1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536
|
# coding: utf-8
# (C) Copyright IBM Corp. 2015, 2024.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# IBM OpenAPI SDK Code Generator Version: 3.97.0-0e90eab1-20241120-170029
"""
The IBM Watson™ Speech to Text service provides APIs that use IBM's
speech-recognition capabilities to produce transcripts of spoken audio. The service can
transcribe speech from various languages and audio formats. In addition to basic
transcription, the service can produce detailed information about many different aspects
of the audio. It returns all JSON response content in the UTF-8 character set.
The service supports two types of models: previous-generation models that include the
terms `Broadband` and `Narrowband` in their names, and next-generation models that include
the terms `Multimedia` and `Telephony` in their names. Broadband and multimedia models
have minimum sampling rates of 16 kHz. Narrowband and telephony models have minimum
sampling rates of 8 kHz. The next-generation models offer high throughput and greater
transcription accuracy.
Effective **31 July 2023**, all previous-generation models will be removed from the
service and the documentation. Most previous-generation models were deprecated on 15 March
2022. You must migrate to the equivalent large speech model or next-generation model by 31
July 2023. For more information, see [Migrating to large speech
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-migrate).{:
deprecated}
For speech recognition, the service supports synchronous and asynchronous HTTP
Representational State Transfer (REST) interfaces. It also supports a WebSocket interface
that provides a full-duplex, low-latency communication channel: Clients send requests and
audio to the service and receive results over a single connection asynchronously.
The service also offers two customization interfaces. Use language model customization to
expand the vocabulary of a base model with domain-specific terminology. Use acoustic model
customization to adapt a base model for the acoustic characteristics of your audio. For
language model customization, the service also supports grammars. A grammar is a formal
language specification that lets you restrict the phrases that the service can recognize.
Language model customization and grammars are available for most previous- and
next-generation models. Acoustic model customization is available for all
previous-generation models.
API Version: 1.0.0
See: https://cloud.ibm.com/docs/speech-to-text
"""
from enum import Enum
from typing import BinaryIO, Dict, List, Optional
import json
from ibm_cloud_sdk_core import BaseService, DetailedResponse
from ibm_cloud_sdk_core.authenticators.authenticator import Authenticator
from ibm_cloud_sdk_core.get_authenticator import get_authenticator_from_environment
from ibm_cloud_sdk_core.utils import convert_list, convert_model
from .common import get_sdk_headers
##############################################################################
# Service
##############################################################################
class SpeechToTextV1(BaseService):
"""The Speech to Text V1 service."""
DEFAULT_SERVICE_URL = 'https://api.us-south.speech-to-text.watson.cloud.ibm.com'
DEFAULT_SERVICE_NAME = 'speech_to_text'
def __init__(
self,
authenticator: Authenticator = None,
service_name: str = DEFAULT_SERVICE_NAME,
) -> None:
"""
Construct a new client for the Speech to Text service.
:param Authenticator authenticator: The authenticator specifies the authentication mechanism.
Get up to date information from https://github.com/IBM/python-sdk-core/blob/main/README.md
about initializing the authenticator of your choice.
"""
if not authenticator:
authenticator = get_authenticator_from_environment(service_name)
BaseService.__init__(self,
service_url=self.DEFAULT_SERVICE_URL,
authenticator=authenticator)
self.configure_service(service_name)
#########################
# Models
#########################
def list_models(
self,
**kwargs,
) -> DetailedResponse:
"""
List models.
Lists all language models that are available for use with the service. The
information includes the name of the model and its minimum sampling rate in Hertz,
among other things. The ordering of the list of models can change from call to
call; do not rely on an alphabetized or static list of models.
**See also:** [Listing all
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-list#models-list-all).
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `SpeechModels` object
"""
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='list_models',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
url = '/v1/models'
request = self.prepare_request(
method='GET',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
def get_model(
self,
model_id: str,
**kwargs,
) -> DetailedResponse:
"""
Get a model.
Gets information for a single specified language model that is available for use
with the service. The information includes the name of the model and its minimum
sampling rate in Hertz, among other things.
**See also:** [Listing a specific
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-list#models-list-specific).
