES_MX_NARROWBANDMODEL = 'es-MX_NarrowbandModel'
        ES_PE = 'es-PE'
        ES_PE_BROADBANDMODEL = 'es-PE_BroadbandModel'
        ES_PE_NARROWBANDMODEL = 'es-PE_NarrowbandModel'
        FR_CA = 'fr-CA'
        FR_CA_BROADBANDMODEL = 'fr-CA_BroadbandModel'
        FR_CA_MULTIMEDIA = 'fr-CA_Multimedia'
        FR_CA_NARROWBANDMODEL = 'fr-CA_NarrowbandModel'
        FR_CA_TELEPHONY = 'fr-CA_Telephony'
        FR_FR = 'fr-FR'
        FR_FR_BROADBANDMODEL = 'fr-FR_BroadbandModel'
        FR_FR_MULTIMEDIA = 'fr-FR_Multimedia'
        FR_FR_NARROWBANDMODEL = 'fr-FR_NarrowbandModel'
        FR_FR_TELEPHONY = 'fr-FR_Telephony'
        HI_IN_TELEPHONY = 'hi-IN_Telephony'
        IT_IT_BROADBANDMODEL = 'it-IT_BroadbandModel'
        IT_IT_NARROWBANDMODEL = 'it-IT_NarrowbandModel'
        IT_IT_MULTIMEDIA = 'it-IT_Multimedia'
        IT_IT_TELEPHONY = 'it-IT_Telephony'
        JA_JP = 'ja-JP'
        JA_JP_BROADBANDMODEL = 'ja-JP_BroadbandModel'
        JA_JP_MULTIMEDIA = 'ja-JP_Multimedia'
        JA_JP_NARROWBANDMODEL = 'ja-JP_NarrowbandModel'
        JA_JP_TELEPHONY = 'ja-JP_Telephony'
        KO_KR_BROADBANDMODEL = 'ko-KR_BroadbandModel'
        KO_KR_MULTIMEDIA = 'ko-KR_Multimedia'
        KO_KR_NARROWBANDMODEL = 'ko-KR_NarrowbandModel'
        KO_KR_TELEPHONY = 'ko-KR_Telephony'
        NL_BE_TELEPHONY = 'nl-BE_Telephony'
        NL_NL_BROADBANDMODEL = 'nl-NL_BroadbandModel'
        NL_NL_MULTIMEDIA = 'nl-NL_Multimedia'
        NL_NL_NARROWBANDMODEL = 'nl-NL_NarrowbandModel'
        NL_NL_TELEPHONY = 'nl-NL_Telephony'
        PT_BR = 'pt-BR'
        PT_BR_BROADBANDMODEL = 'pt-BR_BroadbandModel'
        PT_BR_MULTIMEDIA = 'pt-BR_Multimedia'
        PT_BR_NARROWBANDMODEL = 'pt-BR_NarrowbandModel'
        PT_BR_TELEPHONY = 'pt-BR_Telephony'
        SV_SE_TELEPHONY = 'sv-SE_Telephony'
        ZH_CN_BROADBANDMODEL = 'zh-CN_BroadbandModel'
        ZH_CN_NARROWBANDMODEL = 'zh-CN_NarrowbandModel'
        ZH_CN_TELEPHONY = 'zh-CN_Telephony'


class RecognizeEnums:
    """
    Enums for recognize parameters.
    """

    class ContentType(str, Enum):
        """
        The format (MIME type) of the audio. For more information about specifying an
        audio format, see **Audio formats (content types)** in the method description.
        """

        APPLICATION_OCTET_STREAM = 'application/octet-stream'
        AUDIO_ALAW = 'audio/alaw'
        AUDIO_BASIC = 'audio/basic'
        AUDIO_FLAC = 'audio/flac'
        AUDIO_G729 = 'audio/g729'
        AUDIO_L16 = 'audio/l16'
        AUDIO_MP3 = 'audio/mp3'
        AUDIO_MPEG = 'audio/mpeg'
        AUDIO_MULAW = 'audio/mulaw'
        AUDIO_OGG = 'audio/ogg'
        AUDIO_OGG_CODECS_OPUS = 'audio/ogg;codecs=opus'
        AUDIO_OGG_CODECS_VORBIS = 'audio/ogg;codecs=vorbis'
        AUDIO_WAV = 'audio/wav'
        AUDIO_WEBM = 'audio/webm'
        AUDIO_WEBM_CODECS_OPUS = 'audio/webm;codecs=opus'
        AUDIO_WEBM_CODECS_VORBIS = 'audio/webm;codecs=vorbis'

    class Model(str, Enum):
        """
        The model to use for speech recognition. If you omit the `model` parameter, the
        service uses the US English `en-US_BroadbandModel` by default.
        _For IBM Cloud Pak for Data,_ if you do not install the `en-US_BroadbandModel`,
        you must either specify a model with the request or specify a new default model
        for your installation of the service.
        **See also:**
        * [Using a model for speech
        recognition](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-use)
        * [Using the default
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-use#models-use-default).
        """

        AR_MS_BROADBANDMODEL = 'ar-MS_BroadbandModel'
        AR_MS_TELEPHONY = 'ar-MS_Telephony'
        CS_CZ_TELEPHONY = 'cs-CZ_Telephony'
        DE_DE_BROADBANDMODEL = 'de-DE_BroadbandModel'
        DE_DE_MULTIMEDIA = 'de-DE_Multimedia'
        DE_DE_NARROWBANDMODEL = 'de-DE_NarrowbandModel'
        DE_DE_TELEPHONY = 'de-DE_Telephony'
        EN_AU = 'en-AU'
        EN_AU_BROADBANDMODEL = 'en-AU_BroadbandModel'
        EN_AU_MULTIMEDIA = 'en-AU_Multimedia'
        EN_AU_NARROWBANDMODEL = 'en-AU_NarrowbandModel'
        EN_AU_TELEPHONY = 'en-AU_Telephony'
        EN_IN = 'en-IN'
        EN_IN_TELEPHONY = 'en-IN_Telephony'
        EN_GB = 'en-GB'
        EN_GB_BROADBANDMODEL = 'en-GB_BroadbandModel'
        EN_GB_MULTIMEDIA = 'en-GB_Multimedia'
        EN_GB_NARROWBANDMODEL = 'en-GB_NarrowbandModel'
        EN_GB_TELEPHONY = 'en-GB_Telephony'
        EN_US = 'en-US'
        EN_US_BROADBANDMODEL = 'en-US_BroadbandModel'
        EN_US_MULTIMEDIA = 'en-US_Multimedia'
        EN_US_NARROWBANDMODEL = 'en-US_NarrowbandModel'
        EN_US_SHORTFORM_NARROWBANDMODEL = 'en-US_ShortForm_NarrowbandModel'
        EN_US_TELEPHONY = 'en-US_Telephony'
        EN_WW_MEDICAL_TELEPHONY = 'en-WW_Medical_Telephony'
        ES_AR = 'es-AR'
        ES_AR_BROADBANDMODEL = 'es-AR_BroadbandModel'
        ES_AR_NARROWBANDMODEL = 'es-AR_NarrowbandModel'
        ES_CL = 'es-CL'
        ES_CL_BROADBANDMODEL = 'es-CL_BroadbandModel'
        ES_CL_NARROWBANDMODEL = 'es-CL_NarrowbandModel'
        ES_CO = 'es-CO'
        ES_CO_BROADBANDMODEL = 'es-CO_BroadbandModel'
        ES_CO_NARROWBANDMODEL = 'es-CO_NarrowbandModel'
        ES_ES = 'es-ES'
        ES_ES_BROADBANDMODEL = 'es-ES_BroadbandModel'
        ES_ES_NARROWBANDMODEL = 'es-ES_NarrowbandModel'
        ES_ES_MULTIMEDIA = 'es-ES_Multimedia'
        ES_ES_TELEPHONY = 'es-ES_Telephony'
        ES_LA_TELEPHONY = 'es-LA_Telephony'
        ES_MX = 'es-MX'
        ES_MX_BROADBANDMODEL = 'es-MX_BroadbandModel'
        ES_MX_NARROWBANDMODEL = 'es-MX_NarrowbandModel'
        ES_PE = 'es-PE'
        ES_PE_BROADBANDMODEL = 'es-PE_BroadbandModel'
        ES_PE_NARROWBANDMODEL = 'es-PE_NarrowbandModel'
        FR_CA = 'fr-CA'
        FR_CA_BROADBANDMODEL = 'fr-CA_BroadbandModel'
        FR_CA_MULTIMEDIA = 'fr-CA_Multimedia'
        FR_CA_NARROWBANDMODEL = 'fr-CA_NarrowbandModel'
        FR_CA_TELEPHONY = 'fr-CA_Telephony'
        FR_FR = 'fr-FR'
        FR_FR_BROADBANDMODEL = 'fr-FR_BroadbandModel'
        FR_FR_MULTIMEDIA = 'fr-FR_Multimedia'
        FR_FR_NARROWBANDMODEL = 'fr-FR_NarrowbandModel'
        FR_FR_TELEPHONY = 'fr-FR_Telephony'
        HI_IN_TELEPHONY = 'hi-IN_Telephony'
        IT_IT_BROADBANDMODEL = 'it-IT_BroadbandModel'
        IT_IT_NARROWBANDMODEL = 'it-IT_NarrowbandModel'
        IT_IT_MULTIMEDIA = 'it-IT_Multimedia'
        IT_IT_TELEPHONY = 'it-IT_Telephony'
        JA_JP = 'ja-JP'
        JA_JP_BROADBANDMODEL = 'ja-JP_BroadbandModel'
        JA_JP_MULTIMEDIA = 'ja-JP_Multimedia'
        JA_JP_NARROWBANDMODEL = 'ja-JP_NarrowbandModel'
        JA_JP_TELEPHONY = 'ja-JP_Telephony'
        KO_KR_BROADBANDMODEL = 'ko-KR_BroadbandModel'
        KO_KR_MULTIMEDIA = 'ko-KR_Multimedia'
        KO_KR_NARROWBANDMODEL = 'ko-KR_NarrowbandModel'
        KO_KR_TELEPHONY = 'ko-KR_Telephony'
        NL_BE_TELEPHONY = 'nl-BE_Telephony'
        NL_NL_BROADBANDMODEL = 'nl-NL_BroadbandModel'
        NL_NL_MULTIMEDIA = 'nl-NL_Multimedia'
        NL_NL_NARROWBANDMODEL = 'nl-NL_NarrowbandModel'
        NL_NL_TELEPHONY = 'nl-NL_Telephony'
        PT_BR = 'pt-BR'
        PT_BR_BROADBANDMODEL = 'pt-BR_BroadbandModel'
        PT_BR_MULTIMEDIA = 'pt-BR_Multimedia'
        PT_BR_NARROWBANDMODEL = 'pt-BR_NarrowbandModel'
        PT_BR_TELEPHONY = 'pt-BR_Telephony'
        SV_SE_TELEPHONY = 'sv-SE_Telephony'
        ZH_CN_BROADBANDMODEL = 'zh-CN_BroadbandModel'
        ZH_CN_NARROWBANDMODEL = 'zh-CN_NarrowbandModel'
        ZH_CN_TELEPHONY = 'zh-CN_Telephony'


class CreateJobEnums:
    """
    Enums for create_job parameters.
    """

    class ContentType(str, Enum):
        """
        The format (MIME type) of the audio. For more information about specifying an
        audio format, see **Audio formats (content types)** in the method description.
        """

        APPLICATION_OCTET_STREAM = 'application/octet-stream'
        AUDIO_ALAW = 'audio/alaw'
        AUDIO_BASIC = 'audio/basic'
        AUDIO_FLAC = 'audio/flac'
        AUDIO_G729 = 'audio/g729'
        AUDIO_L16 = 'audio/l16'
        AUDIO_MP3 = 'audio/mp3'
        AUDIO_MPEG = 'audio/mpeg'
        AUDIO_MULAW = 'audio/mulaw'
        AUDIO_OGG = 'audio/ogg'
        AUDIO_OGG_CODECS_OPUS = 'audio/ogg;codecs=opus'
        AUDIO_OGG_CODECS_VORBIS = 'audio/ogg;codecs=vorbis'
        AUDIO_WAV = 'audio/wav'
        AUDIO_WEBM = 'audio/webm'
        AUDIO_WEBM_CODECS_OPUS = 'audio/webm;codecs=opus'
        AUDIO_WEBM_CODECS_VORBIS = 'audio/webm;codecs=vorbis'

    class Model(str, Enum):
        """
        The model to use for speech recognition. If you omit the `model` parameter, the
        service uses the US English `en-US_BroadbandModel` by default.
        _For IBM Cloud Pak for Data,_ if you do not install the `en-US_BroadbandModel`,
        you must either specify a model with the request or specify a new default model
        for your installation of the service.
        **See also:**
        * [Using a model for speech
        recognition](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-use)
        * [Using the default
        model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-use#models-use-default).
        """

        AR_MS_BROADBANDMODEL = 'ar-MS_BroadbandModel'
        AR_MS_TELEPHONY = 'ar-MS_Telephony'
        CS_CZ_TELEPHONY = 'cs-CZ_Telephony'
        DE_DE_BROADBANDMODEL = 'de-DE_BroadbandModel'
        DE_DE_MULTIMEDIA = 'de-DE_Multimedia'
        DE_DE_NARROWBANDMODEL = 'de-DE_NarrowbandModel'
        DE_DE_TELEPHONY = 'de-DE_Telephony'
        EN_AU = 'en-AU'
        EN_AU_BROADBANDMODEL = 'en-AU_BroadbandModel'
        EN_AU_MULTIMEDIA = 'en-AU_Multimedia'
        EN_AU_NARROWBANDMODEL = 'en-AU_NarrowbandModel'
        EN_AU_TELEPHONY = 'en-AU_Telephony'
        EN_IN = 'en-IN'
        EN_IN_TELEPHONY = 'en-IN_Telephony'
        EN_GB = 'en-GB'
        EN_GB_BROADBANDMODEL = 'en-GB_BroadbandModel'
        EN_GB_MULTIMEDIA = 'en-GB_Multimedia'
        EN_GB_NARROWBANDMODEL = 'en-GB_NarrowbandModel'
        EN_GB_TELEPHONY = 'en-GB_Telephony'
        EN_US = 'en-US'
        EN_US_BROADBANDMODEL = 'en-US_BroadbandModel'
        EN_US_MULTIMEDIA = 'en-US_Multimedia'
        EN_US_NARROWBANDMODEL = 'en-US_NarrowbandModel'
        EN_US_SHORTFORM_NARROWBANDMODEL = 'en-US_ShortForm_NarrowbandModel'
        EN_US_TELEPHONY = 'en-US_Telephony'
        EN_WW_MEDICAL_TELEPHONY = 'en-WW_Medical_Telephony'
        ES_AR = 'es-AR'
        ES_AR_BROADBANDMODEL = 'es-AR_BroadbandModel'
        ES_AR_NARROWBANDMODEL = 'es-AR_NarrowbandModel'
        ES_CL = 'es-CL'
        ES_CL_BROADBANDMODEL = 'es-CL_BroadbandModel'
        ES_CL_NARROWBANDMODEL = 'es-CL_NarrowbandModel'
        ES_CO = 'es-CO'
        ES_CO_BROADBANDMODEL = 'es-CO_BroadbandModel'
        ES_CO_NARROWBANDMODEL = 'es-CO_NarrowbandModel'
        ES_ES = 'es-ES'
        ES_ES_BROADBANDMODEL = 'es-ES_BroadbandModel'
        ES_ES_NARROWBANDMODEL = 'es-ES_NarrowbandModel'
        ES_ES_MULTIMEDIA = 'es-ES_Multimedia'
        ES_ES_TELEPHONY = 'es-ES_Telephony'
        ES_LA_TELEPHONY = 'es-LA_Telephony'
        ES_MX = 'es-MX'
        ES_MX_BROADBANDMODEL = 'es-MX_BroadbandModel'
        ES_MX_NARROWBANDMODEL = 'es-MX_NarrowbandModel'
        ES_PE = 'es-PE'
        ES_PE_BROADBANDMODEL = 'es-PE_BroadbandModel'
        ES_PE_NARROWBANDMODEL = 'es-PE_NarrowbandModel'
        FR_CA = 'fr-CA'
        FR_CA_BROADBANDMODEL = 'fr-CA_BroadbandModel'
        FR_CA_MULTIMEDIA = 'fr-CA_Multimedia'
        FR_CA_NARROWBANDMODEL = 'fr-CA_NarrowbandModel'
        FR_CA_TELEPHONY = 'fr-CA_Telephony'
        FR_FR = 'fr-FR'
        FR_FR_BROADBANDMODEL = 'fr-FR_BroadbandModel'
        FR_FR_MULTIMEDIA = 'fr-FR_Multimedia'
        FR_FR_NARROWBANDMODEL = 'fr-FR_NarrowbandModel'
        FR_FR_TELEPHONY = 'fr-FR_Telephony'
        HI_IN_TELEPHONY = 'hi-IN_Telephony'
        IT_IT_BROADBANDMODEL = 'it-IT_BroadbandModel'
        IT_IT_NARROWBANDMODEL = 'it-IT_NarrowbandModel'
        IT_IT_MULTIMEDIA = 'it-IT_Multimedia'
        IT_IT_TELEPHONY = 'it-IT_Telephony'
        JA_JP = 'ja-JP'
        JA_JP_BROADBANDMODEL = 'ja-JP_BroadbandModel'
        JA_JP_MULTIMEDIA = 'ja-JP_Multimedia'
        JA_JP_NARROWBANDMODEL = 'ja-JP_NarrowbandModel'
        JA_JP_TELEPHONY = 'ja-JP_Telephony'
        KO_KR_BROADBANDMODEL = 'ko-KR_BroadbandModel'
        KO_KR_MULTIMEDIA = 'ko-KR_Multimedia'
        KO_KR_NARROWBANDMODEL = 'ko-KR_NarrowbandModel'
        KO_KR_TELEPHONY = 'ko-KR_Telephony'
        NL_BE_TELEPHONY = 'nl-BE_Telephony'
        NL_NL_BROADBANDMODEL = 'nl-NL_BroadbandModel'
        NL_NL_MULTIMEDIA = 'nl-NL_Multimedia'
        NL_NL_NARROWBANDMODEL = 'nl-NL_NarrowbandModel'
        NL_NL_TELEPHONY = 'nl-NL_Telephony'
        PT_BR = 'pt-BR'
        PT_BR_BROADBANDMODEL = 'pt-BR_BroadbandModel'
        PT_BR_MULTIMEDIA = 'pt-BR_Multimedia'
        PT_BR_NARROWBANDMODEL = 'pt-BR_NarrowbandModel'
        PT_BR_TELEPHONY = 'pt-BR_Telephony'
        SV_SE_TELEPHONY = 'sv-SE_Telephony'
        ZH_CN_BROADBANDMODEL = 'zh-CN_BroadbandModel'
        ZH_CN_NARROWBANDMODEL = 'zh-CN_NarrowbandModel'
        ZH_CN_TELEPHONY = 'zh-CN_Telephony'

    class Events(str, Enum):
        """
        If the job includes a callback URL, a comma-separated list of notification events
        to which to subscribe. Valid events are
        * `recognitions.started` generates a callback notification when the service begins
        to process the job.
        * `recognitions.completed` generates a callback notification when the job is
        complete. You must use the [Check a job](#checkjob) method to retrieve the results
        before they time out or are deleted.
        * `recognitions.completed_with_results` generates a callback notification when the
        job is complete. The notification includes the results of the request.
        * `recognitions.failed` generates a callback notification if the service
        experiences an error while processing the job.
        The `recognitions.completed` and `recognitions.completed_with_results` events are
        incompatible. You can specify only of the two events.
        If the job includes a callback URL, omit the parameter to subscribe to the default
        events: `recognitions.started`, `recognitions.completed`, and
        `recognitions.failed`. If the job does not include a callback URL, omit the
        parameter.
        """

        RECOGNITIONS_STARTED = 'recognitions.started'
        RECOGNITIONS_COMPLETED = 'recognitions.completed'
        RECOGNITIONS_COMPLETED_WITH_RESULTS = 'recognitions.completed_with_results'
        RECOGNITIONS_FAILED = 'recognitions.failed'


class ListLanguageModelsEnums:
    """
    Enums for list_language_models parameters.
    """

    class Language(str, Enum):
        """
        The identifier of the language for which custom language or custom acoustic models
        are to be returned. Specify the five-character language identifier; for example,
        specify `en-US` to see all custom language or custom acoustic models that are
        based on US English models. Omit the parameter to see all custom language or
        custom acoustic models that are owned by the requesting credentials.
        To determine the languages for which customization is available, see [Language
        support for
        customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).
        """