:param str model_id: The identifier of the model in the form of its name
from the output of the [List models](#listmodels) method.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `SpeechModel` object
"""
if not model_id:
raise ValueError('model_id must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='get_model',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['model_id']
path_param_values = self.encode_path_vars(model_id)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/models/{model_id}'.format(**path_param_dict)
request = self.prepare_request(
method='GET',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
#########################
# Synchronous
#########################
def recognize(
self,
audio: BinaryIO,
*,
content_type: Optional[str] = None,
model: Optional[str] = None,
speech_begin_event: Optional[bool] = None,
language_customization_id: Optional[str] = None,
acoustic_customization_id: Optional[str] = None,
base_model_version: Optional[str] = None,
customization_weight: Optional[float] = None,
inactivity_timeout: Optional[int] = None,
keywords: Optional[List[str]] = None,
keywords_threshold: Optional[float] = None,
max_alternatives: Optional[int] = None,
word_alternatives_threshold: Optional[float] = None,
word_confidence: Optional[bool] = None,
timestamps: Optional[bool] = None,
profanity_filter: Optional[bool] = None,
smart_formatting: Optional[bool] = None,
smart_formatting_version: Optional[int] = None,
speaker_labels: Optional[bool] = None,
grammar_name: Optional[str] = None,
redaction: Optional[bool] = None,
audio_metrics: Optional[bool] = None,
end_of_phrase_silence_time: Optional[float] = None,
split_transcript_at_phrase_end: Optional[bool] = None,
speech_detector_sensitivity: Optional[float] = None,
background_audio_suppression: Optional[float] = None,
low_latency: Optional[bool] = None,
character_insertion_bias: Optional[float] = None,
**kwargs,
) -> DetailedResponse:
"""
Recognize audio.
Sends audio and returns transcription results for a recognition request. You can
pass a maximum of 100 MB and a minimum of 100 bytes of audio with a request. The
service automatically detects the endianness of the incoming audio and, for audio
that includes multiple channels, downmixes the audio to one-channel mono during
transcoding. The method returns only final results; to enable interim results, use
the WebSocket API. (With the `curl` command, use the `--data-binary` option to
upload the file for the request.)
**See also:** [Making a basic HTTP
request](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-http#HTTP-basic).
### Streaming mode
For requests to transcribe live audio as it becomes available, you must set the
`Transfer-Encoding` header to `chunked` to use streaming mode. In streaming mode,
the service closes the connection (status code 408) if it does not receive at
least 15 seconds of audio (including silence) in any 30-second period. The service
also closes the connection (status code 400) if it detects no speech for
`inactivity_timeout` seconds of streaming audio; use the `inactivity_timeout`
parameter to change the default of 30 seconds.
**See also:**
* [Audio
transmission](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-input#transmission)
*
[Timeouts](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-input#timeouts)
### Audio formats (content types)
The service accepts audio in the following formats (MIME types).
* For formats that are labeled **Required**, you must use the `Content-Type`
header with the request to specify the format of the audio.
* For all other formats, you can omit the `Content-Type` header or specify
`application/octet-stream` with the header to have the service automatically
detect the format of the audio. (With the `curl` command, you can specify either
`"Content-Type:"` or `"Content-Type: application/octet-stream"`.)
Where indicated, the format that you specify must include the sampling rate and
can optionally include the number of channels and the endianness of the audio.
* `audio/alaw` (**Required.** Specify the sampling rate (`rate`) of the audio.)
* `audio/basic` (**Required.** Use only with narrowband models.)
* `audio/flac`
* `audio/g729` (Use only with narrowband models.)
* `audio/l16` (**Required.** Specify the sampling rate (`rate`) and optionally the
number of channels (`channels`) and endianness (`endianness`) of the audio.)
* `audio/mp3`
* `audio/mpeg`
* `audio/mulaw` (**Required.** Specify the sampling rate (`rate`) of the audio.)
* `audio/ogg` (The service automatically detects the codec of the input audio.)
* `audio/ogg;codecs=opus`
* `audio/ogg;codecs=vorbis`
* `audio/wav` (Provide audio with a maximum of nine channels.)
* `audio/webm` (The service automatically detects the codec of the input audio.)
* `audio/webm;codecs=opus`
* `audio/webm;codecs=vorbis`
The sampling rate of the audio must match the sampling rate of the model for the
recognition request: for broadband models, at least 16 kHz; for narrowband models,
at least 8 kHz. If the sampling rate of the audio is higher than the minimum
required rate, the service down-samples the audio to the appropriate rate. If the
sampling rate of the audio is lower than the minimum required rate, the request
fails.
**See also:** [Supported audio
formats](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-audio-formats).
### Large speech models and Next-generation models
The service supports large speech models and next-generation `Multimedia` (16
kHz) and `Telephony` (8 kHz) models for many languages. Large speech models and
next-generation models have higher throughput than the service's previous
generation of `Broadband` and `Narrowband` models. When you use large speech
models and next-generation models, the service can return transcriptions more
quickly and also provide noticeably better transcription accuracy.
You specify a large speech model or next-generation model by using the `model`
query parameter, as you do a previous-generation model. Only the next-generation
models support the `low_latency` parameter, and all large speech models and
next-generation models support the `character_insertion_bias` parameter. These
parameters are not available with previous-generation models.
Large speech models and next-generation models do not support all of the speech
recognition parameters that are available for use with previous-generation models.
Next-generation models do not support the following parameters:
* `acoustic_customization_id`
* `keywords` and `keywords_threshold`
* `processing_metrics` and `processing_metrics_interval`
* `word_alternatives_threshold`
**Important:** Effective **31 July 2023**, all previous-generation models will be
removed from the service and the documentation. Most previous-generation models
were deprecated on 15 March 2022. You must migrate to the equivalent large speech
model or next-generation model by 31 July 2023. For more information, see
[Migrating to large speech
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-migrate).
**See also:**
* [Large speech languages and
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-large-speech-languages)
* [Supported features for large speech
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-large-speech-languages#models-lsm-supported-features)
* [Next-generation languages and
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-ng)
* [Supported features for next-generation
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-ng#models-ng-features)
### Multipart speech recognition
**Note:** The asynchronous HTTP interface, WebSocket interface, and Watson SDKs
do not support multipart speech recognition.
The HTTP `POST` method of the service also supports multipart speech recognition.
With multipart requests, you pass all audio data as multipart form data. You
specify some parameters as request headers and query parameters, but you pass JSON
metadata as form data to control most aspects of the transcription. You can use
multipart recognition to pass multiple audio files with a single request.
Use the multipart approach with browsers for which JavaScript is disabled or when
the parameters used with the request are greater than the 8 KB limit imposed by
most HTTP servers and proxies. You can encounter this limit, for example, if you
want to spot a very large number of keywords.
**See also:** [Making a multipart HTTP
request](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-http#HTTP-multi).
:param BinaryIO audio: The audio to transcribe.
:param str content_type: (optional) The format (MIME type) of the audio.
For more information about specifying an audio format, see **Audio formats
(content types)** in the method description.
:param str model: (optional) The model to use for speech recognition. If
you omit the `model` parameter, the service uses the US English
`en-US_BroadbandModel` by default.
_For IBM Cloud Pak for Data,_ if you do not install the
`en-US_BroadbandModel`, you must either specify a model with the request or
specify a new default model for your installation of the service.
**See also:**
* [Using a model for speech
recognition](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-use)
* [Using the default
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-use#models-use-default).
:param bool speech_begin_event: (optional) If `true`, the service returns a
response object `SpeechActivity` which contains the time when a speech
activity is detected in the stream. This can be used both in standard and
low latency mode. This feature enables client applications to know that
some words/speech has been detected and the service is in the process of
decoding. This can be used in lieu of interim results in standard mode. See
[Using speech recognition
parameters](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-service-features#features-parameters).
:param str language_customization_id: (optional) The customization ID
(GUID) of a custom language model that is to be used with the recognition
request. The base model of the specified custom language model must match
the model specified with the `model` parameter. You must make the request
with credentials for the instance of the service that owns the custom
model. By default, no custom language model is used. See [Using a custom
language model for speech
recognition](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-languageUse).