        AR_MS = 'ar-MS'
        CS_CZ = 'cs-CZ'
        DE_DE = 'de-DE'
        EN_AU = 'en-AU'
        EN_GB = 'en-GB'
        EN_IN = 'en-IN'
        EN_US = 'en-US'
        EN_WW = 'en-WW'
        ES_AR = 'es-AR'
        ES_CL = 'es-CL'
        ES_CO = 'es-CO'
        ES_ES = 'es-ES'
        ES_LA = 'es-LA'
        ES_MX = 'es-MX'
        ES_PE = 'es-PE'
        FR_CA = 'fr-CA'
        FR_FR = 'fr-FR'
        HI_IN = 'hi-IN'
        IT_IT = 'it-IT'
        JA_JP = 'ja-JP'
        KO_KR = 'ko-KR'
        NL_BE = 'nl-BE'
        NL_NL = 'nl-NL'
        PT_BR = 'pt-BR'
        SV_SE = 'sv-SE'
        ZH_CN = 'zh-CN'


class TrainLanguageModelEnums:
    """
    Enums for train_language_model parameters.
    """

    class WordTypeToAdd(str, Enum):
        """
        _For custom models that are based on previous-generation models_, the type of
        words from the custom language model's words resource on which to train the model:
        * `all` (the default) trains the model on all new words, regardless of whether
        they were extracted from corpora or grammars or were added or modified by the
        user.
        * `user` trains the model only on custom words that were added or modified by the
        user directly. The model is not trained on new words extracted from corpora or
        grammars.
        _For custom models that are based on large speech models and next-generation
        models_, the service ignores the `word_type_to_add` parameter. The words resource
        contains only custom words that the user adds or modifies directly, so the
        parameter is unnecessary.
        """

        ALL = 'all'
        USER = 'user'


class ListWordsEnums:
    """
    Enums for list_words parameters.
    """

    class WordType(str, Enum):
        """
        The type of words to be listed from the custom language model's words resource:
        * `all` (the default) shows all words.
        * `user` shows only custom words that were added or modified by the user directly.
        * `corpora` shows only OOV that were extracted from corpora.
        * `grammars` shows only OOV words that are recognized by grammars.
        _For a custom model that is based on a next-generation model_, only `all` and
        `user` apply. Both options return the same results. Words from other sources are
        not added to custom models that are based on next-generation models.
        """

        ALL = 'all'
        USER = 'user'
        CORPORA = 'corpora'
        GRAMMARS = 'grammars'

    class Sort(str, Enum):
        """
        Indicates the order in which the words are to be listed, `alphabetical` or by
        `count`. You can prepend an optional `+` or `-` to an argument to indicate whether
        the results are to be sorted in ascending or descending order. By default, words
        are sorted in ascending alphabetical order. For alphabetical ordering, the
        lexicographical precedence is numeric values, uppercase letters, and lowercase
        letters. For count ordering, values with the same count are ordered
        alphabetically. With the `curl` command, URL-encode the `+` symbol as `%2B`.
        """

        ALPHABETICAL = 'alphabetical'
        COUNT = 'count'


class AddGrammarEnums:
    """
    Enums for add_grammar parameters.
    """

    class ContentType(str, Enum):
        """
        The format (MIME type) of the grammar file:
        * `application/srgs` for Augmented Backus-Naur Form (ABNF), which uses a
        plain-text representation that is similar to traditional BNF grammars.
        * `application/srgs+xml` for XML Form, which uses XML elements to represent the
        grammar.
        """

        APPLICATION_SRGS = 'application/srgs'
        APPLICATION_SRGS_XML = 'application/srgs+xml'


class ListAcousticModelsEnums:
    """
    Enums for list_acoustic_models parameters.
    """

    class Language(str, Enum):
        """
        The identifier of the language for which custom language or custom acoustic models
        are to be returned. Specify the five-character language identifier; for example,
        specify `en-US` to see all custom language or custom acoustic models that are
        based on US English models. Omit the parameter to see all custom language or
        custom acoustic models that are owned by the requesting credentials.
        To determine the languages for which customization is available, see [Language
        support for
        customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).
        """

        AR_MS = 'ar-MS'
        CS_CZ = 'cs-CZ'
        DE_DE = 'de-DE'
        EN_AU = 'en-AU'
        EN_GB = 'en-GB'
        EN_IN = 'en-IN'
        EN_US = 'en-US'
        EN_WW = 'en-WW'
        ES_AR = 'es-AR'
        ES_CL = 'es-CL'
        ES_CO = 'es-CO'
        ES_ES = 'es-ES'
        ES_LA = 'es-LA'
        ES_MX = 'es-MX'
        ES_PE = 'es-PE'
        FR_CA = 'fr-CA'
        FR_FR = 'fr-FR'
        HI_IN = 'hi-IN'
        IT_IT = 'it-IT'
        JA_JP = 'ja-JP'
        KO_KR = 'ko-KR'
        NL_BE = 'nl-BE'
        NL_NL = 'nl-NL'
        PT_BR = 'pt-BR'
        SV_SE = 'sv-SE'
        ZH_CN = 'zh-CN'


class AddAudioEnums:
    """
    Enums for add_audio parameters.
    """

    class ContentType(str, Enum):
        """
        For an audio-type resource, the format (MIME type) of the audio. For more
        information, see **Content types for audio-type resources** in the method
        description.
        For an archive-type resource, the media type of the archive file. For more
        information, see **Content types for archive-type resources** in the method
        description.
        """

        APPLICATION_ZIP = 'application/zip'
        APPLICATION_GZIP = 'application/gzip'
        AUDIO_ALAW = 'audio/alaw'
        AUDIO_BASIC = 'audio/basic'
        AUDIO_FLAC = 'audio/flac'
        AUDIO_G729 = 'audio/g729'
        AUDIO_L16 = 'audio/l16'
        AUDIO_MP3 = 'audio/mp3'
        AUDIO_MPEG = 'audio/mpeg'
        AUDIO_MULAW = 'audio/mulaw'
        AUDIO_OGG = 'audio/ogg'
        AUDIO_OGG_CODECS_OPUS = 'audio/ogg;codecs=opus'
        AUDIO_OGG_CODECS_VORBIS = 'audio/ogg;codecs=vorbis'
        AUDIO_WAV = 'audio/wav'
        AUDIO_WEBM = 'audio/webm'
        AUDIO_WEBM_CODECS_OPUS = 'audio/webm;codecs=opus'
        AUDIO_WEBM_CODECS_VORBIS = 'audio/webm;codecs=vorbis'

    class ContainedContentType(str, Enum):
        """
        _For an archive-type resource_, specify the format of the audio files that are
        contained in the archive file if they are of type `audio/alaw`, `audio/basic`,
        `audio/l16`, or `audio/mulaw`. Include the `rate`, `channels`, and `endianness`
        parameters where necessary. In this case, all audio files that are contained in
        the archive file must be of the indicated type.
        For all other audio formats, you can omit the header. In this case, the audio
        files can be of multiple types as long as they are not of the types listed in the
        previous paragraph.
        The parameter accepts all of the audio formats that are supported for use with
        speech recognition. For more information, see **Content types for audio-type
        resources** in the method description.
        _For an audio-type resource_, omit the header.
        """

        AUDIO_ALAW = 'audio/alaw'
        AUDIO_BASIC = 'audio/basic'
        AUDIO_FLAC = 'audio/flac'
        AUDIO_G729 = 'audio/g729'
        AUDIO_L16 = 'audio/l16'
        AUDIO_MP3 = 'audio/mp3'
        AUDIO_MPEG = 'audio/mpeg'
        AUDIO_MULAW = 'audio/mulaw'
        AUDIO_OGG = 'audio/ogg'
        AUDIO_OGG_CODECS_OPUS = 'audio/ogg;codecs=opus'
        AUDIO_OGG_CODECS_VORBIS = 'audio/ogg;codecs=vorbis'
        AUDIO_WAV = 'audio/wav'
        AUDIO_WEBM = 'audio/webm'
        AUDIO_WEBM_CODECS_OPUS = 'audio/webm;codecs=opus'
        AUDIO_WEBM_CODECS_VORBIS = 'audio/webm;codecs=vorbis'


##############################################################################
# Models
##############################################################################


class AcousticModel:
    """
    Information about an existing custom acoustic model.

    :param str customization_id: The customization ID (GUID) of the custom acoustic
          model. The [Create a custom acoustic model](#createacousticmodel) method returns
          only this field of the object; it does not return the other fields.
    :param str created: (optional) The date and time in Coordinated Universal Time
          (UTC) at which the custom acoustic model was created. The value is provided in
          full ISO 8601 format (`YYYY-MM-DDThh:mm:ss.sTZD`).
    :param str updated: (optional) The date and time in Coordinated Universal Time
          (UTC) at which the custom acoustic model was last modified. The `created` and
          `updated` fields are equal when an acoustic model is first added but has yet to
          be updated. The value is provided in full ISO 8601 format
          (YYYY-MM-DDThh:mm:ss.sTZD).
    :param str language: (optional) The language identifier of the custom acoustic
          model (for example, `en-US`).
    :param List[str] versions: (optional) A list of the available versions of the
          custom acoustic model. Each element of the array indicates a version of the base
          model with which the custom model can be used. Multiple versions exist only if
          the custom model has been upgraded to a new version of its base model.
          Otherwise, only a single version is shown.
    :param str owner: (optional) The GUID of the credentials for the instance of the
          service that owns the custom acoustic model.
    :param str name: (optional) The name of the custom acoustic model.
    :param str description: (optional) The description of the custom acoustic model.
    :param str base_model_name: (optional) The name of the language model for which
          the custom acoustic model was created.
    :param str status: (optional) The current status of the custom acoustic model:
          * `pending`: The model was created but is waiting either for valid training data
          to be added or for the service to finish analyzing added data.
          * `ready`: The model contains valid data and is ready to be trained. If the
          model contains a mix of valid and invalid resources, you need to set the
          `strict` parameter to `false` for the training to proceed.
          * `training`: The model is currently being trained.
          * `available`: The model is trained and ready to use.
          * `upgrading`: The model is currently being upgraded.
          * `failed`: Training of the model failed.
    :param int progress: (optional) A percentage that indicates the progress of the
          custom acoustic model's current training. A value of `100` means that the model
          is fully trained. **Note:** The `progress` field does not currently reflect the
          progress of the training. The field changes from `0` to `100` when training is
          complete.
    :param str warnings: (optional) If the request included unknown parameters, the
          following message: `Unexpected query parameter(s) ['parameters'] detected`,
          where `parameters` is a list that includes a quoted string for each unknown
          parameter.
    """

    def __init__(
        self,
        customization_id: str,
        *,
        created: Optional[str] = None,
        updated: Optional[str] = None,
        language: Optional[str] = None,
        versions: Optional[List[str]] = None,
        owner: Optional[str] = None,
        name: Optional[str] = None,
        description: Optional[str] = None,
        base_model_name: Optional[str] = None,
        status: Optional[str] = None,
        progress: Optional[int] = None,
        warnings: Optional[str] = None,
    ) -> None:
        """
        Initialize a AcousticModel object.

        :param str customization_id: The customization ID (GUID) of the custom
               acoustic model. The [Create a custom acoustic model](#createacousticmodel)
               method returns only this field of the object; it does not return the other
               fields.
        :param str created: (optional) The date and time in Coordinated Universal
               Time (UTC) at which the custom acoustic model was created. The value is
               provided in full ISO 8601 format (`YYYY-MM-DDThh:mm:ss.sTZD`).
        :param str updated: (optional) The date and time in Coordinated Universal
               Time (UTC) at which the custom acoustic model was last modified. The
               `created` and `updated` fields are equal when an acoustic model is first
               added but has yet to be updated. The value is provided in full ISO 8601
               format (YYYY-MM-DDThh:mm:ss.sTZD).
        :param str language: (optional) The language identifier of the custom
               acoustic model (for example, `en-US`).
        :param List[str] versions: (optional) A list of the available versions of
               the custom acoustic model. Each element of the array indicates a version of
               the base model with which the custom model can be used. Multiple versions
               exist only if the custom model has been upgraded to a new version of its
               base model. Otherwise, only a single version is shown.
        :param str owner: (optional) The GUID of the credentials for the instance
               of the service that owns the custom acoustic model.
        :param str name: (optional) The name of the custom acoustic model.
        :param str description: (optional) The description of the custom acoustic
               model.
        :param str base_model_name: (optional) The name of the language model for
               which the custom acoustic model was created.
        :param str status: (optional) The current status of the custom acoustic
               model:
               * `pending`: The model was created but is waiting either for valid training
               data to be added or for the service to finish analyzing added data.
               * `ready`: The model contains valid data and is ready to be trained. If the
               model contains a mix of valid and invalid resources, you need to set the
               `strict` parameter to `false` for the training to proceed.
               * `training`: The model is currently being trained.
               * `available`: The model is trained and ready to use.
               * `upgrading`: The model is currently being upgraded.
               * `failed`: Training of the model failed.
        :param int progress: (optional) A percentage that indicates the progress of
               the custom acoustic model's current training. A value of `100` means that
               the model is fully trained. **Note:** The `progress` field does not
               currently reflect the progress of the training. The field changes from `0`
               to `100` when training is complete.
        :param str warnings: (optional) If the request included unknown parameters,
               the following message: `Unexpected query parameter(s) ['parameters']
               detected`, where `parameters` is a list that includes a quoted string for
               each unknown parameter.
        """
        self.customization_id = customization_id
        self.created = created
        self.updated = updated
        self.language = language
        self.versions = versions
        self.owner = owner
        self.name = name
        self.description = description
        self.base_model_name = base_model_name
        self.status = status
        self.progress = progress
        self.warnings = warnings

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'AcousticModel':
        """Initialize a AcousticModel object from a json dictionary."""
        args = {}
        if (customization_id := _dict.get('customization_id')) is not None:
            args['customization_id'] = customization_id
        else:
            raise ValueError(
                'Required property \'customization_id\' not present in AcousticModel JSON'
            )
        if (created := _dict.get('created')) is not None:
            args['created'] = created
        if (updated := _dict.get('updated')) is not None:
            args['updated'] = updated
        if (language := _dict.get('language')) is not None:
            args['language'] = language
        if (versions := _dict.get('versions')) is not None:
            args['versions'] = versions
        if (owner := _dict.get('owner')) is not None:
            args['owner'] = owner
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        if (description := _dict.get('description')) is not None:
            args['description'] = description
        if (base_model_name := _dict.get('base_model_name')) is not None:
            args['base_model_name'] = base_model_name
        if (status := _dict.get('status')) is not None:
            args['status'] = status
        if (progress := _dict.get('progress')) is not None:
            args['progress'] = progress
        if (warnings := _dict.get('warnings')) is not None:
            args['warnings'] = warnings
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a AcousticModel object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self,
                   'customization_id') and self.customization_id is not None:
            _dict['customization_id'] = self.customization_id
        if hasattr(self, 'created') and self.created is not None:
            _dict['created'] = self.created
        if hasattr(self, 'updated') and self.updated is not None:
            _dict['updated'] = self.updated
        if hasattr(self, 'language') and self.language is not None:
            _dict['language'] = self.language
        if hasattr(self, 'versions') and self.versions is not None:
            _dict['versions'] = self.versions
        if hasattr(self, 'owner') and self.owner is not None:
            _dict['owner'] = self.owner
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'description') and self.description is not None:
            _dict['description'] = self.description
        if hasattr(self,
                   'base_model_name') and self.base_model_name is not None:
            _dict['base_model_name'] = self.base_model_name
        if hasattr(self, 'status') and self.status is not None:
            _dict['status'] = self.status
        if hasattr(self, 'progress') and self.progress is not None:
            _dict['progress'] = self.progress
        if hasattr(self, 'warnings') and self.warnings is not None:
            _dict['warnings'] = self.warnings
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this AcousticModel object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'AcousticModel') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'AcousticModel') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class StatusEnum(str, Enum):
        """
        The current status of the custom acoustic model:
        * `pending`: The model was created but is waiting either for valid training data
        to be added or for the service to finish analyzing added data.
        * `ready`: The model contains valid data and is ready to be trained. If the model
        contains a mix of valid and invalid resources, you need to set the `strict`
        parameter to `false` for the training to proceed.
        * `training`: The model is currently being trained.
        * `available`: The model is trained and ready to use.
        * `upgrading`: The model is currently being upgraded.
        * `failed`: Training of the model failed.
        """

        PENDING = 'pending'
        READY = 'ready'
        TRAINING = 'training'
        AVAILABLE = 'available'
        UPGRADING = 'upgrading'
        FAILED = 'failed'


class AcousticModels:
    """
    Information about existing custom acoustic models.

    :param List[AcousticModel] customizations: An array of `AcousticModel` objects
          that provides information about each available custom acoustic model. The array
          is empty if the requesting credentials own no custom acoustic models (if no
          language is specified) or own no custom acoustic models for the specified
          language.
    """

    def __init__(
        self,
        customizations: List['AcousticModel'],
    ) -> None:
        """
        Initialize a AcousticModels object.

        :param List[AcousticModel] customizations: An array of `AcousticModel`
               objects that provides information about each available custom acoustic
               model. The array is empty if the requesting credentials own no custom
               acoustic models (if no language is specified) or own no custom acoustic
               models for the specified language.
        """
        self.customizations = customizations

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'AcousticModels':
        """Initialize a AcousticModels object from a json dictionary."""
        args = {}
        if (customizations := _dict.get('customizations')) is not None:
            args['customizations'] = [
                AcousticModel.from_dict(v) for v in customizations
            ]
        else:
            raise ValueError(
                'Required property \'customizations\' not present in AcousticModels JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a AcousticModels object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'customizations') and self.customizations is not None:
            customizations_list = []
            for v in self.customizations:
                if isinstance(v, dict):
                    customizations_list.append(v)
                else:
                    customizations_list.append(v.to_dict())
            _dict['customizations'] = customizations_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this AcousticModels object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'AcousticModels') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'AcousticModels') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class AudioDetails:
    """
    Information about an audio resource from a custom acoustic model.

    :param str type: (optional) The type of the audio resource:
          * `audio` for an individual audio file
          * `archive` for an archive (**.zip** or **.tar.gz**) file that contains audio
          files
          * `undetermined` for a resource that the service cannot validate (for example,
          if the user mistakenly passes a file that does not contain audio, such as a JPEG
          file).
    :param str codec: (optional) _For an audio-type resource_, the codec in which
          the audio is encoded. Omitted for an archive-type resource.
    :param int frequency: (optional) _For an audio-type resource_, the sampling rate
          of the audio in Hertz (samples per second). Omitted for an archive-type
          resource.
    :param str compression: (optional) _For an archive-type resource_, the format of
          the compressed archive:
          * `zip` for a **.zip** file
          * `gzip` for a **.tar.gz** file
          Omitted for an audio-type resource.
    """

    def __init__(
        self,
        *,
        type: Optional[str] = None,
        codec: Optional[str] = None,
        frequency: Optional[int] = None,
        compression: Optional[str] = None,
    ) -> None:
        """
        Initialize a AudioDetails object.

        :param str type: (optional) The type of the audio resource:
               * `audio` for an individual audio file
               * `archive` for an archive (**.zip** or **.tar.gz**) file that contains
               audio files
               * `undetermined` for a resource that the service cannot validate (for
               example, if the user mistakenly passes a file that does not contain audio,
               such as a JPEG file).
        :param str codec: (optional) _For an audio-type resource_, the codec in
               which the audio is encoded. Omitted for an archive-type resource.
        :param int frequency: (optional) _For an audio-type resource_, the sampling
               rate of the audio in Hertz (samples per second). Omitted for an
               archive-type resource.
        :param str compression: (optional) _For an archive-type resource_, the
               format of the compressed archive:
               * `zip` for a **.zip** file
               * `gzip` for a **.tar.gz** file
               Omitted for an audio-type resource.
        """
        self.type = type
        self.codec = codec
        self.frequency = frequency
        self.compression = compression

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'AudioDetails':
        """Initialize a AudioDetails object from a json dictionary."""
        args = {}
        if (type := _dict.get('type')) is not None:
            args['type'] = type
        if (codec := _dict.get('codec')) is not None:
            args['codec'] = codec
        if (frequency := _dict.get('frequency')) is not None:
            args['frequency'] = frequency
        if (compression := _dict.get('compression')) is not None:
            args['compression'] = compression
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a AudioDetails object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'type') and self.type is not None:
            _dict['type'] = self.type
        if hasattr(self, 'codec') and self.codec is not None:
            _dict['codec'] = self.codec
        if hasattr(self, 'frequency') and self.frequency is not None:
            _dict['frequency'] = self.frequency
        if hasattr(self, 'compression') and self.compression is not None:
            _dict['compression'] = self.compression
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this AudioDetails object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'AudioDetails') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'AudioDetails') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class TypeEnum(str, Enum):
        """
        The type of the audio resource:
        * `audio` for an individual audio file
        * `archive` for an archive (**.zip** or **.tar.gz**) file that contains audio
        files
        * `undetermined` for a resource that the service cannot validate (for example, if
        the user mistakenly passes a file that does not contain audio, such as a JPEG
        file).
        """

        AUDIO = 'audio'
        ARCHIVE = 'archive'
        UNDETERMINED = 'undetermined'

    class CompressionEnum(str, Enum):
        """
        _For an archive-type resource_, the format of the compressed archive:
        * `zip` for a **.zip** file
        * `gzip` for a **.tar.gz** file
        Omitted for an audio-type resource.
        """

        ZIP = 'zip'
        GZIP = 'gzip'


class AudioListing:
    """
    Information about an audio resource from a custom acoustic model.