**Note:** Use this parameter instead of the deprecated `customization_id`
parameter.
:param str acoustic_customization_id: (optional) The customization ID
(GUID) of a custom acoustic model that is to be used with the recognition
request. The base model of the specified custom acoustic model must match
the model specified with the `model` parameter. You must make the request
with credentials for the instance of the service that owns the custom
model. By default, no custom acoustic model is used. See [Using a custom
acoustic model for speech
recognition](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-acousticUse).
:param str base_model_version: (optional) The version of the specified base
model that is to be used with the recognition request. Multiple versions of
a base model can exist when a model is updated for internal improvements.
The parameter is intended primarily for use with custom models that have
been upgraded for a new base model. The default value depends on whether
the parameter is used with or without a custom model. See [Making speech
recognition requests with upgraded custom
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-upgrade-use#custom-upgrade-use-recognition).
:param float customization_weight: (optional) If you specify the
customization ID (GUID) of a custom language model with the recognition
request, the customization weight tells the service how much weight to give
to words from the custom language model compared to those from the base
model for the current request.
Specify a value between 0.0 and 1.0. Unless a different customization
weight was specified for the custom model when the model was trained, the
default value is:
* 0.5 for large speech models
* 0.3 for previous-generation models
* 0.2 for most next-generation models
* 0.1 for next-generation English and Japanese models
A customization weight that you specify overrides a weight that was
specified when the custom model was trained. The default value yields the
best performance in general. Assign a higher value if your audio makes
frequent use of OOV words from the custom model. Use caution when setting
the weight: a higher value can improve the accuracy of phrases from the
custom model's domain, but it can negatively affect performance on
non-domain phrases.
See [Using customization
weight](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-languageUse#weight).
:param int inactivity_timeout: (optional) The time in seconds after which,
if only silence (no speech) is detected in streaming audio, the connection
is closed with a 400 error. The parameter is useful for stopping audio
submission from a live microphone when a user simply walks away. Use `-1`
for infinity. See [Inactivity
timeout](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-input#timeouts-inactivity).
:param List[str] keywords: (optional) An array of keyword strings to spot
in the audio. Each keyword string can include one or more string tokens.
Keywords are spotted only in the final results, not in interim hypotheses.
If you specify any keywords, you must also specify a keywords threshold.
Omit the parameter or specify an empty array if you do not need to spot
keywords.
You can spot a maximum of 1000 keywords with a single request. A single
keyword can have a maximum length of 1024 characters, though the maximum
effective length for double-byte languages might be shorter. Keywords are
case-insensitive.
See [Keyword
spotting](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-spotting#keyword-spotting).
:param float keywords_threshold: (optional) A confidence value that is the
lower bound for spotting a keyword. A word is considered to match a keyword
if its confidence is greater than or equal to the threshold. Specify a
probability between 0.0 and 1.0. If you specify a threshold, you must also
specify one or more keywords. The service performs no keyword spotting if
you omit either parameter. See [Keyword
spotting](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-spotting#keyword-spotting).
:param int max_alternatives: (optional) The maximum number of alternative
transcripts that the service is to return. By default, the service returns
a single transcript. If you specify a value of `0`, the service uses the
default value, `1`. See [Maximum
alternatives](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-metadata#max-alternatives).
:param float word_alternatives_threshold: (optional) A confidence value
that is the lower bound for identifying a hypothesis as a possible word
alternative (also known as "Confusion Networks"). An alternative word is
considered if its confidence is greater than or equal to the threshold.
Specify a probability between 0.0 and 1.0. By default, the service computes
no alternative words. See [Word
alternatives](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-spotting#word-alternatives).
:param bool word_confidence: (optional) If `true`, the service returns a
confidence measure in the range of 0.0 to 1.0 for each word. By default,
the service returns no word confidence scores. See [Word
confidence](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-metadata#word-confidence).
:param bool timestamps: (optional) If `true`, the service returns time
alignment for each word. By default, no timestamps are returned. See [Word
timestamps](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-metadata#word-timestamps).
:param bool profanity_filter: (optional) If `true`, the service filters
profanity from all output except for keyword results by replacing
inappropriate words with a series of asterisks. Set the parameter to
`false` to return results with no censoring.