    :param int duration: (optional) _For an audio-type resource_, the total seconds
          of audio in the resource. Omitted for an archive-type resource.
    :param str name: (optional) _For an audio-type resource_, the user-specified
          name of the resource. Omitted for an archive-type resource.
    :param AudioDetails details: (optional) _For an audio-type resource_, an
          `AudioDetails` object that provides detailed information about the resource. The
          object is empty until the service finishes processing the audio. Omitted for an
          archive-type resource.
    :param str status: (optional) _For an audio-type resource_, the status of the
          resource:
          * `ok`: The service successfully analyzed the audio data. The data can be used
          to train the custom model.
          * `being_processed`: The service is still analyzing the audio data. The service
          cannot accept requests to add new audio resources or to train the custom model
          until its analysis is complete.
          * `invalid`: The audio data is not valid for training the custom model (possibly
          because it has the wrong format or sampling rate, or because it is corrupted).
          Omitted for an archive-type resource.
    :param AudioResource container: (optional) _For an archive-type resource_, an
          object of type `AudioResource` that provides information about the resource.
          Omitted for an audio-type resource.
    :param List[AudioResource] audio: (optional) _For an archive-type resource_, an
          array of `AudioResource` objects that provides information about the audio-type
          resources that are contained in the resource. Omitted for an audio-type
          resource.
    """

    def __init__(
        self,
        *,
        duration: Optional[int] = None,
        name: Optional[str] = None,
        details: Optional['AudioDetails'] = None,
        status: Optional[str] = None,
        container: Optional['AudioResource'] = None,
        audio: Optional[List['AudioResource']] = None,
    ) -> None:
        """
        Initialize a AudioListing object.

        :param int duration: (optional) _For an audio-type resource_, the total
               seconds of audio in the resource. Omitted for an archive-type resource.
        :param str name: (optional) _For an audio-type resource_, the
               user-specified name of the resource. Omitted for an archive-type resource.
        :param AudioDetails details: (optional) _For an audio-type resource_, an
               `AudioDetails` object that provides detailed information about the
               resource. The object is empty until the service finishes processing the
               audio. Omitted for an archive-type resource.
        :param str status: (optional) _For an audio-type resource_, the status of
               the resource:
               * `ok`: The service successfully analyzed the audio data. The data can be
               used to train the custom model.
               * `being_processed`: The service is still analyzing the audio data. The
               service cannot accept requests to add new audio resources or to train the
               custom model until its analysis is complete.
               * `invalid`: The audio data is not valid for training the custom model
               (possibly because it has the wrong format or sampling rate, or because it
               is corrupted).
               Omitted for an archive-type resource.
        :param AudioResource container: (optional) _For an archive-type resource_,
               an object of type `AudioResource` that provides information about the
               resource. Omitted for an audio-type resource.
        :param List[AudioResource] audio: (optional) _For an archive-type
               resource_, an array of `AudioResource` objects that provides information
               about the audio-type resources that are contained in the resource. Omitted
               for an audio-type resource.
        """
        self.duration = duration
        self.name = name
        self.details = details
        self.status = status
        self.container = container
        self.audio = audio

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'AudioListing':
        """Initialize a AudioListing object from a json dictionary."""
        args = {}
        if (duration := _dict.get('duration')) is not None:
            args['duration'] = duration
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        if (details := _dict.get('details')) is not None:
            args['details'] = AudioDetails.from_dict(details)
        if (status := _dict.get('status')) is not None:
            args['status'] = status
        if (container := _dict.get('container')) is not None:
            args['container'] = AudioResource.from_dict(container)
        if (audio := _dict.get('audio')) is not None:
            args['audio'] = [AudioResource.from_dict(v) for v in audio]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a AudioListing object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'duration') and self.duration is not None:
            _dict['duration'] = self.duration
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'details') and self.details is not None:
            if isinstance(self.details, dict):
                _dict['details'] = self.details
            else:
                _dict['details'] = self.details.to_dict()
        if hasattr(self, 'status') and self.status is not None:
            _dict['status'] = self.status
        if hasattr(self, 'container') and self.container is not None:
            if isinstance(self.container, dict):
                _dict['container'] = self.container
            else:
                _dict['container'] = self.container.to_dict()
        if hasattr(self, 'audio') and self.audio is not None:
            audio_list = []
            for v in self.audio:
                if isinstance(v, dict):
                    audio_list.append(v)
                else:
                    audio_list.append(v.to_dict())
            _dict['audio'] = audio_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this AudioListing object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'AudioListing') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'AudioListing') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class StatusEnum(str, Enum):
        """
        _For an audio-type resource_, the status of the resource:
        * `ok`: The service successfully analyzed the audio data. The data can be used to
        train the custom model.
        * `being_processed`: The service is still analyzing the audio data. The service
        cannot accept requests to add new audio resources or to train the custom model
        until its analysis is complete.
        * `invalid`: The audio data is not valid for training the custom model (possibly
        because it has the wrong format or sampling rate, or because it is corrupted).
        Omitted for an archive-type resource.
        """

        OK = 'ok'
        BEING_PROCESSED = 'being_processed'
        INVALID = 'invalid'


class AudioMetrics:
    """
    If audio metrics are requested, information about the signal characteristics of the
    input audio.

    :param float sampling_interval: The interval in seconds (typically 0.1 seconds)
          at which the service calculated the audio metrics. In other words, how often the
          service calculated the metrics. A single unit in each histogram (see the
          `AudioMetricsHistogramBin` object) is calculated based on a `sampling_interval`
          length of audio.
    :param AudioMetricsDetails accumulated: Detailed information about the signal
          characteristics of the input audio.
    """

    def __init__(
        self,
        sampling_interval: float,
        accumulated: 'AudioMetricsDetails',
    ) -> None:
        """
        Initialize a AudioMetrics object.

        :param float sampling_interval: The interval in seconds (typically 0.1
               seconds) at which the service calculated the audio metrics. In other words,
               how often the service calculated the metrics. A single unit in each
               histogram (see the `AudioMetricsHistogramBin` object) is calculated based
               on a `sampling_interval` length of audio.
        :param AudioMetricsDetails accumulated: Detailed information about the
               signal characteristics of the input audio.
        """
        self.sampling_interval = sampling_interval
        self.accumulated = accumulated

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'AudioMetrics':
        """Initialize a AudioMetrics object from a json dictionary."""
        args = {}
        if (sampling_interval := _dict.get('sampling_interval')) is not None:
            args['sampling_interval'] = sampling_interval
        else:
            raise ValueError(
                'Required property \'sampling_interval\' not present in AudioMetrics JSON'
            )
        if (accumulated := _dict.get('accumulated')) is not None:
            args['accumulated'] = AudioMetricsDetails.from_dict(accumulated)
        else:
            raise ValueError(
                'Required property \'accumulated\' not present in AudioMetrics JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a AudioMetrics object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self,
                   'sampling_interval') and self.sampling_interval is not None:
            _dict['sampling_interval'] = self.sampling_interval
        if hasattr(self, 'accumulated') and self.accumulated is not None:
            if isinstance(self.accumulated, dict):
                _dict['accumulated'] = self.accumulated
            else:
                _dict['accumulated'] = self.accumulated.to_dict()
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this AudioMetrics object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'AudioMetrics') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'AudioMetrics') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class AudioMetricsDetails:
    """
    Detailed information about the signal characteristics of the input audio.

    :param bool final: If `true`, indicates the end of the audio stream, meaning
          that transcription is complete. Currently, the field is always `true`. The
          service returns metrics just once per audio stream. The results provide
          aggregated audio metrics that pertain to the complete audio stream.
    :param float end_time: The end time in seconds of the block of audio to which
          the metrics apply.
    :param float signal_to_noise_ratio: (optional) The signal-to-noise ratio (SNR)
          for the audio signal. The value indicates the ratio of speech to noise in the
          audio. A valid value lies in the range of 0 to 100 decibels (dB). The service
          omits the field if it cannot compute the SNR for the audio.
    :param float speech_ratio: The ratio of speech to non-speech segments in the
          audio signal. The value lies in the range of 0.0 to 1.0.
    :param float high_frequency_loss: The probability that the audio signal is
          missing the upper half of its frequency content.
          * A value close to 1.0 typically indicates artificially up-sampled audio, which
          negatively impacts the accuracy of the transcription results.
          * A value at or near 0.0 indicates that the audio signal is good and has a full
          spectrum.
          * A value around 0.5 means that detection of the frequency content is unreliable
          or not available.
    :param List[AudioMetricsHistogramBin] direct_current_offset: An array of
          `AudioMetricsHistogramBin` objects that defines a histogram of the cumulative
          direct current (DC) component of the audio signal.
    :param List[AudioMetricsHistogramBin] clipping_rate: An array of
          `AudioMetricsHistogramBin` objects that defines a histogram of the clipping rate
          for the audio segments. The clipping rate is defined as the fraction of samples
          in the segment that reach the maximum or minimum value that is offered by the
          audio quantization range. The service auto-detects either a 16-bit Pulse-Code
          Modulation(PCM) audio range (-32768 to +32767) or a unit range (-1.0 to +1.0).
          The clipping rate is between 0.0 and 1.0, with higher values indicating possible
          degradation of speech recognition.
    :param List[AudioMetricsHistogramBin] speech_level: An array of
          `AudioMetricsHistogramBin` objects that defines a histogram of the signal level
          in segments of the audio that contain speech. The signal level is computed as
          the Root-Mean-Square (RMS) value in a decibel (dB) scale normalized to the range
          0.0 (minimum level) to 1.0 (maximum level).
    :param List[AudioMetricsHistogramBin] non_speech_level: An array of
          `AudioMetricsHistogramBin` objects that defines a histogram of the signal level
          in segments of the audio that do not contain speech. The signal level is
          computed as the Root-Mean-Square (RMS) value in a decibel (dB) scale normalized
          to the range 0.0 (minimum level) to 1.0 (maximum level).
    """

    def __init__(
        self,
        final: bool,
        end_time: float,
        speech_ratio: float,
        high_frequency_loss: float,
        direct_current_offset: List['AudioMetricsHistogramBin'],
        clipping_rate: List['AudioMetricsHistogramBin'],
        speech_level: List['AudioMetricsHistogramBin'],
        non_speech_level: List['AudioMetricsHistogramBin'],
        *,
        signal_to_noise_ratio: Optional[float] = None,
    ) -> None:
        """
        Initialize a AudioMetricsDetails object.

        :param bool final: If `true`, indicates the end of the audio stream,
               meaning that transcription is complete. Currently, the field is always
               `true`. The service returns metrics just once per audio stream. The results
               provide aggregated audio metrics that pertain to the complete audio stream.
        :param float end_time: The end time in seconds of the block of audio to
               which the metrics apply.
        :param float speech_ratio: The ratio of speech to non-speech segments in
               the audio signal. The value lies in the range of 0.0 to 1.0.
        :param float high_frequency_loss: The probability that the audio signal is
               missing the upper half of its frequency content.
               * A value close to 1.0 typically indicates artificially up-sampled audio,
               which negatively impacts the accuracy of the transcription results.
               * A value at or near 0.0 indicates that the audio signal is good and has a
               full spectrum.
               * A value around 0.5 means that detection of the frequency content is
               unreliable or not available.
        :param List[AudioMetricsHistogramBin] direct_current_offset: An array of
               `AudioMetricsHistogramBin` objects that defines a histogram of the
               cumulative direct current (DC) component of the audio signal.
        :param List[AudioMetricsHistogramBin] clipping_rate: An array of
               `AudioMetricsHistogramBin` objects that defines a histogram of the clipping
               rate for the audio segments. The clipping rate is defined as the fraction
               of samples in the segment that reach the maximum or minimum value that is
               offered by the audio quantization range. The service auto-detects either a
               16-bit Pulse-Code Modulation(PCM) audio range (-32768 to +32767) or a unit
               range (-1.0 to +1.0). The clipping rate is between 0.0 and 1.0, with higher
               values indicating possible degradation of speech recognition.
        :param List[AudioMetricsHistogramBin] speech_level: An array of
               `AudioMetricsHistogramBin` objects that defines a histogram of the signal
               level in segments of the audio that contain speech. The signal level is
               computed as the Root-Mean-Square (RMS) value in a decibel (dB) scale
               normalized to the range 0.0 (minimum level) to 1.0 (maximum level).
        :param List[AudioMetricsHistogramBin] non_speech_level: An array of
               `AudioMetricsHistogramBin` objects that defines a histogram of the signal
               level in segments of the audio that do not contain speech. The signal level
               is computed as the Root-Mean-Square (RMS) value in a decibel (dB) scale
               normalized to the range 0.0 (minimum level) to 1.0 (maximum level).
        :param float signal_to_noise_ratio: (optional) The signal-to-noise ratio
               (SNR) for the audio signal. The value indicates the ratio of speech to
               noise in the audio. A valid value lies in the range of 0 to 100 decibels
               (dB). The service omits the field if it cannot compute the SNR for the
               audio.
        """
        self.final = final
        self.end_time = end_time
        self.signal_to_noise_ratio = signal_to_noise_ratio
        self.speech_ratio = speech_ratio
        self.high_frequency_loss = high_frequency_loss
        self.direct_current_offset = direct_current_offset
        self.clipping_rate = clipping_rate
        self.speech_level = speech_level
        self.non_speech_level = non_speech_level

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'AudioMetricsDetails':
        """Initialize a AudioMetricsDetails object from a json dictionary."""
        args = {}
        if (final := _dict.get('final')) is not None:
            args['final'] = final
        else:
            raise ValueError(
                'Required property \'final\' not present in AudioMetricsDetails JSON'
            )
        if (end_time := _dict.get('end_time')) is not None:
            args['end_time'] = end_time
        else:
            raise ValueError(
                'Required property \'end_time\' not present in AudioMetricsDetails JSON'
            )
        if (signal_to_noise_ratio :=
                _dict.get('signal_to_noise_ratio')) is not None:
            args['signal_to_noise_ratio'] = signal_to_noise_ratio
        if (speech_ratio := _dict.get('speech_ratio')) is not None:
            args['speech_ratio'] = speech_ratio
        else:
            raise ValueError(
                'Required property \'speech_ratio\' not present in AudioMetricsDetails JSON'
            )
        if (high_frequency_loss :=
                _dict.get('high_frequency_loss')) is not None:
            args['high_frequency_loss'] = high_frequency_loss
        else:
            raise ValueError(
                'Required property \'high_frequency_loss\' not present in AudioMetricsDetails JSON'
            )
        if (direct_current_offset :=
                _dict.get('direct_current_offset')) is not None:
            args['direct_current_offset'] = [
                AudioMetricsHistogramBin.from_dict(v)
                for v in direct_current_offset
            ]
        else:
            raise ValueError(
                'Required property \'direct_current_offset\' not present in AudioMetricsDetails JSON'
            )
        if (clipping_rate := _dict.get('clipping_rate')) is not None:
            args['clipping_rate'] = [
                AudioMetricsHistogramBin.from_dict(v) for v in clipping_rate
            ]
        else:
            raise ValueError(
                'Required property \'clipping_rate\' not present in AudioMetricsDetails JSON'
            )
        if (speech_level := _dict.get('speech_level')) is not None:
            args['speech_level'] = [
                AudioMetricsHistogramBin.from_dict(v) for v in speech_level
            ]
        else:
            raise ValueError(
                'Required property \'speech_level\' not present in AudioMetricsDetails JSON'
            )
        if (non_speech_level := _dict.get('non_speech_level')) is not None:
            args['non_speech_level'] = [
                AudioMetricsHistogramBin.from_dict(v) for v in non_speech_level
            ]
        else:
            raise ValueError(
                'Required property \'non_speech_level\' not present in AudioMetricsDetails JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a AudioMetricsDetails object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'final') and self.final is not None:
            _dict['final'] = self.final
        if hasattr(self, 'end_time') and self.end_time is not None:
            _dict['end_time'] = self.end_time
        if hasattr(self, 'signal_to_noise_ratio'
                  ) and self.signal_to_noise_ratio is not None:
            _dict['signal_to_noise_ratio'] = self.signal_to_noise_ratio
        if hasattr(self, 'speech_ratio') and self.speech_ratio is not None:
            _dict['speech_ratio'] = self.speech_ratio
        if hasattr(
                self,
                'high_frequency_loss') and self.high_frequency_loss is not None:
            _dict['high_frequency_loss'] = self.high_frequency_loss
        if hasattr(self, 'direct_current_offset'
                  ) and self.direct_current_offset is not None:
            direct_current_offset_list = []
            for v in self.direct_current_offset:
                if isinstance(v, dict):
                    direct_current_offset_list.append(v)
                else:
                    direct_current_offset_list.append(v.to_dict())
            _dict['direct_current_offset'] = direct_current_offset_list
        if hasattr(self, 'clipping_rate') and self.clipping_rate is not None:
            clipping_rate_list = []
            for v in self.clipping_rate:
                if isinstance(v, dict):
                    clipping_rate_list.append(v)
                else:
                    clipping_rate_list.append(v.to_dict())
            _dict['clipping_rate'] = clipping_rate_list
        if hasattr(self, 'speech_level') and self.speech_level is not None:
            speech_level_list = []
            for v in self.speech_level:
                if isinstance(v, dict):
                    speech_level_list.append(v)
                else:
                    speech_level_list.append(v.to_dict())
            _dict['speech_level'] = speech_level_list
        if hasattr(self,
                   'non_speech_level') and self.non_speech_level is not None:
            non_speech_level_list = []
            for v in self.non_speech_level:
                if isinstance(v, dict):
                    non_speech_level_list.append(v)
                else:
                    non_speech_level_list.append(v.to_dict())
            _dict['non_speech_level'] = non_speech_level_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this AudioMetricsDetails object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'AudioMetricsDetails') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'AudioMetricsDetails') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class AudioMetricsHistogramBin:
    """
    A bin with defined boundaries that indicates the number of values in a range of signal
    characteristics for a histogram. The first and last bins of a histogram are the
    boundary bins. They cover the intervals between negative infinity and the first
    boundary, and between the last boundary and positive infinity, respectively.

    :param float begin: The lower boundary of the bin in the histogram.
    :param float end: The upper boundary of the bin in the histogram.
    :param int count: The number of values in the bin of the histogram.
    """

    def __init__(
        self,
        begin: float,
        end: float,
        count: int,
    ) -> None:
        """
        Initialize a AudioMetricsHistogramBin object.

        :param float begin: The lower boundary of the bin in the histogram.
        :param float end: The upper boundary of the bin in the histogram.
        :param int count: The number of values in the bin of the histogram.
        """
        self.begin = begin
        self.end = end
        self.count = count

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'AudioMetricsHistogramBin':
        """Initialize a AudioMetricsHistogramBin object from a json dictionary."""
        args = {}
        if (begin := _dict.get('begin')) is not None:
            args['begin'] = begin
        else:
            raise ValueError(
                'Required property \'begin\' not present in AudioMetricsHistogramBin JSON'
            )
        if (end := _dict.get('end')) is not None:
            args['end'] = end
        else:
            raise ValueError(
                'Required property \'end\' not present in AudioMetricsHistogramBin JSON'
            )
        if (count := _dict.get('count')) is not None:
            args['count'] = count
        else:
            raise ValueError(
                'Required property \'count\' not present in AudioMetricsHistogramBin JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a AudioMetricsHistogramBin object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'begin') and self.begin is not None:
            _dict['begin'] = self.begin
        if hasattr(self, 'end') and self.end is not None:
            _dict['end'] = self.end
        if hasattr(self, 'count') and self.count is not None:
            _dict['count'] = self.count
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this AudioMetricsHistogramBin object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'AudioMetricsHistogramBin') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'AudioMetricsHistogramBin') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class AudioResource:
    """
    Information about an audio resource from a custom acoustic model.

    :param int duration: The total seconds of audio in the audio resource.
    :param str name: _For an archive-type resource_, the user-specified name of the
          resource.
          _For an audio-type resource_, the user-specified name of the resource or the
          name of the audio file that the user added for the resource. The value depends
          on the method that is called.
    :param AudioDetails details: An `AudioDetails` object that provides detailed
          information about the audio resource. The object is empty until the service
          finishes processing the audio.
    :param str status: The status of the audio resource:
          * `ok`: The service successfully analyzed the audio data. The data can be used
          to train the custom model.
          * `being_processed`: The service is still analyzing the audio data. The service
          cannot accept requests to add new audio resources or to train the custom model
          until its analysis is complete.
          * `invalid`: The audio data is not valid for training the custom model (possibly
          because it has the wrong format or sampling rate, or because it is corrupted).
          For an archive file, the entire archive is invalid if any of its audio files are
          invalid.
    """

    def __init__(
        self,
        duration: int,
        name: str,
        details: 'AudioDetails',
        status: str,
    ) -> None:
        """
        Initialize a AudioResource object.

        :param int duration: The total seconds of audio in the audio resource.
        :param str name: _For an archive-type resource_, the user-specified name of
               the resource.
               _For an audio-type resource_, the user-specified name of the resource or
               the name of the audio file that the user added for the resource. The value
               depends on the method that is called.
        :param AudioDetails details: An `AudioDetails` object that provides
               detailed information about the audio resource. The object is empty until
               the service finishes processing the audio.
        :param str status: The status of the audio resource:
               * `ok`: The service successfully analyzed the audio data. The data can be
               used to train the custom model.
               * `being_processed`: The service is still analyzing the audio data. The
               service cannot accept requests to add new audio resources or to train the
               custom model until its analysis is complete.
               * `invalid`: The audio data is not valid for training the custom model
               (possibly because it has the wrong format or sampling rate, or because it
               is corrupted). For an archive file, the entire archive is invalid if any of
               its audio files are invalid.
        """
        self.duration = duration
        self.name = name
        self.details = details
        self.status = status

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'AudioResource':
        """Initialize a AudioResource object from a json dictionary."""
        args = {}
        if (duration := _dict.get('duration')) is not None:
            args['duration'] = duration
        else:
            raise ValueError(
                'Required property \'duration\' not present in AudioResource JSON'
            )
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        else:
            raise ValueError(
                'Required property \'name\' not present in AudioResource JSON')
        if (details := _dict.get('details')) is not None:
            args['details'] = AudioDetails.from_dict(details)
        else:
            raise ValueError(
                'Required property \'details\' not present in AudioResource JSON'
            )
        if (status := _dict.get('status')) is not None:
            args['status'] = status
        else:
            raise ValueError(
                'Required property \'status\' not present in AudioResource JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a AudioResource object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'duration') and self.duration is not None:
            _dict['duration'] = self.duration
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'details') and self.details is not None:
            if isinstance(self.details, dict):
                _dict['details'] = self.details
            else:
                _dict['details'] = self.details.to_dict()
        if hasattr(self, 'status') and self.status is not None:
            _dict['status'] = self.status
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this AudioResource object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'AudioResource') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'AudioResource') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class StatusEnum(str, Enum):
        """
        The status of the audio resource:
        * `ok`: The service successfully analyzed the audio data. The data can be used to
        train the custom model.
        * `being_processed`: The service is still analyzing the audio data. The service
        cannot accept requests to add new audio resources or to train the custom model
        until its analysis is complete.
        * `invalid`: The audio data is not valid for training the custom model (possibly
        because it has the wrong format or sampling rate, or because it is corrupted). For
        an archive file, the entire archive is invalid if any of its audio files are
        invalid.
        """

        OK = 'ok'
        BEING_PROCESSED = 'being_processed'
        INVALID = 'invalid'


class AudioResources:
    """
    Information about the audio resources from a custom acoustic model.

    :param float total_minutes_of_audio: The total minutes of accumulated audio
          summed over all of the valid audio resources for the custom acoustic model. You
          can use this value to determine whether the custom model has too little or too
          much audio to begin training.
    :param List[AudioResource] audio: An array of `AudioResource` objects that
          provides information about the audio resources of the custom acoustic model. The
          array is empty if the custom model has no audio resources.
    """

    def __init__(
        self,
        total_minutes_of_audio: float,
        audio: List['AudioResource'],
    ) -> None:
        """
        Initialize a AudioResources object.

        :param float total_minutes_of_audio: The total minutes of accumulated audio
               summed over all of the valid audio resources for the custom acoustic model.
               You can use this value to determine whether the custom model has too little
               or too much audio to begin training.
        :param List[AudioResource] audio: An array of `AudioResource` objects that
               provides information about the audio resources of the custom acoustic
               model. The array is empty if the custom model has no audio resources.
        """
        self.total_minutes_of_audio = total_minutes_of_audio
        self.audio = audio

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'AudioResources':
        """Initialize a AudioResources object from a json dictionary."""
        args = {}
        if (total_minutes_of_audio :=
                _dict.get('total_minutes_of_audio')) is not None:
            args['total_minutes_of_audio'] = total_minutes_of_audio
        else:
            raise ValueError(
                'Required property \'total_minutes_of_audio\' not present in AudioResources JSON'
            )
        if (audio := _dict.get('audio')) is not None:
            args['audio'] = [AudioResource.from_dict(v) for v in audio]
        else:
            raise ValueError(
                'Required property \'audio\' not present in AudioResources JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a AudioResources object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'total_minutes_of_audio'
                  ) and self.total_minutes_of_audio is not None:
            _dict['total_minutes_of_audio'] = self.total_minutes_of_audio
        if hasattr(self, 'audio') and self.audio is not None:
            audio_list = []
            for v in self.audio:
                if isinstance(v, dict):
                    audio_list.append(v)
                else:
                    audio_list.append(v.to_dict())
            _dict['audio'] = audio_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this AudioResources object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'AudioResources') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'AudioResources') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class Corpora:
    """
    Information about the corpora from a custom language model.

    :param List[Corpus] corpora: An array of `Corpus` objects that provides
          information about the corpora for the custom model. The array is empty if the
          custom model has no corpora.
    """

    def __init__(
        self,
        corpora: List['Corpus'],
    ) -> None:
        """
        Initialize a Corpora object.

        :param List[Corpus] corpora: An array of `Corpus` objects that provides
               information about the corpora for the custom model. The array is empty if
               the custom model has no corpora.
        """
        self.corpora = corpora

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'Corpora':
        """Initialize a Corpora object from a json dictionary."""
        args = {}
        if (corpora := _dict.get('corpora')) is not None:
            args['corpora'] = [Corpus.from_dict(v) for v in corpora]
        else:
            raise ValueError(
                'Required property \'corpora\' not present in Corpora JSON')
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a Corpora object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'corpora') and self.corpora is not None:
            corpora_list = []
            for v in self.corpora:
                if isinstance(v, dict):
                    corpora_list.append(v)
                else:
                    corpora_list.append(v.to_dict())
            _dict['corpora'] = corpora_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this Corpora object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'Corpora') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'Corpora') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class Corpus:
    """
    Information about a corpus from a custom language model.

    :param str name: The name of the corpus.
    :param int total_words: The total number of words in the corpus. The value is
          `0` while the corpus is being processed.
    :param int out_of_vocabulary_words: _For custom models that are based on large
          speech models and previous-generation models_, the number of OOV words extracted
          from the corpus. The value is `0` while the corpus is being processed.
          _For custom models that are based on next-generation models_, no OOV words are
          extracted from corpora, so the value is always `0`.
    :param str status: The status of the corpus:
          * `analyzed`: The service successfully analyzed the corpus. The custom model can
          be trained with data from the corpus.
          * `being_processed`: The service is still analyzing the corpus. The service
          cannot accept requests to add new resources or to train the custom model.
          * `undetermined`: The service encountered an error while processing the corpus.
          The `error` field describes the failure.
    :param str error: (optional) If the status of the corpus is `undetermined`, the
          following message: `Analysis of corpus 'name' failed. Please try adding the
          corpus again by setting the 'allow_overwrite' flag to 'true'`.
    """

    def __init__(
        self,
        name: str,
        total_words: int,
        out_of_vocabulary_words: int,
        status: str,
        *,
        error: Optional[str] = None,
    ) -> None:
        """
        Initialize a Corpus object.

        :param str name: The name of the corpus.
        :param int total_words: The total number of words in the corpus. The value
               is `0` while the corpus is being processed.
        :param int out_of_vocabulary_words: _For custom models that are based on
               large speech models and previous-generation models_, the number of OOV
               words extracted from the corpus. The value is `0` while the corpus is being
               processed.
               _For custom models that are based on next-generation models_, no OOV words
               are extracted from corpora, so the value is always `0`.
        :param str status: The status of the corpus:
               * `analyzed`: The service successfully analyzed the corpus. The custom
               model can be trained with data from the corpus.
               * `being_processed`: The service is still analyzing the corpus. The service
               cannot accept requests to add new resources or to train the custom model.
               * `undetermined`: The service encountered an error while processing the
               corpus. The `error` field describes the failure.
        :param str error: (optional) If the status of the corpus is `undetermined`,
               the following message: `Analysis of corpus 'name' failed. Please try adding
               the corpus again by setting the 'allow_overwrite' flag to 'true'`.
        """
        self.name = name
        self.total_words = total_words
        self.out_of_vocabulary_words = out_of_vocabulary_words
        self.status = status
        self.error = error

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'Corpus':
        """Initialize a Corpus object from a json dictionary."""
        args = {}
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        else:
            raise ValueError(
                'Required property \'name\' not present in Corpus JSON')
        if (total_words := _dict.get('total_words')) is not None:
            args['total_words'] = total_words
        else:
            raise ValueError(
                'Required property \'total_words\' not present in Corpus JSON')
        if (out_of_vocabulary_words :=
                _dict.get('out_of_vocabulary_words')) is not None:
            args['out_of_vocabulary_words'] = out_of_vocabulary_words
        else:
            raise ValueError(
                'Required property \'out_of_vocabulary_words\' not present in Corpus JSON'
            )
        if (status := _dict.get('status')) is not None:
            args['status'] = status
        else:
            raise ValueError(
                'Required property \'status\' not present in Corpus JSON')
        if (error := _dict.get('error')) is not None:
            args['error'] = error
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a Corpus object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'total_words') and self.total_words is not None:
            _dict['total_words'] = self.total_words
        if hasattr(self, 'out_of_vocabulary_words'
                  ) and self.out_of_vocabulary_words is not None:
            _dict['out_of_vocabulary_words'] = self.out_of_vocabulary_words
        if hasattr(self, 'status') and self.status is not None:
            _dict['status'] = self.status
        if hasattr(self, 'error') and self.error is not None:
            _dict['error'] = self.error
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this Corpus object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'Corpus') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'Corpus') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class StatusEnum(str, Enum):
        """
        The status of the corpus:
        * `analyzed`: The service successfully analyzed the corpus. The custom model can
        be trained with data from the corpus.
        * `being_processed`: The service is still analyzing the corpus. The service cannot
        accept requests to add new resources or to train the custom model.
        * `undetermined`: The service encountered an error while processing the corpus.
        The `error` field describes the failure.
        """

        ANALYZED = 'analyzed'
        BEING_PROCESSED = 'being_processed'
        UNDETERMINED = 'undetermined'


class CustomWord:
    """
    Information about a word that is to be added to a custom language model.

    :param str word: (optional) For the [Add custom words](#addwords) method, you
          must specify the custom word that is to be added to or updated in the custom
          model. Do not use characters that need to be URL-encoded, for example, spaces,
          slashes, backslashes, colons, ampersands, double quotes, plus signs, equals
          signs, or question marks. Use a `-` (dash) or `_` (underscore) to connect the
          tokens of compound words. A Japanese custom word can include at most 25
          characters, not including leading or trailing spaces.
          Omit this parameter for the [Add a custom word](#addword) method.
    :param List[str] mapping_only: (optional) Parameter for custom words. You can
          use the 'mapping_only' key in custom words as a form of post processing. This
          key parameter has a boolean value to determine whether 'sounds_like' (for
          non-Japanese models) or word (for Japanese) is not used for the model
          fine-tuning, but for the replacement for 'display_as'. This feature helps you
          when you use custom words exclusively to map 'sounds_like' (or word) to
          'display_as' value. When you use custom words solely for post-processing
          purposes that does not need fine-tuning.
    :param List[str] sounds_like: (optional) As array of sounds-like pronunciations
          for the custom word. Specify how words that are difficult to pronounce, foreign
          words, acronyms, and so on can be pronounced by users.
          * _For custom models that are based on previous-generation models_, for a word
          that is not in the service's base vocabulary, omit the parameter to have the
          service automatically generate a sounds-like pronunciation for the word.
          * For a word that is in the service's base vocabulary, use the parameter to
          specify additional pronunciations for the word. You cannot override the default
          pronunciation of a word; pronunciations you add augment the pronunciation from
          the base vocabulary.
          A word can have at most five sounds-like pronunciations. A pronunciation can
          include at most 40 characters, not including leading or trailing spaces. A
          Japanese pronunciation can include at most 25 characters, not including leading
          or trailing spaces.
    :param str display_as: (optional) An alternative spelling for the custom word
          when it appears in a transcript. Use the parameter when you want the word to
          have a spelling that is different from its usual representation or from its
          spelling in corpora training data.
          _For custom models that are based on next-generation models_, the service uses
          the spelling of the word as the display-as value if you omit the field.
    """

    def __init__(
        self,
        *,
        word: Optional[str] = None,
        mapping_only: Optional[List[str]] = None,
        sounds_like: Optional[List[str]] = None,
        display_as: Optional[str] = None,
    ) -> None:
        """
        Initialize a CustomWord object.

        :param str word: (optional) For the [Add custom words](#addwords) method,
               you must specify the custom word that is to be added to or updated in the
               custom model. Do not use characters that need to be URL-encoded, for
               example, spaces, slashes, backslashes, colons, ampersands, double quotes,
               plus signs, equals signs, or question marks. Use a `-` (dash) or `_`
               (underscore) to connect the tokens of compound words. A Japanese custom
               word can include at most 25 characters, not including leading or trailing
               spaces.
               Omit this parameter for the [Add a custom word](#addword) method.
        :param List[str] mapping_only: (optional) Parameter for custom words. You
               can use the 'mapping_only' key in custom words as a form of post
               processing. This key parameter has a boolean value to determine whether
               'sounds_like' (for non-Japanese models) or word (for Japanese) is not used
               for the model fine-tuning, but for the replacement for 'display_as'. This
               feature helps you when you use custom words exclusively to map
               'sounds_like' (or word) to 'display_as' value. When you use custom words
               solely for post-processing purposes that does not need fine-tuning.
        :param List[str] sounds_like: (optional) As array of sounds-like
               pronunciations for the custom word. Specify how words that are difficult to
               pronounce, foreign words, acronyms, and so on can be pronounced by users.
               * _For custom models that are based on previous-generation models_, for a
               word that is not in the service's base vocabulary, omit the parameter to
               have the service automatically generate a sounds-like pronunciation for the
               word.
               * For a word that is in the service's base vocabulary, use the parameter to
               specify additional pronunciations for the word. You cannot override the
               default pronunciation of a word; pronunciations you add augment the
               pronunciation from the base vocabulary.
               A word can have at most five sounds-like pronunciations. A pronunciation
               can include at most 40 characters, not including leading or trailing
               spaces. A Japanese pronunciation can include at most 25 characters, not
               including leading or trailing spaces.
        :param str display_as: (optional) An alternative spelling for the custom
               word when it appears in a transcript. Use the parameter when you want the
               word to have a spelling that is different from its usual representation or
               from its spelling in corpora training data.
               _For custom models that are based on next-generation models_, the service
               uses the spelling of the word as the display-as value if you omit the
               field.
        """
        self.word = word
        self.mapping_only = mapping_only
        self.sounds_like = sounds_like
        self.display_as = display_as

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'CustomWord':
        """Initialize a CustomWord object from a json dictionary."""
        args = {}
        if (word := _dict.get('word')) is not None:
            args['word'] = word
        if (mapping_only := _dict.get('mapping_only')) is not None:
            args['mapping_only'] = mapping_only
        if (sounds_like := _dict.get('sounds_like')) is not None:
            args['sounds_like'] = sounds_like
        if (display_as := _dict.get('display_as')) is not None:
            args['display_as'] = display_as
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a CustomWord object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'word') and self.word is not None:
            _dict['word'] = self.word
        if hasattr(self, 'mapping_only') and self.mapping_only is not None:
            _dict['mapping_only'] = self.mapping_only
        if hasattr(self, 'sounds_like') and self.sounds_like is not None:
            _dict['sounds_like'] = self.sounds_like
        if hasattr(self, 'display_as') and self.display_as is not None:
            _dict['display_as'] = self.display_as
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this CustomWord object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'CustomWord') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'CustomWord') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class Grammar:
    """
    Information about a grammar from a custom language model.

    :param str name: The name of the grammar.
    :param int out_of_vocabulary_words: _For custom models that are based on
          previous-generation models_, the number of OOV words extracted from the grammar.
          The value is `0` while the grammar is being processed.
          _For custom models that are based on next-generation models_, no OOV words are
          extracted from grammars, so the value is always `0`.
    :param str status: The status of the grammar:
          * `analyzed`: The service successfully analyzed the grammar. The custom model
          can be trained with data from the grammar.
          * `being_processed`: The service is still analyzing the grammar. The service
          cannot accept requests to add new resources or to train the custom model.
          * `undetermined`: The service encountered an error while processing the grammar.
          The `error` field describes the failure.
    :param str error: (optional) If the status of the grammar is `undetermined`, the
          following message: `Analysis of grammar '{grammar_name}' failed. Please try
          fixing the error or adding the grammar again by setting the 'allow_overwrite'
          flag to 'true'.`.
    """

    def __init__(
        self,
        name: str,
        out_of_vocabulary_words: int,
        status: str,
        *,
        error: Optional[str] = None,
    ) -> None:
        """
        Initialize a Grammar object.

        :param str name: The name of the grammar.
        :param int out_of_vocabulary_words: _For custom models that are based on
               previous-generation models_, the number of OOV words extracted from the
               grammar. The value is `0` while the grammar is being processed.
               _For custom models that are based on next-generation models_, no OOV words
               are extracted from grammars, so the value is always `0`.
        :param str status: The status of the grammar:
               * `analyzed`: The service successfully analyzed the grammar. The custom
               model can be trained with data from the grammar.
               * `being_processed`: The service is still analyzing the grammar. The
               service cannot accept requests to add new resources or to train the custom
               model.
               * `undetermined`: The service encountered an error while processing the
               grammar. The `error` field describes the failure.
        :param str error: (optional) If the status of the grammar is
               `undetermined`, the following message: `Analysis of grammar
               '{grammar_name}' failed. Please try fixing the error or adding the grammar
               again by setting the 'allow_overwrite' flag to 'true'.`.
        """
        self.name = name
        self.out_of_vocabulary_words = out_of_vocabulary_words
        self.status = status
        self.error = error

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'Grammar':
        """Initialize a Grammar object from a json dictionary."""
        args = {}
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        else:
            raise ValueError(
                'Required property \'name\' not present in Grammar JSON')
        if (out_of_vocabulary_words :=
                _dict.get('out_of_vocabulary_words')) is not None:
            args['out_of_vocabulary_words'] = out_of_vocabulary_words
        else:
            raise ValueError(
                'Required property \'out_of_vocabulary_words\' not present in Grammar JSON'
            )
        if (status := _dict.get('status')) is not None:
            args['status'] = status
        else:
            raise ValueError(
                'Required property \'status\' not present in Grammar JSON')
        if (error := _dict.get('error')) is not None:
            args['error'] = error
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a Grammar object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'out_of_vocabulary_words'
                  ) and self.out_of_vocabulary_words is not None:
            _dict['out_of_vocabulary_words'] = self.out_of_vocabulary_words
        if hasattr(self, 'status') and self.status is not None:
            _dict['status'] = self.status
        if hasattr(self, 'error') and self.error is not None:
            _dict['error'] = self.error
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this Grammar object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'Grammar') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'Grammar') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class StatusEnum(str, Enum):
        """
        The status of the grammar:
        * `analyzed`: The service successfully analyzed the grammar. The custom model can
        be trained with data from the grammar.
        * `being_processed`: The service is still analyzing the grammar. The service
        cannot accept requests to add new resources or to train the custom model.
        * `undetermined`: The service encountered an error while processing the grammar.
        The `error` field describes the failure.
        """

        ANALYZED = 'analyzed'
        BEING_PROCESSED = 'being_processed'
        UNDETERMINED = 'undetermined'


class Grammars:
    """
    Information about the grammars from a custom language model.