**Note:** The parameter can be used with US English and Japanese
transcription only. See [Profanity
filtering](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-formatting#profanity-filtering).
:param bool smart_formatting: (optional) If `true`, the service converts
dates, times, series of digits and numbers, phone numbers, currency values,
and internet addresses into more readable, conventional representations in
the final transcript of a recognition request. For US English, the service
also converts certain keyword strings to punctuation symbols. By default,
the service performs no smart formatting.
**Note:** The parameter can be used with US English, Japanese, and Spanish
(all dialects) transcription only.
See [Smart
formatting](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-formatting#smart-formatting).
:param int smart_formatting_version: (optional) Smart formatting version
for large speech models and next-generation models is supported in US
English, Brazilian Portuguese, French, German, Spanish and French Canadian
languages.
:param bool speaker_labels: (optional) If `true`, the response includes
labels that identify which words were spoken by which participants in a
multi-person exchange. By default, the service returns no speaker labels.
Setting `speaker_labels` to `true` forces the `timestamps` parameter to be
`true`, regardless of whether you specify `false` for the parameter.
* _For previous-generation models,_ the parameter can be used with
Australian English, US English, German, Japanese, Korean, and Spanish (both
broadband and narrowband models) and UK English (narrowband model)
transcription only.
* _For large speech models and next-generation models,_ the parameter can
be used with all available languages.
See [Speaker
labels](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-speaker-labels).
:param str grammar_name: (optional) The name of a grammar that is to be
used with the recognition request. If you specify a grammar, you must also
use the `language_customization_id` parameter to specify the name of the
custom language model for which the grammar is defined. The service
recognizes only strings that are recognized by the specified grammar; it
does not recognize other custom words from the model's words resource.
See [Using a grammar for speech
recognition](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-grammarUse).
:param bool redaction: (optional) If `true`, the service redacts, or masks,
numeric data from final transcripts. The feature redacts any number that
has three or more consecutive digits by replacing each digit with an `X`
character. It is intended to redact sensitive numeric data, such as credit
card numbers. By default, the service performs no redaction.
When you enable redaction, the service automatically enables smart
formatting, regardless of whether you explicitly disable that feature. To
ensure maximum security, the service also disables keyword spotting
(ignores the `keywords` and `keywords_threshold` parameters) and returns
only a single final transcript (forces the `max_alternatives` parameter to
be `1`).
**Note:** The parameter can be used with US English, Japanese, and Korean
transcription only.
See [Numeric
redaction](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-formatting#numeric-redaction).
:param bool audio_metrics: (optional) If `true`, requests detailed
information about the signal characteristics of the input audio. The
service returns audio metrics with the final transcription results. By
default, the service returns no audio metrics.
See [Audio
metrics](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-metrics#audio-metrics).
:param float end_of_phrase_silence_time: (optional) Specifies the duration
of the pause interval at which the service splits a transcript into
multiple final results. If the service detects pauses or extended silence
before it reaches the end of the audio stream, its response can include
multiple final results. Silence indicates a point at which the speaker
pauses between spoken words or phrases.
Specify a value for the pause interval in the range of 0.0 to 120.0.
* A value greater than 0 specifies the interval that the service is to use
for speech recognition.
* A value of 0 indicates that the service is to use the default interval.
It is equivalent to omitting the parameter.
The default pause interval for most languages is 0.8 seconds; the default
for Chinese is 0.6 seconds.
See [End of phrase silence
time](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-parsing#silence-time).
:param bool split_transcript_at_phrase_end: (optional) If `true`, directs
the service to split the transcript into multiple final results based on
semantic features of the input, for example, at the conclusion of
meaningful phrases such as sentences. The service bases its understanding
of semantic features on the base language model that you use with a
request. Custom language models and grammars can also influence how and
where the service splits a transcript.
By default, the service splits transcripts based solely on the pause
interval. If the parameters are used together on the same request,
`end_of_phrase_silence_time` has precedence over
`split_transcript_at_phrase_end`.
See [Split transcript at phrase
end](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-parsing#split-transcript).