    :param List[Grammar] grammars: An array of `Grammar` objects that provides
          information about the grammars for the custom model. The array is empty if the
          custom model has no grammars.
    """

    def __init__(
        self,
        grammars: List['Grammar'],
    ) -> None:
        """
        Initialize a Grammars object.

        :param List[Grammar] grammars: An array of `Grammar` objects that provides
               information about the grammars for the custom model. The array is empty if
               the custom model has no grammars.
        """
        self.grammars = grammars

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'Grammars':
        """Initialize a Grammars object from a json dictionary."""
        args = {}
        if (grammars := _dict.get('grammars')) is not None:
            args['grammars'] = [Grammar.from_dict(v) for v in grammars]
        else:
            raise ValueError(
                'Required property \'grammars\' not present in Grammars JSON')
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a Grammars object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'grammars') and self.grammars is not None:
            grammars_list = []
            for v in self.grammars:
                if isinstance(v, dict):
                    grammars_list.append(v)
                else:
                    grammars_list.append(v.to_dict())
            _dict['grammars'] = grammars_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this Grammars object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'Grammars') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'Grammars') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class KeywordResult:
    """
    Information about a match for a keyword from speech recognition results.

    :param str normalized_text: A specified keyword normalized to the spoken phrase
          that matched in the audio input.
    :param float start_time: The start time in seconds of the keyword match.
    :param float end_time: The end time in seconds of the keyword match.
    :param float confidence: A confidence score for the keyword match in the range
          of 0.0 to 1.0.
    """

    def __init__(
        self,
        normalized_text: str,
        start_time: float,
        end_time: float,
        confidence: float,
    ) -> None:
        """
        Initialize a KeywordResult object.

        :param str normalized_text: A specified keyword normalized to the spoken
               phrase that matched in the audio input.
        :param float start_time: The start time in seconds of the keyword match.
        :param float end_time: The end time in seconds of the keyword match.
        :param float confidence: A confidence score for the keyword match in the
               range of 0.0 to 1.0.
        """
        self.normalized_text = normalized_text
        self.start_time = start_time
        self.end_time = end_time
        self.confidence = confidence

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'KeywordResult':
        """Initialize a KeywordResult object from a json dictionary."""
        args = {}
        if (normalized_text := _dict.get('normalized_text')) is not None:
            args['normalized_text'] = normalized_text
        else:
            raise ValueError(
                'Required property \'normalized_text\' not present in KeywordResult JSON'
            )
        if (start_time := _dict.get('start_time')) is not None:
            args['start_time'] = start_time
        else:
            raise ValueError(
                'Required property \'start_time\' not present in KeywordResult JSON'
            )
        if (end_time := _dict.get('end_time')) is not None:
            args['end_time'] = end_time
        else:
            raise ValueError(
                'Required property \'end_time\' not present in KeywordResult JSON'
            )
        if (confidence := _dict.get('confidence')) is not None:
            args['confidence'] = confidence
        else:
            raise ValueError(
                'Required property \'confidence\' not present in KeywordResult JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a KeywordResult object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self,
                   'normalized_text') and self.normalized_text is not None:
            _dict['normalized_text'] = self.normalized_text
        if hasattr(self, 'start_time') and self.start_time is not None:
            _dict['start_time'] = self.start_time
        if hasattr(self, 'end_time') and self.end_time is not None:
            _dict['end_time'] = self.end_time
        if hasattr(self, 'confidence') and self.confidence is not None:
            _dict['confidence'] = self.confidence
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this KeywordResult object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'KeywordResult') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'KeywordResult') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class LanguageModel:
    """
    Information about an existing custom language model.

    :param str customization_id: The customization ID (GUID) of the custom language
          model. The [Create a custom language model](#createlanguagemodel) method returns
          only this field of the object; it does not return the other fields.
    :param str created: (optional) The date and time in Coordinated Universal Time
          (UTC) at which the custom language model was created. The value is provided in
          full ISO 8601 format (`YYYY-MM-DDThh:mm:ss.sTZD`).
    :param str updated: (optional) The date and time in Coordinated Universal Time
          (UTC) at which the custom language model was last modified. The `created` and
          `updated` fields are equal when a language model is first added but has yet to
          be updated. The value is provided in full ISO 8601 format
          (YYYY-MM-DDThh:mm:ss.sTZD).
    :param str language: (optional) The language identifier of the custom language
          model (for example, `en-US`). The value matches the five-character language
          identifier from the name of the base model for the custom model. This value
          might be different from the value of the `dialect` field.
    :param str dialect: (optional) The dialect of the language for the custom
          language model. _For custom models that are based on non-Spanish
          previous-generation models and on next-generation models,_ the field matches the
          language of the base model; for example, `en-US` for one of the US English
          models. _For custom models that are based on Spanish previous-generation
          models,_ the field indicates the dialect with which the model was created. The
          value can match the name of the base model or, if it was specified by the user,
          can be one of the following:
          * `es-ES` for Castilian Spanish (`es-ES` models)
          * `es-LA` for Latin American Spanish (`es-AR`, `es-CL`, `es-CO`, and `es-PE`
          models)
          * `es-US` for Mexican (North American) Spanish (`es-MX` models)
          Dialect values are case-insensitive.
    :param List[str] versions: (optional) A list of the available versions of the
          custom language model. Each element of the array indicates a version of the base
          model with which the custom model can be used. Multiple versions exist only if
          the custom model has been upgraded to a new version of its base model.
          Otherwise, only a single version is shown.
    :param str owner: (optional) The GUID of the credentials for the instance of the
          service that owns the custom language model.
    :param str name: (optional) The name of the custom language model.
    :param str description: (optional) The description of the custom language model.
    :param str base_model_name: (optional) The name of the language model for which
          the custom language model was created.
    :param str status: (optional) The current status of the custom language model:
          * `pending`: The model was created but is waiting either for valid training data
          to be added or for the service to finish analyzing added data.
          * `ready`: The model contains valid data and is ready to be trained. If the
          model contains a mix of valid and invalid resources, you need to set the
          `strict` parameter to `false` for the training to proceed.
          * `training`: The model is currently being trained.
          * `available`: The model is trained and ready to use.
          * `upgrading`: The model is currently being upgraded.
          * `failed`: Training of the model failed.
    :param int progress: (optional) A percentage that indicates the progress of the
          custom language model's current training. A value of `100` means that the model
          is fully trained. **Note:** The `progress` field does not currently reflect the
          progress of the training. The field changes from `0` to `100` when training is
          complete.
    :param str error: (optional) If an error occurred while adding a grammar file to
          the custom language model, a message that describes an `Internal Server Error`
          and includes the string `Cannot compile grammar`. The status of the custom model
          is not affected by the error, but the grammar cannot be used with the model.
    :param str warnings: (optional) If the request included unknown parameters, the
          following message: `Unexpected query parameter(s) ['parameters'] detected`,
          where `parameters` is a list that includes a quoted string for each unknown
          parameter.
    """

    def __init__(
        self,
        customization_id: str,
        *,
        created: Optional[str] = None,
        updated: Optional[str] = None,
        language: Optional[str] = None,
        dialect: Optional[str] = None,
        versions: Optional[List[str]] = None,
        owner: Optional[str] = None,
        name: Optional[str] = None,
        description: Optional[str] = None,
        base_model_name: Optional[str] = None,
        status: Optional[str] = None,
        progress: Optional[int] = None,
        error: Optional[str] = None,
        warnings: Optional[str] = None,
    ) -> None:
        """
        Initialize a LanguageModel object.

        :param str customization_id: The customization ID (GUID) of the custom
               language model. The [Create a custom language model](#createlanguagemodel)
               method returns only this field of the object; it does not return the other
               fields.
        :param str created: (optional) The date and time in Coordinated Universal
               Time (UTC) at which the custom language model was created. The value is
               provided in full ISO 8601 format (`YYYY-MM-DDThh:mm:ss.sTZD`).
        :param str updated: (optional) The date and time in Coordinated Universal
               Time (UTC) at which the custom language model was last modified. The
               `created` and `updated` fields are equal when a language model is first
               added but has yet to be updated. The value is provided in full ISO 8601
               format (YYYY-MM-DDThh:mm:ss.sTZD).
        :param str language: (optional) The language identifier of the custom
               language model (for example, `en-US`). The value matches the five-character
               language identifier from the name of the base model for the custom model.
               This value might be different from the value of the `dialect` field.
        :param str dialect: (optional) The dialect of the language for the custom
               language model. _For custom models that are based on non-Spanish
               previous-generation models and on next-generation models,_ the field
               matches the language of the base model; for example, `en-US` for one of the
               US English models. _For custom models that are based on Spanish
               previous-generation models,_ the field indicates the dialect with which the
               model was created. The value can match the name of the base model or, if it
               was specified by the user, can be one of the following:
               * `es-ES` for Castilian Spanish (`es-ES` models)
               * `es-LA` for Latin American Spanish (`es-AR`, `es-CL`, `es-CO`, and
               `es-PE` models)
               * `es-US` for Mexican (North American) Spanish (`es-MX` models)
               Dialect values are case-insensitive.
        :param List[str] versions: (optional) A list of the available versions of
               the custom language model. Each element of the array indicates a version of
               the base model with which the custom model can be used. Multiple versions
               exist only if the custom model has been upgraded to a new version of its
               base model. Otherwise, only a single version is shown.
        :param str owner: (optional) The GUID of the credentials for the instance
               of the service that owns the custom language model.
        :param str name: (optional) The name of the custom language model.
        :param str description: (optional) The description of the custom language
               model.
        :param str base_model_name: (optional) The name of the language model for
               which the custom language model was created.
        :param str status: (optional) The current status of the custom language
               model:
               * `pending`: The model was created but is waiting either for valid training
               data to be added or for the service to finish analyzing added data.
               * `ready`: The model contains valid data and is ready to be trained. If the
               model contains a mix of valid and invalid resources, you need to set the
               `strict` parameter to `false` for the training to proceed.
               * `training`: The model is currently being trained.
               * `available`: The model is trained and ready to use.
               * `upgrading`: The model is currently being upgraded.
               * `failed`: Training of the model failed.
        :param int progress: (optional) A percentage that indicates the progress of
               the custom language model's current training. A value of `100` means that
               the model is fully trained. **Note:** The `progress` field does not
               currently reflect the progress of the training. The field changes from `0`
               to `100` when training is complete.
        :param str error: (optional) If an error occurred while adding a grammar
               file to the custom language model, a message that describes an `Internal
               Server Error` and includes the string `Cannot compile grammar`. The status
               of the custom model is not affected by the error, but the grammar cannot be
               used with the model.
        :param str warnings: (optional) If the request included unknown parameters,
               the following message: `Unexpected query parameter(s) ['parameters']
               detected`, where `parameters` is a list that includes a quoted string for
               each unknown parameter.
        """
        self.customization_id = customization_id
        self.created = created
        self.updated = updated
        self.language = language
        self.dialect = dialect
        self.versions = versions
        self.owner = owner
        self.name = name
        self.description = description
        self.base_model_name = base_model_name
        self.status = status
        self.progress = progress
        self.error = error
        self.warnings = warnings

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'LanguageModel':
        """Initialize a LanguageModel object from a json dictionary."""
        args = {}
        if (customization_id := _dict.get('customization_id')) is not None:
            args['customization_id'] = customization_id
        else:
            raise ValueError(
                'Required property \'customization_id\' not present in LanguageModel JSON'
            )
        if (created := _dict.get('created')) is not None:
            args['created'] = created
        if (updated := _dict.get('updated')) is not None:
            args['updated'] = updated
        if (language := _dict.get('language')) is not None:
            args['language'] = language
        if (dialect := _dict.get('dialect')) is not None:
            args['dialect'] = dialect
        if (versions := _dict.get('versions')) is not None:
            args['versions'] = versions
        if (owner := _dict.get('owner')) is not None:
            args['owner'] = owner
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        if (description := _dict.get('description')) is not None:
            args['description'] = description
        if (base_model_name := _dict.get('base_model_name')) is not None:
            args['base_model_name'] = base_model_name
        if (status := _dict.get('status')) is not None:
            args['status'] = status
        if (progress := _dict.get('progress')) is not None:
            args['progress'] = progress
        if (error := _dict.get('error')) is not None:
            args['error'] = error
        if (warnings := _dict.get('warnings')) is not None:
            args['warnings'] = warnings
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a LanguageModel object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self,
                   'customization_id') and self.customization_id is not None:
            _dict['customization_id'] = self.customization_id
        if hasattr(self, 'created') and self.created is not None:
            _dict['created'] = self.created
        if hasattr(self, 'updated') and self.updated is not None:
            _dict['updated'] = self.updated
        if hasattr(self, 'language') and self.language is not None:
            _dict['language'] = self.language
        if hasattr(self, 'dialect') and self.dialect is not None:
            _dict['dialect'] = self.dialect
        if hasattr(self, 'versions') and self.versions is not None:
            _dict['versions'] = self.versions
        if hasattr(self, 'owner') and self.owner is not None:
            _dict['owner'] = self.owner
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'description') and self.description is not None:
            _dict['description'] = self.description
        if hasattr(self,
                   'base_model_name') and self.base_model_name is not None:
            _dict['base_model_name'] = self.base_model_name
        if hasattr(self, 'status') and self.status is not None:
            _dict['status'] = self.status
        if hasattr(self, 'progress') and self.progress is not None:
            _dict['progress'] = self.progress
        if hasattr(self, 'error') and self.error is not None:
            _dict['error'] = self.error
        if hasattr(self, 'warnings') and self.warnings is not None:
            _dict['warnings'] = self.warnings
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this LanguageModel object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'LanguageModel') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'LanguageModel') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class StatusEnum(str, Enum):
        """
        The current status of the custom language model:
        * `pending`: The model was created but is waiting either for valid training data
        to be added or for the service to finish analyzing added data.
        * `ready`: The model contains valid data and is ready to be trained. If the model
        contains a mix of valid and invalid resources, you need to set the `strict`
        parameter to `false` for the training to proceed.
        * `training`: The model is currently being trained.
        * `available`: The model is trained and ready to use.
        * `upgrading`: The model is currently being upgraded.
        * `failed`: Training of the model failed.
        """

        PENDING = 'pending'
        READY = 'ready'
        TRAINING = 'training'
        AVAILABLE = 'available'
        UPGRADING = 'upgrading'
        FAILED = 'failed'


class LanguageModels:
    """
    Information about existing custom language models.

    :param List[LanguageModel] customizations: An array of `LanguageModel` objects
          that provides information about each available custom language model. The array
          is empty if the requesting credentials own no custom language models (if no
          language is specified) or own no custom language models for the specified
          language.
    """

    def __init__(
        self,
        customizations: List['LanguageModel'],
    ) -> None:
        """
        Initialize a LanguageModels object.

        :param List[LanguageModel] customizations: An array of `LanguageModel`
               objects that provides information about each available custom language
               model. The array is empty if the requesting credentials own no custom
               language models (if no language is specified) or own no custom language
               models for the specified language.
        """
        self.customizations = customizations

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'LanguageModels':
        """Initialize a LanguageModels object from a json dictionary."""
        args = {}
        if (customizations := _dict.get('customizations')) is not None:
            args['customizations'] = [
                LanguageModel.from_dict(v) for v in customizations
            ]
        else:
            raise ValueError(
                'Required property \'customizations\' not present in LanguageModels JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a LanguageModels object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'customizations') and self.customizations is not None:
            customizations_list = []
            for v in self.customizations:
                if isinstance(v, dict):
                    customizations_list.append(v)
                else:
                    customizations_list.append(v.to_dict())
            _dict['customizations'] = customizations_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this LanguageModels object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'LanguageModels') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'LanguageModels') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class ProcessedAudio:
    """
    Detailed timing information about the service's processing of the input audio.

    :param float received: The seconds of audio that the service has received as of
          this response. The value of the field is greater than the values of the
          `transcription` and `speaker_labels` fields during speech recognition
          processing, since the service first has to receive the audio before it can begin
          to process it. The final value can also be greater than the value of the
          `transcription` and `speaker_labels` fields by a fractional number of seconds.
    :param float seen_by_engine: The seconds of audio that the service has passed to
          its speech-processing engine as of this response. The value of the field is
          greater than the values of the `transcription` and `speaker_labels` fields
          during speech recognition processing. The `received` and `seen_by_engine` fields
          have identical values when the service has finished processing all audio. This
          final value can be greater than the value of the `transcription` and
          `speaker_labels` fields by a fractional number of seconds.
    :param float transcription: The seconds of audio that the service has processed
          for speech recognition as of this response.
    :param float speaker_labels: (optional) If speaker labels are requested, the
          seconds of audio that the service has processed to determine speaker labels as
          of this response. This value often trails the value of the `transcription` field
          during speech recognition processing. The `transcription` and `speaker_labels`
          fields have identical values when the service has finished processing all audio.
    """

    def __init__(
        self,
        received: float,
        seen_by_engine: float,
        transcription: float,
        *,
        speaker_labels: Optional[float] = None,
    ) -> None:
        """
        Initialize a ProcessedAudio object.

        :param float received: The seconds of audio that the service has received
               as of this response. The value of the field is greater than the values of
               the `transcription` and `speaker_labels` fields during speech recognition
               processing, since the service first has to receive the audio before it can
               begin to process it. The final value can also be greater than the value of
               the `transcription` and `speaker_labels` fields by a fractional number of
               seconds.
        :param float seen_by_engine: The seconds of audio that the service has
               passed to its speech-processing engine as of this response. The value of
               the field is greater than the values of the `transcription` and
               `speaker_labels` fields during speech recognition processing. The
               `received` and `seen_by_engine` fields have identical values when the
               service has finished processing all audio. This final value can be greater
               than the value of the `transcription` and `speaker_labels` fields by a
               fractional number of seconds.
        :param float transcription: The seconds of audio that the service has
               processed for speech recognition as of this response.
        :param float speaker_labels: (optional) If speaker labels are requested,
               the seconds of audio that the service has processed to determine speaker
               labels as of this response. This value often trails the value of the
               `transcription` field during speech recognition processing. The
               `transcription` and `speaker_labels` fields have identical values when the
               service has finished processing all audio.
        """
        self.received = received
        self.seen_by_engine = seen_by_engine
        self.transcription = transcription
        self.speaker_labels = speaker_labels

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'ProcessedAudio':
        """Initialize a ProcessedAudio object from a json dictionary."""
        args = {}
        if (received := _dict.get('received')) is not None:
            args['received'] = received
        else:
            raise ValueError(
                'Required property \'received\' not present in ProcessedAudio JSON'
            )
        if (seen_by_engine := _dict.get('seen_by_engine')) is not None:
            args['seen_by_engine'] = seen_by_engine
        else:
            raise ValueError(
                'Required property \'seen_by_engine\' not present in ProcessedAudio JSON'
            )
        if (transcription := _dict.get('transcription')) is not None:
            args['transcription'] = transcription
        else:
            raise ValueError(
                'Required property \'transcription\' not present in ProcessedAudio JSON'
            )
        if (speaker_labels := _dict.get('speaker_labels')) is not None:
            args['speaker_labels'] = speaker_labels
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a ProcessedAudio object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'received') and self.received is not None:
            _dict['received'] = self.received
        if hasattr(self, 'seen_by_engine') and self.seen_by_engine is not None:
            _dict['seen_by_engine'] = self.seen_by_engine
        if hasattr(self, 'transcription') and self.transcription is not None:
            _dict['transcription'] = self.transcription
        if hasattr(self, 'speaker_labels') and self.speaker_labels is not None:
            _dict['speaker_labels'] = self.speaker_labels
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this ProcessedAudio object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'ProcessedAudio') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'ProcessedAudio') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class ProcessingMetrics:
    """
    If processing metrics are requested, information about the service's processing of the
    input audio. Processing metrics are not available with the synchronous [Recognize
    audio](#recognize) method.

    :param ProcessedAudio processed_audio: Detailed timing information about the
          service's processing of the input audio.
    :param float wall_clock_since_first_byte_received: The amount of real time in
          seconds that has passed since the service received the first byte of input
          audio. Values in this field are generally multiples of the specified metrics
          interval, with two differences:
          * Values might not reflect exact intervals (for instance, 0.25, 0.5, and so on).
          Actual values might be 0.27, 0.52, and so on, depending on when the service
          receives and processes audio.
          * The service also returns values for transcription events if you set the
          `interim_results` parameter to `true`. The service returns both processing
          metrics and transcription results when such events occur.
    :param bool periodic: An indication of whether the metrics apply to a periodic
          interval or a transcription event:
          * `true` means that the response was triggered by a specified processing
          interval. The information contains processing metrics only.
          * `false` means that the response was triggered by a transcription event. The
          information contains processing metrics plus transcription results.
          Use the field to identify why the service generated the response and to filter
          different results if necessary.
    """

    def __init__(
        self,
        processed_audio: 'ProcessedAudio',
        wall_clock_since_first_byte_received: float,
        periodic: bool,
    ) -> None:
        """
        Initialize a ProcessingMetrics object.

        :param ProcessedAudio processed_audio: Detailed timing information about
               the service's processing of the input audio.
        :param float wall_clock_since_first_byte_received: The amount of real time
               in seconds that has passed since the service received the first byte of
               input audio. Values in this field are generally multiples of the specified
               metrics interval, with two differences:
               * Values might not reflect exact intervals (for instance, 0.25, 0.5, and so
               on). Actual values might be 0.27, 0.52, and so on, depending on when the
               service receives and processes audio.
               * The service also returns values for transcription events if you set the
               `interim_results` parameter to `true`. The service returns both processing
               metrics and transcription results when such events occur.
        :param bool periodic: An indication of whether the metrics apply to a
               periodic interval or a transcription event:
               * `true` means that the response was triggered by a specified processing
               interval. The information contains processing metrics only.
               * `false` means that the response was triggered by a transcription event.
               The information contains processing metrics plus transcription results.
               Use the field to identify why the service generated the response and to
               filter different results if necessary.
        """
        self.processed_audio = processed_audio
        self.wall_clock_since_first_byte_received = wall_clock_since_first_byte_received
        self.periodic = periodic

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'ProcessingMetrics':
        """Initialize a ProcessingMetrics object from a json dictionary."""
        args = {}
        if (processed_audio := _dict.get('processed_audio')) is not None:
            args['processed_audio'] = ProcessedAudio.from_dict(processed_audio)
        else:
            raise ValueError(
                'Required property \'processed_audio\' not present in ProcessingMetrics JSON'
            )
        if (wall_clock_since_first_byte_received :=
                _dict.get('wall_clock_since_first_byte_received')) is not None:
            args[
                'wall_clock_since_first_byte_received'] = wall_clock_since_first_byte_received
        else:
            raise ValueError(
                'Required property \'wall_clock_since_first_byte_received\' not present in ProcessingMetrics JSON'
            )
        if (periodic := _dict.get('periodic')) is not None:
            args['periodic'] = periodic
        else:
            raise ValueError(
                'Required property \'periodic\' not present in ProcessingMetrics JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a ProcessingMetrics object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self,
                   'processed_audio') and self.processed_audio is not None:
            if isinstance(self.processed_audio, dict):
                _dict['processed_audio'] = self.processed_audio
            else:
                _dict['processed_audio'] = self.processed_audio.to_dict()
        if hasattr(self, 'wall_clock_since_first_byte_received'
                  ) and self.wall_clock_since_first_byte_received is not None:
            _dict[
                'wall_clock_since_first_byte_received'] = self.wall_clock_since_first_byte_received
        if hasattr(self, 'periodic') and self.periodic is not None:
            _dict['periodic'] = self.periodic
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this ProcessingMetrics object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'ProcessingMetrics') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'ProcessingMetrics') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class RecognitionJob:
    """
    Information about a current asynchronous speech recognition job.

    :param str id: The ID of the asynchronous job.
    :param str status: The current status of the job:
          * `waiting`: The service is preparing the job for processing. The service
          returns this status when the job is initially created or when it is waiting for
          capacity to process the job. The job remains in this state until the service has
          the capacity to begin processing it.
          * `processing`: The service is actively processing the job.
          * `completed`: The service has finished processing the job. If the job specified
          a callback URL and the event `recognitions.completed_with_results`, the service
          sent the results with the callback notification. Otherwise, you must retrieve
          the results by checking the individual job.
          * `failed`: The job failed.
    :param str created: The date and time in Coordinated Universal Time (UTC) at
          which the job was created. The value is provided in full ISO 8601 format
          (`YYYY-MM-DDThh:mm:ss.sTZD`).
    :param str updated: (optional) The date and time in Coordinated Universal Time
          (UTC) at which the job was last updated by the service. The value is provided in
          full ISO 8601 format (`YYYY-MM-DDThh:mm:ss.sTZD`). This field is returned only
          by the [Check jobs](#checkjobs) and [Check a job[(#checkjob) methods.
    :param str url: (optional) The URL to use to request information about the job
          with the [Check a job](#checkjob) method. This field is returned only by the
          [Create a job](#createjob) method.
    :param str user_token: (optional) The user token associated with a job that was
          created with a callback URL and a user token. This field can be returned only by
          the [Check jobs](#checkjobs) method.
    :param List[SpeechRecognitionResults] results: (optional) If the status is
          `completed`, the results of the recognition request as an array that includes a
          single instance of a `SpeechRecognitionResults` object. This field is returned
          only by the [Check a job](#checkjob) method.
    :param List[str] warnings: (optional) An array of warning messages about invalid
          parameters included with the request. Each warning includes a descriptive
          message and a list of invalid argument strings, for example, `"unexpected query
          parameter 'user_token', query parameter 'callback_url' was not specified"`. The
          request succeeds despite the warnings. This field can be returned only by the
          [Create a job](#createjob) method. (If you use the `character_insertion_bias`
          parameter with a previous-generation model, the warning message refers to the
          parameter as `lambdaBias`.).
    """

    def __init__(
        self,
        id: str,
        status: str,
        created: str,
        *,
        updated: Optional[str] = None,
        url: Optional[str] = None,
        user_token: Optional[str] = None,
        results: Optional[List['SpeechRecognitionResults']] = None,
        warnings: Optional[List[str]] = None,
    ) -> None:
        """
        Initialize a RecognitionJob object.

        :param str id: The ID of the asynchronous job.
        :param str status: The current status of the job:
               * `waiting`: The service is preparing the job for processing. The service
               returns this status when the job is initially created or when it is waiting
               for capacity to process the job. The job remains in this state until the
               service has the capacity to begin processing it.
               * `processing`: The service is actively processing the job.
               * `completed`: The service has finished processing the job. If the job
               specified a callback URL and the event
               `recognitions.completed_with_results`, the service sent the results with
               the callback notification. Otherwise, you must retrieve the results by
               checking the individual job.
               * `failed`: The job failed.
        :param str created: The date and time in Coordinated Universal Time (UTC)
               at which the job was created. The value is provided in full ISO 8601 format
               (`YYYY-MM-DDThh:mm:ss.sTZD`).
        :param str updated: (optional) The date and time in Coordinated Universal
               Time (UTC) at which the job was last updated by the service. The value is
               provided in full ISO 8601 format (`YYYY-MM-DDThh:mm:ss.sTZD`). This field
               is returned only by the [Check jobs](#checkjobs) and [Check a
               job[(#checkjob) methods.
        :param str url: (optional) The URL to use to request information about the
               job with the [Check a job](#checkjob) method. This field is returned only
               by the [Create a job](#createjob) method.
        :param str user_token: (optional) The user token associated with a job that
               was created with a callback URL and a user token. This field can be
               returned only by the [Check jobs](#checkjobs) method.
        :param List[SpeechRecognitionResults] results: (optional) If the status is
               `completed`, the results of the recognition request as an array that
               includes a single instance of a `SpeechRecognitionResults` object. This
               field is returned only by the [Check a job](#checkjob) method.
        :param List[str] warnings: (optional) An array of warning messages about
               invalid parameters included with the request. Each warning includes a
               descriptive message and a list of invalid argument strings, for example,
               `"unexpected query parameter 'user_token', query parameter 'callback_url'
               was not specified"`. The request succeeds despite the warnings. This field
               can be returned only by the [Create a job](#createjob) method. (If you use
               the `character_insertion_bias` parameter with a previous-generation model,
               the warning message refers to the parameter as `lambdaBias`.).
        """
        self.id = id
        self.status = status
        self.created = created
        self.updated = updated
        self.url = url
        self.user_token = user_token
        self.results = results
        self.warnings = warnings

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'RecognitionJob':
        """Initialize a RecognitionJob object from a json dictionary."""
        args = {}
        if (id := _dict.get('id')) is not None:
            args['id'] = id
        else:
            raise ValueError(
                'Required property \'id\' not present in RecognitionJob JSON')
        if (status := _dict.get('status')) is not None:
            args['status'] = status
        else:
            raise ValueError(
                'Required property \'status\' not present in RecognitionJob JSON'
            )
        if (created := _dict.get('created')) is not None:
            args['created'] = created
        else:
            raise ValueError(
                'Required property \'created\' not present in RecognitionJob JSON'
            )
        if (updated := _dict.get('updated')) is not None:
            args['updated'] = updated
        if (url := _dict.get('url')) is not None:
            args['url'] = url
        if (user_token := _dict.get('user_token')) is not None:
            args['user_token'] = user_token
        if (results := _dict.get('results')) is not None:
            args['results'] = [
                SpeechRecognitionResults.from_dict(v) for v in results
            ]
        if (warnings := _dict.get('warnings')) is not None:
            args['warnings'] = warnings
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a RecognitionJob object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'id') and self.id is not None:
            _dict['id'] = self.id
        if hasattr(self, 'status') and self.status is not None:
            _dict['status'] = self.status
        if hasattr(self, 'created') and self.created is not None:
            _dict['created'] = self.created
        if hasattr(self, 'updated') and self.updated is not None:
            _dict['updated'] = self.updated
        if hasattr(self, 'url') and self.url is not None:
            _dict['url'] = self.url
        if hasattr(self, 'user_token') and self.user_token is not None:
            _dict['user_token'] = self.user_token
        if hasattr(self, 'results') and self.results is not None:
            results_list = []
            for v in self.results:
                if isinstance(v, dict):
                    results_list.append(v)
                else:
                    results_list.append(v.to_dict())
            _dict['results'] = results_list
        if hasattr(self, 'warnings') and self.warnings is not None:
            _dict['warnings'] = self.warnings
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this RecognitionJob object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'RecognitionJob') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'RecognitionJob') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class StatusEnum(str, Enum):
        """
        The current status of the job:
        * `waiting`: The service is preparing the job for processing. The service returns
        this status when the job is initially created or when it is waiting for capacity
        to process the job. The job remains in this state until the service has the
        capacity to begin processing it.
        * `processing`: The service is actively processing the job.
        * `completed`: The service has finished processing the job. If the job specified a
        callback URL and the event `recognitions.completed_with_results`, the service sent
        the results with the callback notification. Otherwise, you must retrieve the
        results by checking the individual job.
        * `failed`: The job failed.
        """

        WAITING = 'waiting'
        PROCESSING = 'processing'
        COMPLETED = 'completed'
        FAILED = 'failed'


class RecognitionJobs:
    """
    Information about current asynchronous speech recognition jobs.

    :param List[RecognitionJob] recognitions: An array of `RecognitionJob` objects
          that provides the status for each of the user's current jobs. The array is empty
          if the user has no current jobs.
    """

    def __init__(
        self,
        recognitions: List['RecognitionJob'],
    ) -> None:
        """
        Initialize a RecognitionJobs object.

        :param List[RecognitionJob] recognitions: An array of `RecognitionJob`
               objects that provides the status for each of the user's current jobs. The
               array is empty if the user has no current jobs.
        """
        self.recognitions = recognitions

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'RecognitionJobs':
        """Initialize a RecognitionJobs object from a json dictionary."""
        args = {}
        if (recognitions := _dict.get('recognitions')) is not None:
            args['recognitions'] = [
                RecognitionJob.from_dict(v) for v in recognitions
            ]
        else:
            raise ValueError(
                'Required property \'recognitions\' not present in RecognitionJobs JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a RecognitionJobs object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'recognitions') and self.recognitions is not None:
            recognitions_list = []
            for v in self.recognitions:
                if isinstance(v, dict):
                    recognitions_list.append(v)
                else:
                    recognitions_list.append(v.to_dict())
            _dict['recognitions'] = recognitions_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this RecognitionJobs object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'RecognitionJobs') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'RecognitionJobs') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class RegisterStatus:
    """
    Information about a request to register a callback for asynchronous speech
    recognition.

    :param str status: The current status of the job:
          * `created`: The service successfully allowlisted the callback URL as a result
          of the call.
          * `already created`: The URL was already allowlisted.
    :param str url: The callback URL that is successfully registered.
    """

    def __init__(
        self,
        status: str,
        url: str,
    ) -> None:
        """
        Initialize a RegisterStatus object.

        :param str status: The current status of the job:
               * `created`: The service successfully allowlisted the callback URL as a
               result of the call.
               * `already created`: The URL was already allowlisted.
        :param str url: The callback URL that is successfully registered.
        """
        self.status = status
        self.url = url

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'RegisterStatus':
        """Initialize a RegisterStatus object from a json dictionary."""
        args = {}
        if (status := _dict.get('status')) is not None:
            args['status'] = status
        else:
            raise ValueError(
                'Required property \'status\' not present in RegisterStatus JSON'
            )
        if (url := _dict.get('url')) is not None:
            args['url'] = url
        else:
            raise ValueError(
                'Required property \'url\' not present in RegisterStatus JSON')
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a RegisterStatus object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'status') and self.status is not None:
            _dict['status'] = self.status
        if hasattr(self, 'url') and self.url is not None:
            _dict['url'] = self.url
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this RegisterStatus object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'RegisterStatus') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'RegisterStatus') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class StatusEnum(str, Enum):
        """
        The current status of the job:
        * `created`: The service successfully allowlisted the callback URL as a result of
        the call.
        * `already created`: The URL was already allowlisted.
        """

        CREATED = 'created'
        ALREADY_CREATED = 'already created'


class SpeakerLabelsResult:
    """
    Information about the speakers from speech recognition results.

    :param float from_: The start time of a word from the transcript. The value
          matches the start time of a word from the `timestamps` array.
    :param float to: The end time of a word from the transcript. The value matches
          the end time of a word from the `timestamps` array.
    :param int speaker: The numeric identifier that the service assigns to a speaker
          from the audio. Speaker IDs begin at `0` initially but can evolve and change
          across interim results (if supported by the method) and between interim and
          final results as the service processes the audio. They are not guaranteed to be
          sequential, contiguous, or ordered.
    :param float confidence: A score that indicates the service's confidence in its
          identification of the speaker in the range of 0.0 to 1.0.
    :param bool final: An indication of whether the service might further change
          word and speaker-label results. A value of `true` means that the service
          guarantees not to send any further updates for the current or any preceding
          results; `false` means that the service might send further updates to the
          results.
    """

    def __init__(
        self,
        from_: float,
        to: float,
        speaker: int,
        confidence: float,
        final: bool,
    ) -> None:
        """
        Initialize a SpeakerLabelsResult object.

        :param float from_: The start time of a word from the transcript. The value
               matches the start time of a word from the `timestamps` array.
        :param float to: The end time of a word from the transcript. The value
               matches the end time of a word from the `timestamps` array.
        :param int speaker: The numeric identifier that the service assigns to a
               speaker from the audio. Speaker IDs begin at `0` initially but can evolve
               and change across interim results (if supported by the method) and between
               interim and final results as the service processes the audio. They are not
               guaranteed to be sequential, contiguous, or ordered.
        :param float confidence: A score that indicates the service's confidence in
               its identification of the speaker in the range of 0.0 to 1.0.
        :param bool final: An indication of whether the service might further
               change word and speaker-label results. A value of `true` means that the
               service guarantees not to send any further updates for the current or any
               preceding results; `false` means that the service might send further
               updates to the results.
        """
        self.from_ = from_
        self.to = to
        self.speaker = speaker
        self.confidence = confidence
        self.final = final

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'SpeakerLabelsResult':
        """Initialize a SpeakerLabelsResult object from a json dictionary."""
        args = {}
        if (from_ := _dict.get('from')) is not None:
            args['from_'] = from_
        else:
            raise ValueError(
                'Required property \'from\' not present in SpeakerLabelsResult JSON'
            )
        if (to := _dict.get('to')) is not None:
            args['to'] = to
        else:
            raise ValueError(
                'Required property \'to\' not present in SpeakerLabelsResult JSON'
            )
        if (speaker := _dict.get('speaker')) is not None:
            args['speaker'] = speaker
        else:
            raise ValueError(
                'Required property \'speaker\' not present in SpeakerLabelsResult JSON'
            )
        if (confidence := _dict.get('confidence')) is not None:
            args['confidence'] = confidence
        else:
            raise ValueError(
                'Required property \'confidence\' not present in SpeakerLabelsResult JSON'
            )
        if (final := _dict.get('final')) is not None:
            args['final'] = final
        else:
            raise ValueError(
                'Required property \'final\' not present in SpeakerLabelsResult JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a SpeakerLabelsResult object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'from_') and self.from_ is not None:
            _dict['from'] = self.from_
        if hasattr(self, 'to') and self.to is not None:
            _dict['to'] = self.to
        if hasattr(self, 'speaker') and self.speaker is not None:
            _dict['speaker'] = self.speaker
        if hasattr(self, 'confidence') and self.confidence is not None:
            _dict['confidence'] = self.confidence
        if hasattr(self, 'final') and self.final is not None:
            _dict['final'] = self.final
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this SpeakerLabelsResult object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'SpeakerLabelsResult') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'SpeakerLabelsResult') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class SpeechModel:
    """
    Information about an available language model.

    :param str name: The name of the model for use as an identifier in calls to the
          service (for example, `en-US_BroadbandModel`).
    :param str language: The language identifier of the model (for example,
          `en-US`).
    :param int rate: The sampling rate (minimum acceptable rate for audio) used by
          the model in Hertz.
    :param str url: The URI for the model.
    :param SupportedFeatures supported_features: Indicates whether select service
          features are supported with the model.
    :param str description: A brief description of the model.
    """

    def __init__(
        self,
        name: str,
        language: str,
        rate: int,
        url: str,
        supported_features: 'SupportedFeatures',
        description: str,
    ) -> None:
        """
        Initialize a SpeechModel object.

        :param str name: The name of the model for use as an identifier in calls to
               the service (for example, `en-US_BroadbandModel`).
        :param str language: The language identifier of the model (for example,
               `en-US`).
        :param int rate: The sampling rate (minimum acceptable rate for audio) used
               by the model in Hertz.
        :param str url: The URI for the model.
        :param SupportedFeatures supported_features: Indicates whether select
               service features are supported with the model.
        :param str description: A brief description of the model.
        """
        self.name = name
        self.language = language
        self.rate = rate
        self.url = url
        self.supported_features = supported_features
        self.description = description

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'SpeechModel':
        """Initialize a SpeechModel object from a json dictionary."""
        args = {}
        if (name := _dict.get('name')) is not None:
            args['name'] = name
        else:
            raise ValueError(
                'Required property \'name\' not present in SpeechModel JSON')
        if (language := _dict.get('language')) is not None:
            args['language'] = language
        else:
            raise ValueError(
                'Required property \'language\' not present in SpeechModel JSON'
            )
        if (rate := _dict.get('rate')) is not None:
            args['rate'] = rate
        else:
            raise ValueError(
                'Required property \'rate\' not present in SpeechModel JSON')
        if (url := _dict.get('url')) is not None:
            args['url'] = url
        else:
            raise ValueError(
                'Required property \'url\' not present in SpeechModel JSON')
        if (supported_features := _dict.get('supported_features')) is not None:
            args['supported_features'] = SupportedFeatures.from_dict(
                supported_features)
        else:
            raise ValueError(
                'Required property \'supported_features\' not present in SpeechModel JSON'
            )
        if (description := _dict.get('description')) is not None:
            args['description'] = description
        else:
            raise ValueError(
                'Required property \'description\' not present in SpeechModel JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a SpeechModel object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'name') and self.name is not None:
            _dict['name'] = self.name
        if hasattr(self, 'language') and self.language is not None:
            _dict['language'] = self.language
        if hasattr(self, 'rate') and self.rate is not None:
            _dict['rate'] = self.rate
        if hasattr(self, 'url') and self.url is not None:
            _dict['url'] = self.url
        if hasattr(
                self,
                'supported_features') and self.supported_features is not None:
            if isinstance(self.supported_features, dict):
                _dict['supported_features'] = self.supported_features
            else:
                _dict['supported_features'] = self.supported_features.to_dict()
        if hasattr(self, 'description') and self.description is not None:
            _dict['description'] = self.description
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this SpeechModel object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'SpeechModel') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'SpeechModel') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class SpeechModels:
    """
    Information about the available language models.