:param float speech_detector_sensitivity: (optional) The sensitivity of
speech activity detection that the service is to perform. Use the parameter
to suppress word insertions from music, coughing, and other non-speech
events. The service biases the audio it passes for speech recognition by
evaluating the input audio against prior models of speech and non-speech
activity.
Specify a value between 0.0 and 1.0:
* 0.0 suppresses all audio (no speech is transcribed).
* 0.5 (the default) provides a reasonable compromise for the level of
sensitivity.
* 1.0 suppresses no audio (speech detection sensitivity is disabled).
The values increase on a monotonic curve. Specifying one or two decimal
places of precision (for example, `0.55`) is typically more than
sufficient.
The parameter is supported with all large speech models, next-generation
models and with most previous-generation models. See [Speech detector
sensitivity](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-detection#detection-parameters-sensitivity)
and [Language model
support](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-detection#detection-support).
:param float background_audio_suppression: (optional) The level to which
the service is to suppress background audio based on its volume to prevent
it from being transcribed as speech. Use the parameter to suppress side
conversations or background noise.
Specify a value in the range of 0.0 to 1.0:
* 0.0 (the default) provides no suppression (background audio suppression
is disabled).
* 0.5 provides a reasonable level of audio suppression for general usage.
* 1.0 suppresses all audio (no audio is transcribed).
The values increase on a monotonic curve. Specifying one or two decimal
places of precision (for example, `0.55`) is typically more than
sufficient.
The parameter is supported with all large speech models, next-generation
models and with most previous-generation models. See [Background audio
suppression](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-detection#detection-parameters-suppression)
and [Language model
support](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-detection#detection-support).
:param bool low_latency: (optional) If `true` for next-generation
`Multimedia` and `Telephony` models that support low latency, directs the
service to produce results even more quickly than it usually does.
Next-generation models produce transcription results faster than
previous-generation models. The `low_latency` parameter causes the models
to produce results even more quickly, though the results might be less
accurate when the parameter is used.
The parameter is not available for large speech models and
previous-generation `Broadband` and `Narrowband` models. It is available
for most next-generation models.
* For a list of next-generation models that support low latency, see
[Supported next-generation language
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-ng#models-ng-supported).
* For more information about the `low_latency` parameter, see [Low
latency](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-interim#low-latency).
:param float character_insertion_bias: (optional) For large speech models
and next-generation models, an indication of whether the service is biased
to recognize shorter or longer strings of characters when developing
transcription hypotheses. By default, the service is optimized to produce
the best balance of strings of different lengths.
The default bias is 0.0. The allowable range of values is -1.0 to 1.0.
* Negative values bias the service to favor hypotheses with shorter strings
of characters.
* Positive values bias the service to favor hypotheses with longer strings
of characters.
As the value approaches -1.0 or 1.0, the impact of the parameter becomes
more pronounced. To determine the most effective value for your scenario,
start by setting the value of the parameter to a small increment, such as
-0.1, -0.05, 0.05, or 0.1, and assess how the value impacts the
transcription results. Then experiment with different values as necessary,
adjusting the value by small increments.
The parameter is not available for previous-generation models.
See [Character insertion
bias](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-parsing#insertion-bias).
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `SpeechRecognitionResults` object
"""
if audio is None:
raise ValueError('audio must be provided')
headers = {
'Content-Type': content_type,
}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='recognize',
)
headers.update(sdk_headers)
params = {
'model': model,
'speech_begin_event': speech_begin_event,
'language_customization_id': language_customization_id,
'acoustic_customization_id': acoustic_customization_id,
'base_model_version': base_model_version,
'customization_weight': customization_weight,
'inactivity_timeout': inactivity_timeout,
'keywords': convert_list(keywords),
'keywords_threshold': keywords_threshold,
'max_alternatives': max_alternatives,
'word_alternatives_threshold': word_alternatives_threshold,
'word_confidence': word_confidence,
'timestamps': timestamps,
'profanity_filter': profanity_filter,
'smart_formatting': smart_formatting,
'smart_formatting_version': smart_formatting_version,
'speaker_labels': speaker_labels,
'grammar_name': grammar_name,
'redaction': redaction,
'audio_metrics': audio_metrics,
'end_of_phrase_silence_time': end_of_phrase_silence_time,
'split_transcript_at_phrase_end': split_transcript_at_phrase_end,
'speech_detector_sensitivity': speech_detector_sensitivity,
'background_audio_suppression': background_audio_suppression,
'low_latency': low_latency,
'character_insertion_bias': character_insertion_bias,
}
data = audio
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
url = '/v1/recognize'
request = self.prepare_request(
method='POST',
url=url,
headers=headers,
params=params,
data=data,
)
response = self.send(request, **kwargs)
return response
#########################
# Asynchronous
#########################
def register_callback(
self,
callback_url: str,
*,
user_secret: Optional[str] = None,
**kwargs,
) -> DetailedResponse:
"""
Register a callback.
Registers a callback URL with the service for use with subsequent asynchronous
recognition requests. The service attempts to register, or allowlist, the callback
URL if it is not already registered by sending a `GET` request to the callback
URL. The service passes a random alphanumeric challenge string via the
`challenge_string` parameter of the request. The request includes an `Accept`
header that specifies `text/plain` as the required response type.
To be registered successfully, the callback URL must respond to the `GET` request
from the service. The response must send status code 200 and must include the
challenge string in its body. Set the `Content-Type` response header to
`text/plain`. Upon receiving this response, the service responds to the original
registration request with response code 201.
The service sends only a single `GET` request to the callback URL. If the service
does not receive a reply with a response code of 200 and a body that echoes the
challenge string sent by the service within five seconds, it does not allowlist
the URL; it instead sends status code 400 in response to the request to register a
callback. If the requested callback URL is already allowlisted, the service
responds to the initial registration request with response code 200.
If you specify a user secret with the request, the service uses it as a key to
calculate an HMAC-SHA1 signature of the challenge string in its response to the
`POST` request. It sends this signature in the `X-Callback-Signature` header of
its `GET` request to the URL during registration. It also uses the secret to
calculate a signature over the payload of every callback notification that uses
the URL. The signature provides authentication and data integrity for HTTP
communications.
After you successfully register a callback URL, you can use it with an indefinite
number of recognition requests. You can register a maximum of 20 callback URLS in
a one-hour span of time.
**See also:** [Registering a callback
URL](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-async#register).
:param str callback_url: An HTTP or HTTPS URL to which callback
notifications are to be sent. To be allowlisted, the URL must successfully
echo the challenge string during URL verification. During verification, the
client can also check the signature that the service sends in the
`X-Callback-Signature` header to verify the origin of the request.
:param str user_secret: (optional) A user-specified string that the service
uses to generate the HMAC-SHA1 signature that it sends via the
`X-Callback-Signature` header. The service includes the header during URL
verification and with every notification sent to the callback URL. It
calculates the signature over the payload of the notification. If you omit
the parameter, the service does not send the header.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `RegisterStatus` object
"""
if not callback_url:
raise ValueError('callback_url must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='register_callback',
)
headers.update(sdk_headers)
params = {
'callback_url': callback_url,
'user_secret': user_secret,
}
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
url = '/v1/register_callback'
request = self.prepare_request(
method='POST',
url=url,
headers=headers,
params=params,
)
response = self.send(request, **kwargs)
return response
def unregister_callback(
self,
callback_url: str,
**kwargs,
) -> DetailedResponse:
"""
Unregister a callback.
Unregisters a callback URL that was previously allowlisted with a [Register a
callback](#registercallback) request for use with the asynchronous interface. Once
unregistered, the URL can no longer be used with asynchronous recognition
requests.
**See also:** [Unregistering a callback
URL](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-async#unregister).