    :param List[SpeechModel] models: An array of `SpeechModel` objects that provides
          information about each available model.
    """

    def __init__(
        self,
        models: List['SpeechModel'],
    ) -> None:
        """
        Initialize a SpeechModels object.

        :param List[SpeechModel] models: An array of `SpeechModel` objects that
               provides information about each available model.
        """
        self.models = models

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'SpeechModels':
        """Initialize a SpeechModels object from a json dictionary."""
        args = {}
        if (models := _dict.get('models')) is not None:
            args['models'] = [SpeechModel.from_dict(v) for v in models]
        else:
            raise ValueError(
                'Required property \'models\' not present in SpeechModels JSON')
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a SpeechModels object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'models') and self.models is not None:
            models_list = []
            for v in self.models:
                if isinstance(v, dict):
                    models_list.append(v)
                else:
                    models_list.append(v.to_dict())
            _dict['models'] = models_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this SpeechModels object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'SpeechModels') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'SpeechModels') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class SpeechRecognitionAlternative:
    """
    An alternative transcript from speech recognition results.

    :param str transcript: A transcription of the audio.
    :param float confidence: (optional) A score that indicates the service's
          confidence in the transcript in the range of 0.0 to 1.0. The service returns a
          confidence score only for the best alternative and only with results marked as
          final.
    :param List[str] timestamps: (optional) Time alignments for each word from the
          transcript as a list of lists. Each inner list consists of three elements: the
          word followed by its start and end time in seconds, for example:
          `[["hello",0.0,1.2],["world",1.2,2.5]]`. Timestamps are returned only for the
          best alternative.
    :param List[str] word_confidence: (optional) A confidence score for each word of
          the transcript as a list of lists. Each inner list consists of two elements: the
          word and its confidence score in the range of 0.0 to 1.0, for example:
          `[["hello",0.95],["world",0.86]]`. Confidence scores are returned only for the
          best alternative and only with results marked as final.
    """

    def __init__(
        self,
        transcript: str,
        *,
        confidence: Optional[float] = None,
        timestamps: Optional[List[str]] = None,
        word_confidence: Optional[List[str]] = None,
    ) -> None:
        """
        Initialize a SpeechRecognitionAlternative object.

        :param str transcript: A transcription of the audio.
        :param float confidence: (optional) A score that indicates the service's
               confidence in the transcript in the range of 0.0 to 1.0. The service
               returns a confidence score only for the best alternative and only with
               results marked as final.
        :param List[str] timestamps: (optional) Time alignments for each word from
               the transcript as a list of lists. Each inner list consists of three
               elements: the word followed by its start and end time in seconds, for
               example: `[["hello",0.0,1.2],["world",1.2,2.5]]`. Timestamps are returned
               only for the best alternative.
        :param List[str] word_confidence: (optional) A confidence score for each
               word of the transcript as a list of lists. Each inner list consists of two
               elements: the word and its confidence score in the range of 0.0 to 1.0, for
               example: `[["hello",0.95],["world",0.86]]`. Confidence scores are returned
               only for the best alternative and only with results marked as final.
        """
        self.transcript = transcript
        self.confidence = confidence
        self.timestamps = timestamps
        self.word_confidence = word_confidence

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'SpeechRecognitionAlternative':
        """Initialize a SpeechRecognitionAlternative object from a json dictionary."""
        args = {}
        if (transcript := _dict.get('transcript')) is not None:
            args['transcript'] = transcript
        else:
            raise ValueError(
                'Required property \'transcript\' not present in SpeechRecognitionAlternative JSON'
            )
        if (confidence := _dict.get('confidence')) is not None:
            args['confidence'] = confidence
        if (timestamps := _dict.get('timestamps')) is not None:
            args['timestamps'] = timestamps
        if (word_confidence := _dict.get('word_confidence')) is not None:
            args['word_confidence'] = word_confidence
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a SpeechRecognitionAlternative object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'transcript') and self.transcript is not None:
            _dict['transcript'] = self.transcript
        if hasattr(self, 'confidence') and self.confidence is not None:
            _dict['confidence'] = self.confidence
        if hasattr(self, 'timestamps') and self.timestamps is not None:
            _dict['timestamps'] = self.timestamps
        if hasattr(self,
                   'word_confidence') and self.word_confidence is not None:
            _dict['word_confidence'] = self.word_confidence
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this SpeechRecognitionAlternative object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'SpeechRecognitionAlternative') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'SpeechRecognitionAlternative') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class SpeechRecognitionResult:
    """
    Component results for a speech recognition request.

    :param bool final: An indication of whether the transcription results are final:
          * If `true`, the results for this utterance are final. They are guaranteed not
          to be updated further.
          * If `false`, the results are interim. They can be updated with further interim
          results until final results are eventually sent.
          **Note:** Because `final` is a reserved word in Java and Swift, the field is
          renamed `xFinal` in Java and is escaped with back quotes in Swift.
    :param List[SpeechRecognitionAlternative] alternatives: An array of alternative
          transcripts. The `alternatives` array can include additional requested output
          such as word confidence or timestamps.
    :param dict keywords_result: (optional) A dictionary (or associative array)
          whose keys are the strings specified for `keywords` if both that parameter and
          `keywords_threshold` are specified. The value for each key is an array of
          matches spotted in the audio for that keyword. Each match is described by a
          `KeywordResult` object. A keyword for which no matches are found is omitted from
          the dictionary. The dictionary is omitted entirely if no matches are found for
          any keywords.
    :param List[WordAlternativeResults] word_alternatives: (optional) An array of
          alternative hypotheses found for words of the input audio if a
          `word_alternatives_threshold` is specified.
    :param str end_of_utterance: (optional) If the `split_transcript_at_phrase_end`
          parameter is `true`, describes the reason for the split:
          * `end_of_data` - The end of the input audio stream.
          * `full_stop` - A full semantic stop, such as for the conclusion of a
          grammatical sentence. The insertion of splits is influenced by the base language
          model and biased by custom language models and grammars.
          * `reset` - The amount of audio that is currently being processed exceeds the
          two-minute maximum. The service splits the transcript to avoid excessive memory
          use.
          * `silence` - A pause or silence that is at least as long as the pause interval.
    """

    def __init__(
        self,
        final: bool,
        alternatives: List['SpeechRecognitionAlternative'],
        *,
        keywords_result: Optional[dict] = None,
        word_alternatives: Optional[List['WordAlternativeResults']] = None,
        end_of_utterance: Optional[str] = None,
    ) -> None:
        """
        Initialize a SpeechRecognitionResult object.

        :param bool final: An indication of whether the transcription results are
               final:
               * If `true`, the results for this utterance are final. They are guaranteed
               not to be updated further.
               * If `false`, the results are interim. They can be updated with further
               interim results until final results are eventually sent.
               **Note:** Because `final` is a reserved word in Java and Swift, the field
               is renamed `xFinal` in Java and is escaped with back quotes in Swift.
        :param List[SpeechRecognitionAlternative] alternatives: An array of
               alternative transcripts. The `alternatives` array can include additional
               requested output such as word confidence or timestamps.
        :param dict keywords_result: (optional) A dictionary (or associative array)
               whose keys are the strings specified for `keywords` if both that parameter
               and `keywords_threshold` are specified. The value for each key is an array
               of matches spotted in the audio for that keyword. Each match is described
               by a `KeywordResult` object. A keyword for which no matches are found is
               omitted from the dictionary. The dictionary is omitted entirely if no
               matches are found for any keywords.
        :param List[WordAlternativeResults] word_alternatives: (optional) An array
               of alternative hypotheses found for words of the input audio if a
               `word_alternatives_threshold` is specified.
        :param str end_of_utterance: (optional) If the
               `split_transcript_at_phrase_end` parameter is `true`, describes the reason
               for the split:
               * `end_of_data` - The end of the input audio stream.
               * `full_stop` - A full semantic stop, such as for the conclusion of a
               grammatical sentence. The insertion of splits is influenced by the base
               language model and biased by custom language models and grammars.
               * `reset` - The amount of audio that is currently being processed exceeds
               the two-minute maximum. The service splits the transcript to avoid
               excessive memory use.
               * `silence` - A pause or silence that is at least as long as the pause
               interval.
        """
        self.final = final
        self.alternatives = alternatives
        self.keywords_result = keywords_result
        self.word_alternatives = word_alternatives
        self.end_of_utterance = end_of_utterance

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'SpeechRecognitionResult':
        """Initialize a SpeechRecognitionResult object from a json dictionary."""
        args = {}
        if (final := _dict.get('final')) is not None:
            args['final'] = final
        else:
            raise ValueError(
                'Required property \'final\' not present in SpeechRecognitionResult JSON'
            )
        if (alternatives := _dict.get('alternatives')) is not None:
            args['alternatives'] = [
                SpeechRecognitionAlternative.from_dict(v) for v in alternatives
            ]
        else:
            raise ValueError(
                'Required property \'alternatives\' not present in SpeechRecognitionResult JSON'
            )
        if (keywords_result := _dict.get('keywords_result')) is not None:
            args['keywords_result'] = keywords_result
        if (word_alternatives := _dict.get('word_alternatives')) is not None:
            args['word_alternatives'] = [
                WordAlternativeResults.from_dict(v) for v in word_alternatives
            ]
        if (end_of_utterance := _dict.get('end_of_utterance')) is not None:
            args['end_of_utterance'] = end_of_utterance
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a SpeechRecognitionResult object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'final') and self.final is not None:
            _dict['final'] = self.final
        if hasattr(self, 'alternatives') and self.alternatives is not None:
            alternatives_list = []
            for v in self.alternatives:
                if isinstance(v, dict):
                    alternatives_list.append(v)
                else:
                    alternatives_list.append(v.to_dict())
            _dict['alternatives'] = alternatives_list
        if hasattr(self,
                   'keywords_result') and self.keywords_result is not None:
            _dict['keywords_result'] = self.keywords_result
        if hasattr(self,
                   'word_alternatives') and self.word_alternatives is not None:
            word_alternatives_list = []
            for v in self.word_alternatives:
                if isinstance(v, dict):
                    word_alternatives_list.append(v)
                else:
                    word_alternatives_list.append(v.to_dict())
            _dict['word_alternatives'] = word_alternatives_list
        if hasattr(self,
                   'end_of_utterance') and self.end_of_utterance is not None:
            _dict['end_of_utterance'] = self.end_of_utterance
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this SpeechRecognitionResult object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'SpeechRecognitionResult') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'SpeechRecognitionResult') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class EndOfUtteranceEnum(str, Enum):
        """
        If the `split_transcript_at_phrase_end` parameter is `true`, describes the reason
        for the split:
        * `end_of_data` - The end of the input audio stream.
        * `full_stop` - A full semantic stop, such as for the conclusion of a grammatical
        sentence. The insertion of splits is influenced by the base language model and
        biased by custom language models and grammars.
        * `reset` - The amount of audio that is currently being processed exceeds the
        two-minute maximum. The service splits the transcript to avoid excessive memory
        use.
        * `silence` - A pause or silence that is at least as long as the pause interval.
        """

        END_OF_DATA = 'end_of_data'
        FULL_STOP = 'full_stop'
        RESET = 'reset'
        SILENCE = 'silence'


class SpeechRecognitionResults:
    """
    The complete results for a speech recognition request.

    :param List[SpeechRecognitionResult] results: (optional) An array of
          `SpeechRecognitionResult` objects that can include interim and final results
          (interim results are returned only if supported by the method). Final results
          are guaranteed not to change; interim results might be replaced by further
          interim results and eventually final results.
          For the HTTP interfaces, all results arrive at the same time. For the WebSocket
          interface, results can be sent as multiple separate responses. The service
          periodically sends updates to the results list. The `result_index` is
          incremented to the lowest index in the array that has changed for new results.
          For more information, see [Understanding speech recognition
          results](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-basic-response).
    :param int result_index: (optional) An index that indicates a change point in
          the `results` array. The service increments the index for additional results
          that it sends for new audio for the same request. All results with the same
          index are delivered at the same time. The same index can include multiple final
          results that are delivered with the same response.
    :param List[SpeakerLabelsResult] speaker_labels: (optional) An array of
          `SpeakerLabelsResult` objects that identifies which words were spoken by which
          speakers in a multi-person exchange. The array is returned only if the
          `speaker_labels` parameter is `true`. When interim results are also requested
          for methods that support them, it is possible for a `SpeechRecognitionResults`
          object to include only the `speaker_labels` field.
    :param ProcessingMetrics processing_metrics: (optional) If processing metrics
          are requested, information about the service's processing of the input audio.
          Processing metrics are not available with the synchronous [Recognize
          audio](#recognize) method.
    :param AudioMetrics audio_metrics: (optional) If audio metrics are requested,
          information about the signal characteristics of the input audio.
    :param List[str] warnings: (optional) An array of warning messages associated
          with the request:
          * Warnings for invalid parameters or fields can include a descriptive message
          and a list of invalid argument strings, for example, `"Unknown arguments:"` or
          `"Unknown url query arguments:"` followed by a list of the form
          `"{invalid_arg_1}, {invalid_arg_2}."` (If you use the `character_insertion_bias`
          parameter with a previous-generation model, the warning message refers to the
          parameter as `lambdaBias`.)
          * The following warning is returned if the request passes a custom model that is
          based on an older version of a base model for which an updated version is
          available: `"Using previous version of base model, because your custom model has
          been built with it. Please note that this version will be supported only for a
          limited time. Consider updating your custom model to the new base model. If you
          do not do that you will be automatically switched to base model when you used
          the non-updated custom model."`
          In both cases, the request succeeds despite the warnings.
    """

    def __init__(
        self,
        *,
        results: Optional[List['SpeechRecognitionResult']] = None,
        result_index: Optional[int] = None,
        speaker_labels: Optional[List['SpeakerLabelsResult']] = None,
        processing_metrics: Optional['ProcessingMetrics'] = None,
        audio_metrics: Optional['AudioMetrics'] = None,
        warnings: Optional[List[str]] = None,
    ) -> None:
        """
        Initialize a SpeechRecognitionResults object.

        :param List[SpeechRecognitionResult] results: (optional) An array of
               `SpeechRecognitionResult` objects that can include interim and final
               results (interim results are returned only if supported by the method).
               Final results are guaranteed not to change; interim results might be
               replaced by further interim results and eventually final results.
               For the HTTP interfaces, all results arrive at the same time. For the
               WebSocket interface, results can be sent as multiple separate responses.
               The service periodically sends updates to the results list. The
               `result_index` is incremented to the lowest index in the array that has
               changed for new results.
               For more information, see [Understanding speech recognition
               results](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-basic-response).
        :param int result_index: (optional) An index that indicates a change point
               in the `results` array. The service increments the index for additional
               results that it sends for new audio for the same request. All results with
               the same index are delivered at the same time. The same index can include
               multiple final results that are delivered with the same response.
        :param List[SpeakerLabelsResult] speaker_labels: (optional) An array of
               `SpeakerLabelsResult` objects that identifies which words were spoken by
               which speakers in a multi-person exchange. The array is returned only if
               the `speaker_labels` parameter is `true`. When interim results are also
               requested for methods that support them, it is possible for a
               `SpeechRecognitionResults` object to include only the `speaker_labels`
               field.
        :param ProcessingMetrics processing_metrics: (optional) If processing
               metrics are requested, information about the service's processing of the
               input audio. Processing metrics are not available with the synchronous
               [Recognize audio](#recognize) method.
        :param AudioMetrics audio_metrics: (optional) If audio metrics are
               requested, information about the signal characteristics of the input audio.
        :param List[str] warnings: (optional) An array of warning messages
               associated with the request:
               * Warnings for invalid parameters or fields can include a descriptive
               message and a list of invalid argument strings, for example, `"Unknown
               arguments:"` or `"Unknown url query arguments:"` followed by a list of the
               form `"{invalid_arg_1}, {invalid_arg_2}."` (If you use the
               `character_insertion_bias` parameter with a previous-generation model, the
               warning message refers to the parameter as `lambdaBias`.)
               * The following warning is returned if the request passes a custom model
               that is based on an older version of a base model for which an updated
               version is available: `"Using previous version of base model, because your
               custom model has been built with it. Please note that this version will be
               supported only for a limited time. Consider updating your custom model to
               the new base model. If you do not do that you will be automatically
               switched to base model when you used the non-updated custom model."`
               In both cases, the request succeeds despite the warnings.
        """
        self.results = results
        self.result_index = result_index
        self.speaker_labels = speaker_labels
        self.processing_metrics = processing_metrics
        self.audio_metrics = audio_metrics
        self.warnings = warnings

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'SpeechRecognitionResults':
        """Initialize a SpeechRecognitionResults object from a json dictionary."""
        args = {}
        if (results := _dict.get('results')) is not None:
            args['results'] = [
                SpeechRecognitionResult.from_dict(v) for v in results
            ]
        if (result_index := _dict.get('result_index')) is not None:
            args['result_index'] = result_index
        if (speaker_labels := _dict.get('speaker_labels')) is not None:
            args['speaker_labels'] = [
                SpeakerLabelsResult.from_dict(v) for v in speaker_labels
            ]
        if (processing_metrics := _dict.get('processing_metrics')) is not None:
            args['processing_metrics'] = ProcessingMetrics.from_dict(
                processing_metrics)
        if (audio_metrics := _dict.get('audio_metrics')) is not None:
            args['audio_metrics'] = AudioMetrics.from_dict(audio_metrics)
        if (warnings := _dict.get('warnings')) is not None:
            args['warnings'] = warnings
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a SpeechRecognitionResults object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'results') and self.results is not None:
            results_list = []
            for v in self.results:
                if isinstance(v, dict):
                    results_list.append(v)
                else:
                    results_list.append(v.to_dict())
            _dict['results'] = results_list
        if hasattr(self, 'result_index') and self.result_index is not None:
            _dict['result_index'] = self.result_index
        if hasattr(self, 'speaker_labels') and self.speaker_labels is not None:
            speaker_labels_list = []
            for v in self.speaker_labels:
                if isinstance(v, dict):
                    speaker_labels_list.append(v)
                else:
                    speaker_labels_list.append(v.to_dict())
            _dict['speaker_labels'] = speaker_labels_list
        if hasattr(
                self,
                'processing_metrics') and self.processing_metrics is not None:
            if isinstance(self.processing_metrics, dict):
                _dict['processing_metrics'] = self.processing_metrics
            else:
                _dict['processing_metrics'] = self.processing_metrics.to_dict()
        if hasattr(self, 'audio_metrics') and self.audio_metrics is not None:
            if isinstance(self.audio_metrics, dict):
                _dict['audio_metrics'] = self.audio_metrics
            else:
                _dict['audio_metrics'] = self.audio_metrics.to_dict()
        if hasattr(self, 'warnings') and self.warnings is not None:
            _dict['warnings'] = self.warnings
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this SpeechRecognitionResults object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'SpeechRecognitionResults') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'SpeechRecognitionResults') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class SupportedFeatures:
    """
    Indicates whether select service features are supported with the model.

    :param bool custom_language_model: Indicates whether the customization interface
          can be used to create a custom language model based on the language model.
    :param bool custom_acoustic_model: Indicates whether the customization interface
          can be used to create a custom acoustic model based on the language model.
    :param bool speaker_labels: Indicates whether the `speaker_labels` parameter can
          be used with the language model.
          **Note:** The field returns `true` for all models. However, speaker labels are
          supported for use only with the following languages and models:
          * _For previous-generation models,_ the parameter can be used with Australian
          English, US English, German, Japanese, Korean, and Spanish (both broadband and
          narrowband models) and UK English (narrowband model) transcription only.
          * _For next-generation models,_ the parameter can be used with Czech, English
          (Australian, Indian, UK, and US), German, Japanese, Korean, and Spanish
          transcription only.
          Speaker labels are not supported for use with any other languages or models.
    :param bool low_latency: (optional) Indicates whether the `low_latency`
          parameter can be used with a next-generation language model. The field is
          returned only for next-generation models. Previous-generation models do not
          support the `low_latency` parameter.
    """

    def __init__(
        self,
        custom_language_model: bool,
        custom_acoustic_model: bool,
        speaker_labels: bool,
        *,
        low_latency: Optional[bool] = None,
    ) -> None:
        """
        Initialize a SupportedFeatures object.

        :param bool custom_language_model: Indicates whether the customization
               interface can be used to create a custom language model based on the
               language model.
        :param bool custom_acoustic_model: Indicates whether the customization
               interface can be used to create a custom acoustic model based on the
               language model.
        :param bool speaker_labels: Indicates whether the `speaker_labels`
               parameter can be used with the language model.
               **Note:** The field returns `true` for all models. However, speaker labels
               are supported for use only with the following languages and models:
               * _For previous-generation models,_ the parameter can be used with
               Australian English, US English, German, Japanese, Korean, and Spanish (both
               broadband and narrowband models) and UK English (narrowband model)
               transcription only.
               * _For next-generation models,_ the parameter can be used with Czech,
               English (Australian, Indian, UK, and US), German, Japanese, Korean, and
               Spanish transcription only.
               Speaker labels are not supported for use with any other languages or
               models.
        :param bool low_latency: (optional) Indicates whether the `low_latency`
               parameter can be used with a next-generation language model. The field is
               returned only for next-generation models. Previous-generation models do not
               support the `low_latency` parameter.
        """
        self.custom_language_model = custom_language_model
        self.custom_acoustic_model = custom_acoustic_model
        self.speaker_labels = speaker_labels
        self.low_latency = low_latency

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'SupportedFeatures':
        """Initialize a SupportedFeatures object from a json dictionary."""
        args = {}
        if (custom_language_model :=
                _dict.get('custom_language_model')) is not None:
            args['custom_language_model'] = custom_language_model
        else:
            raise ValueError(
                'Required property \'custom_language_model\' not present in SupportedFeatures JSON'
            )
        if (custom_acoustic_model :=
                _dict.get('custom_acoustic_model')) is not None:
            args['custom_acoustic_model'] = custom_acoustic_model
        else:
            raise ValueError(
                'Required property \'custom_acoustic_model\' not present in SupportedFeatures JSON'
            )
        if (speaker_labels := _dict.get('speaker_labels')) is not None:
            args['speaker_labels'] = speaker_labels
        else:
            raise ValueError(
                'Required property \'speaker_labels\' not present in SupportedFeatures JSON'
            )
        if (low_latency := _dict.get('low_latency')) is not None:
            args['low_latency'] = low_latency
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a SupportedFeatures object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'custom_language_model'
                  ) and self.custom_language_model is not None:
            _dict['custom_language_model'] = self.custom_language_model
        if hasattr(self, 'custom_acoustic_model'
                  ) and self.custom_acoustic_model is not None:
            _dict['custom_acoustic_model'] = self.custom_acoustic_model
        if hasattr(self, 'speaker_labels') and self.speaker_labels is not None:
            _dict['speaker_labels'] = self.speaker_labels
        if hasattr(self, 'low_latency') and self.low_latency is not None:
            _dict['low_latency'] = self.low_latency
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this SupportedFeatures object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'SupportedFeatures') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'SupportedFeatures') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class TrainingResponse:
    """
    The response from training of a custom language or custom acoustic model.

    :param List[TrainingWarning] warnings: (optional) An array of `TrainingWarning`
          objects that lists any invalid resources contained in the custom model. For
          custom language models, invalid resources are grouped and identified by type of
          resource. The method can return warnings only if the `strict` parameter is set
          to `false`.
    """

    def __init__(
        self,
        *,
        warnings: Optional[List['TrainingWarning']] = None,
    ) -> None:
        """
        Initialize a TrainingResponse object.

        :param List[TrainingWarning] warnings: (optional) An array of
               `TrainingWarning` objects that lists any invalid resources contained in the
               custom model. For custom language models, invalid resources are grouped and
               identified by type of resource. The method can return warnings only if the
               `strict` parameter is set to `false`.
        """
        self.warnings = warnings

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'TrainingResponse':
        """Initialize a TrainingResponse object from a json dictionary."""
        args = {}
        if (warnings := _dict.get('warnings')) is not None:
            args['warnings'] = [TrainingWarning.from_dict(v) for v in warnings]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a TrainingResponse object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'warnings') and self.warnings is not None:
            warnings_list = []
            for v in self.warnings:
                if isinstance(v, dict):
                    warnings_list.append(v)
                else:
                    warnings_list.append(v.to_dict())
            _dict['warnings'] = warnings_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this TrainingResponse object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'TrainingResponse') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'TrainingResponse') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class TrainingWarning:
    """
    A warning from training of a custom language or custom acoustic model.

    :param str code: An identifier for the type of invalid resources listed in the
          `description` field.
    :param str message: A warning message that lists the invalid resources that are
          excluded from the custom model's training. The message has the following format:
          `Analysis of the following {resource_type} has not completed successfully:
          [{resource_names}]. They will be excluded from custom {model_type} model
          training.`.
    """

    def __init__(
        self,
        code: str,
        message: str,
    ) -> None:
        """
        Initialize a TrainingWarning object.

        :param str code: An identifier for the type of invalid resources listed in
               the `description` field.
        :param str message: A warning message that lists the invalid resources that
               are excluded from the custom model's training. The message has the
               following format: `Analysis of the following {resource_type} has not
               completed successfully: [{resource_names}]. They will be excluded from
               custom {model_type} model training.`.
        """
        self.code = code
        self.message = message

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'TrainingWarning':
        """Initialize a TrainingWarning object from a json dictionary."""
        args = {}
        if (code := _dict.get('code')) is not None:
            args['code'] = code
        else:
            raise ValueError(
                'Required property \'code\' not present in TrainingWarning JSON'
            )
        if (message := _dict.get('message')) is not None:
            args['message'] = message
        else:
            raise ValueError(
                'Required property \'message\' not present in TrainingWarning JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a TrainingWarning object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'code') and self.code is not None:
            _dict['code'] = self.code
        if hasattr(self, 'message') and self.message is not None:
            _dict['message'] = self.message
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this TrainingWarning object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'TrainingWarning') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'TrainingWarning') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other

    class CodeEnum(str, Enum):
        """
        An identifier for the type of invalid resources listed in the `description` field.
        """

        INVALID_AUDIO_FILES = 'invalid_audio_files'
        INVALID_CORPUS_FILES = 'invalid_corpus_files'
        INVALID_GRAMMAR_FILES = 'invalid_grammar_files'
        INVALID_WORDS = 'invalid_words'


class Word:
    """
    Information about a word from a custom language model.

    :param str word: A word from the custom model's words resource. The spelling of
          the word is used to train the model.
    :param List[str] mapping_only: (optional) (Optional) Parameter for custom words.
          You can use the 'mapping_only' key in custom words as a form of post processing.
          A boolean value that indicates whether the added word should be used to
          fine-tune the mode for selected next-gen models. This field appears in the
          response body only when it's 'For a custom model that is based on a
          previous-generation model', the mapping_only field is populated with the value
          set by the user, but would not be used.
    :param List[str] sounds_like: An array of as many as five pronunciations for the
          word.
          * _For a custom model that is based on a previous-generation model_, in addition
          to sounds-like pronunciations that were added by a user, the array can include a
          sounds-like pronunciation that is automatically generated by the service if none
          is provided when the word is added to the custom model.
          * _For a custom model that is based on a next-generation model_, the array can
          include only sounds-like pronunciations that were added by a user.
    :param str display_as: The spelling of the word that the service uses to display
          the word in a transcript.
          * _For a custom model that is based on a previous-generation model_, the field
          can contain an empty string if no display-as value is provided for a word that
          exists in the service's base vocabulary. In this case, the word is displayed as
          it is spelled.
          * _For a custom model that is based on a next-generation model_, the service
          uses the spelling of the word as the value of the display-as field when the word
          is added to the model.
    :param int count: _For a custom model that is based on a previous-generation
          model_, a sum of the number of times the word is found across all corpora and
          grammars. For example, if the word occurs five times in one corpus and seven
          times in another, its count is `12`. If you add a custom word to a model before
          it is added by any corpora or grammars, the count begins at `1`; if the word is
          added from a corpus or grammar first and later modified, the count reflects only
          the number of times it is found in corpora and grammars.
          _For a custom model that is based on a next-generation model_, the `count` field
          for any word is always `1`.
    :param List[str] source: An array of sources that describes how the word was
          added to the custom model's words resource.
          * _For a custom model that is based on previous-generation model,_ the field
          includes the name of each corpus and grammar from which the service extracted
          the word. For OOV that are added by multiple corpora or grammars, the names of
          all corpora and grammars are listed. If you modified or added the word directly,
          the field includes the string `user`.
          * _For a custom model that is based on a next-generation model,_ this field
          shows only `user` for custom words that were added directly to the custom model.
          Words from corpora and grammars are not added to the words resource for custom
          models that are based on next-generation models.
    :param List[WordError] error: (optional) If the service discovered one or more
          problems that you need to correct for the word's definition, an array that
          describes each of the errors.
    """

    def __init__(
        self,
        word: str,
        sounds_like: List[str],
        display_as: str,
        count: int,
        source: List[str],
        *,
        mapping_only: Optional[List[str]] = None,
        error: Optional[List['WordError']] = None,
    ) -> None:
        """
        Initialize a Word object.

        :param str word: A word from the custom model's words resource. The
               spelling of the word is used to train the model.
        :param List[str] sounds_like: An array of as many as five pronunciations
               for the word.
               * _For a custom model that is based on a previous-generation model_, in
               addition to sounds-like pronunciations that were added by a user, the array
               can include a sounds-like pronunciation that is automatically generated by
               the service if none is provided when the word is added to the custom model.
               * _For a custom model that is based on a next-generation model_, the array
               can include only sounds-like pronunciations that were added by a user.
        :param str display_as: The spelling of the word that the service uses to
               display the word in a transcript.
               * _For a custom model that is based on a previous-generation model_, the
               field can contain an empty string if no display-as value is provided for a
               word that exists in the service's base vocabulary. In this case, the word
               is displayed as it is spelled.
               * _For a custom model that is based on a next-generation model_, the
               service uses the spelling of the word as the value of the display-as field
               when the word is added to the model.
        :param int count: _For a custom model that is based on a
               previous-generation model_, a sum of the number of times the word is found
               across all corpora and grammars. For example, if the word occurs five times
               in one corpus and seven times in another, its count is `12`. If you add a
               custom word to a model before it is added by any corpora or grammars, the
               count begins at `1`; if the word is added from a corpus or grammar first
               and later modified, the count reflects only the number of times it is found
               in corpora and grammars.
               _For a custom model that is based on a next-generation model_, the `count`
               field for any word is always `1`.
        :param List[str] source: An array of sources that describes how the word
               was added to the custom model's words resource.
               * _For a custom model that is based on previous-generation model,_ the
               field includes the name of each corpus and grammar from which the service
               extracted the word. For OOV that are added by multiple corpora or grammars,
               the names of all corpora and grammars are listed. If you modified or added
               the word directly, the field includes the string `user`.
               * _For a custom model that is based on a next-generation model,_ this field
               shows only `user` for custom words that were added directly to the custom
               model. Words from corpora and grammars are not added to the words resource
               for custom models that are based on next-generation models.
        :param List[str] mapping_only: (optional) (Optional) Parameter for custom
               words. You can use the 'mapping_only' key in custom words as a form of post
               processing. A boolean value that indicates whether the added word should be
               used to fine-tune the mode for selected next-gen models. This field appears
               in the response body only when it's 'For a custom model that is based on a
               previous-generation model', the mapping_only field is populated with the
               value set by the user, but would not be used.
        :param List[WordError] error: (optional) If the service discovered one or
               more problems that you need to correct for the word's definition, an array
               that describes each of the errors.
        """
        self.word = word
        self.mapping_only = mapping_only
        self.sounds_like = sounds_like
        self.display_as = display_as
        self.count = count
        self.source = source
        self.error = error

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'Word':
        """Initialize a Word object from a json dictionary."""
        args = {}
        if (word := _dict.get('word')) is not None:
            args['word'] = word
        else:
            raise ValueError(
                'Required property \'word\' not present in Word JSON')
        if (mapping_only := _dict.get('mapping_only')) is not None:
            args['mapping_only'] = mapping_only
        if (sounds_like := _dict.get('sounds_like')) is not None:
            args['sounds_like'] = sounds_like
        else:
            raise ValueError(
                'Required property \'sounds_like\' not present in Word JSON')
        if (display_as := _dict.get('display_as')) is not None:
            args['display_as'] = display_as
        else:
            raise ValueError(
                'Required property \'display_as\' not present in Word JSON')
        if (count := _dict.get('count')) is not None:
            args['count'] = count
        else:
            raise ValueError(
                'Required property \'count\' not present in Word JSON')
        if (source := _dict.get('source')) is not None:
            args['source'] = source
        else:
            raise ValueError(
                'Required property \'source\' not present in Word JSON')
        if (error := _dict.get('error')) is not None:
            args['error'] = [WordError.from_dict(v) for v in error]
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a Word object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'word') and self.word is not None:
            _dict['word'] = self.word
        if hasattr(self, 'mapping_only') and self.mapping_only is not None:
            _dict['mapping_only'] = self.mapping_only
        if hasattr(self, 'sounds_like') and self.sounds_like is not None:
            _dict['sounds_like'] = self.sounds_like
        if hasattr(self, 'display_as') and self.display_as is not None:
            _dict['display_as'] = self.display_as
        if hasattr(self, 'count') and self.count is not None:
            _dict['count'] = self.count
        if hasattr(self, 'source') and self.source is not None:
            _dict['source'] = self.source
        if hasattr(self, 'error') and self.error is not None:
            error_list = []
            for v in self.error:
                if isinstance(v, dict):
                    error_list.append(v)
                else:
                    error_list.append(v.to_dict())
            _dict['error'] = error_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this Word object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'Word') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'Word') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class WordAlternativeResult:
    """
    An alternative hypothesis for a word from speech recognition results.

    :param float confidence: A confidence score for the word alternative hypothesis
          in the range of 0.0 to 1.0.
    :param str word: An alternative hypothesis for a word from the input audio.
    """

    def __init__(
        self,
        confidence: float,
        word: str,
    ) -> None:
        """
        Initialize a WordAlternativeResult object.

        :param float confidence: A confidence score for the word alternative
               hypothesis in the range of 0.0 to 1.0.
        :param str word: An alternative hypothesis for a word from the input audio.
        """
        self.confidence = confidence
        self.word = word

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'WordAlternativeResult':
        """Initialize a WordAlternativeResult object from a json dictionary."""
        args = {}
        if (confidence := _dict.get('confidence')) is not None:
            args['confidence'] = confidence
        else:
            raise ValueError(
                'Required property \'confidence\' not present in WordAlternativeResult JSON'
            )
        if (word := _dict.get('word')) is not None:
            args['word'] = word
        else:
            raise ValueError(
                'Required property \'word\' not present in WordAlternativeResult JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a WordAlternativeResult object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'confidence') and self.confidence is not None:
            _dict['confidence'] = self.confidence
        if hasattr(self, 'word') and self.word is not None:
            _dict['word'] = self.word
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this WordAlternativeResult object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'WordAlternativeResult') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'WordAlternativeResult') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class WordAlternativeResults:
    """
    Information about alternative hypotheses for words from speech recognition results.

    :param float start_time: The start time in seconds of the word from the input
          audio that corresponds to the word alternatives.
    :param float end_time: The end time in seconds of the word from the input audio
          that corresponds to the word alternatives.
    :param List[WordAlternativeResult] alternatives: An array of alternative
          hypotheses for a word from the input audio.
    """

    def __init__(
        self,
        start_time: float,
        end_time: float,
        alternatives: List['WordAlternativeResult'],
    ) -> None:
        """
        Initialize a WordAlternativeResults object.

        :param float start_time: The start time in seconds of the word from the
               input audio that corresponds to the word alternatives.
        :param float end_time: The end time in seconds of the word from the input
               audio that corresponds to the word alternatives.
        :param List[WordAlternativeResult] alternatives: An array of alternative
               hypotheses for a word from the input audio.
        """
        self.start_time = start_time
        self.end_time = end_time
        self.alternatives = alternatives

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'WordAlternativeResults':
        """Initialize a WordAlternativeResults object from a json dictionary."""
        args = {}
        if (start_time := _dict.get('start_time')) is not None:
            args['start_time'] = start_time
        else:
            raise ValueError(
                'Required property \'start_time\' not present in WordAlternativeResults JSON'
            )
        if (end_time := _dict.get('end_time')) is not None:
            args['end_time'] = end_time
        else:
            raise ValueError(
                'Required property \'end_time\' not present in WordAlternativeResults JSON'
            )
        if (alternatives := _dict.get('alternatives')) is not None:
            args['alternatives'] = [
                WordAlternativeResult.from_dict(v) for v in alternatives
            ]
        else:
            raise ValueError(
                'Required property \'alternatives\' not present in WordAlternativeResults JSON'
            )
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a WordAlternativeResults object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'start_time') and self.start_time is not None:
            _dict['start_time'] = self.start_time
        if hasattr(self, 'end_time') and self.end_time is not None:
            _dict['end_time'] = self.end_time
        if hasattr(self, 'alternatives') and self.alternatives is not None:
            alternatives_list = []
            for v in self.alternatives:
                if isinstance(v, dict):
                    alternatives_list.append(v)
                else:
                    alternatives_list.append(v.to_dict())
            _dict['alternatives'] = alternatives_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this WordAlternativeResults object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'WordAlternativeResults') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'WordAlternativeResults') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class WordError:
    """
    An error associated with a word from a custom language model.

    :param str element: A key-value pair that describes an error associated with the
          definition of a word in the words resource. The pair has the format `"element":
          "message"`, where `element` is the aspect of the definition that caused the
          problem and `message` describes the problem. The following example describes a
          problem with one of the word's sounds-like definitions: `"{sounds_like_string}":
          "Numbers are not allowed in sounds-like. You can try for example
          '{suggested_string}'."`.
    """

    def __init__(
        self,
        element: str,
    ) -> None:
        """
        Initialize a WordError object.

        :param str element: A key-value pair that describes an error associated
               with the definition of a word in the words resource. The pair has the
               format `"element": "message"`, where `element` is the aspect of the
               definition that caused the problem and `message` describes the problem. The
               following example describes a problem with one of the word's sounds-like
               definitions: `"{sounds_like_string}": "Numbers are not allowed in
               sounds-like. You can try for example '{suggested_string}'."`.
        """
        self.element = element

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'WordError':
        """Initialize a WordError object from a json dictionary."""
        args = {}
        if (element := _dict.get('element')) is not None:
            args['element'] = element
        else:
            raise ValueError(
                'Required property \'element\' not present in WordError JSON')
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a WordError object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'element') and self.element is not None:
            _dict['element'] = self.element
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this WordError object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'WordError') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'WordError') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other


class Words:
    """
    Information about the words from a custom language model.

    :param List[Word] words: An array of `Word` objects that provides information
          about each word in the custom model's words resource. The array is empty if the
          custom model has no words.
    """

    def __init__(
        self,
        words: List['Word'],
    ) -> None:
        """
        Initialize a Words object.

        :param List[Word] words: An array of `Word` objects that provides
               information about each word in the custom model's words resource. The array
               is empty if the custom model has no words.
        """
        self.words = words

    @classmethod
    def from_dict(cls, _dict: Dict) -> 'Words':
        """Initialize a Words object from a json dictionary."""
        args = {}
        if (words := _dict.get('words')) is not None:
            args['words'] = [Word.from_dict(v) for v in words]
        else:
            raise ValueError(
                'Required property \'words\' not present in Words JSON')
        return cls(**args)

    @classmethod
    def _from_dict(cls, _dict):
        """Initialize a Words object from a json dictionary."""
        return cls.from_dict(_dict)

    def to_dict(self) -> Dict:
        """Return a json dictionary representing this model."""
        _dict = {}
        if hasattr(self, 'words') and self.words is not None:
            words_list = []
            for v in self.words:
                if isinstance(v, dict):
                    words_list.append(v)
                else:
                    words_list.append(v.to_dict())
            _dict['words'] = words_list
        return _dict

    def _to_dict(self):
        """Return a json dictionary representing this model."""
        return self.to_dict()

    def __str__(self) -> str:
        """Return a `str` version of this Words object."""
        return json.dumps(self.to_dict(), indent=2)

    def __eq__(self, other: 'Words') -> bool:
        """Return `true` when self and other are equal, false otherwise."""
        if not isinstance(other, self.__class__):
            return False
        return self.__dict__ == other.__dict__

    def __ne__(self, other: 'Words') -> bool:
        """Return `true` when self and other are not equal, false otherwise."""
        return not self == other