:param str callback_url: The callback URL that is to be unregistered.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse
"""
if not callback_url:
raise ValueError('callback_url must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='unregister_callback',
)
headers.update(sdk_headers)
params = {
'callback_url': callback_url,
}
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
url = '/v1/unregister_callback'
request = self.prepare_request(
method='POST',
url=url,
headers=headers,
params=params,
)
response = self.send(request, **kwargs)
return response
def create_job(
self,
audio: BinaryIO,
*,
content_type: Optional[str] = None,
model: Optional[str] = None,
callback_url: Optional[str] = None,
events: Optional[str] = None,
user_token: Optional[str] = None,
results_ttl: Optional[int] = None,
language_customization_id: Optional[str] = None,
acoustic_customization_id: Optional[str] = None,
base_model_version: Optional[str] = None,
customization_weight: Optional[float] = None,
inactivity_timeout: Optional[int] = None,
keywords: Optional[List[str]] = None,
keywords_threshold: Optional[float] = None,
max_alternatives: Optional[int] = None,
word_alternatives_threshold: Optional[float] = None,
word_confidence: Optional[bool] = None,
timestamps: Optional[bool] = None,
profanity_filter: Optional[bool] = None,
smart_formatting: Optional[bool] = None,
smart_formatting_version: Optional[int] = None,
speaker_labels: Optional[bool] = None,
grammar_name: Optional[str] = None,
redaction: Optional[bool] = None,
processing_metrics: Optional[bool] = None,
processing_metrics_interval: Optional[float] = None,
audio_metrics: Optional[bool] = None,
end_of_phrase_silence_time: Optional[float] = None,
split_transcript_at_phrase_end: Optional[bool] = None,
speech_detector_sensitivity: Optional[float] = None,
background_audio_suppression: Optional[float] = None,
low_latency: Optional[bool] = None,
character_insertion_bias: Optional[float] = None,
**kwargs,
) -> DetailedResponse:
"""
Create a job.
Creates a job for a new asynchronous recognition request. The job is owned by the
instance of the service whose credentials are used to create it. How you learn the
status and results of a job depends on the parameters you include with the job
creation request:
* By callback notification: Include the `callback_url` parameter to specify a URL
to which the service is to send callback notifications when the status of the job
changes. Optionally, you can also include the `events` and `user_token` parameters
to subscribe to specific events and to specify a string that is to be included
with each notification for the job.
* By polling the service: Omit the `callback_url`, `events`, and `user_token`
parameters. You must then use the [Check jobs](#checkjobs) or [Check a
job](#checkjob) methods to check the status of the job, using the latter to
retrieve the results when the job is complete.
The two approaches are not mutually exclusive. You can poll the service for job
status or obtain results from the service manually even if you include a callback
URL. In both cases, you can include the `results_ttl` parameter to specify how
long the results are to remain available after the job is complete. Using the
HTTPS [Check a job](#checkjob) method to retrieve results is more secure than
receiving them via callback notification over HTTP because it provides
confidentiality in addition to authentication and data integrity.
The method supports the same basic parameters as other HTTP and WebSocket
recognition requests. It also supports the following parameters specific to the
asynchronous interface:
* `callback_url`
* `events`
* `user_token`
* `results_ttl`
You can pass a maximum of 1 GB and a minimum of 100 bytes of audio with a request.
The service automatically detects the endianness of the incoming audio and, for
audio that includes multiple channels, downmixes the audio to one-channel mono
during transcoding. The method returns only final results; to enable interim
results, use the WebSocket API. (With the `curl` command, use the `--data-binary`
option to upload the file for the request.)
**See also:** [Creating a
job](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-async#create).
### Streaming mode
For requests to transcribe live audio as it becomes available, you must set the
`Transfer-Encoding` header to `chunked` to use streaming mode. In streaming mode,
the service closes the connection (status code 408) if it does not receive at
least 15 seconds of audio (including silence) in any 30-second period. The service
also closes the connection (status code 400) if it detects no speech for
`inactivity_timeout` seconds of streaming audio; use the `inactivity_timeout`
parameter to change the default of 30 seconds.
**See also:**
* [Audio
transmission](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-input#transmission)
*
[Timeouts](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-input#timeouts)
### Audio formats (content types)
The service accepts audio in the following formats (MIME types).
* For formats that are labeled **Required**, you must use the `Content-Type`
header with the request to specify the format of the audio.
* For all other formats, you can omit the `Content-Type` header or specify
`application/octet-stream` with the header to have the service automatically
detect the format of the audio. (With the `curl` command, you can specify either
`"Content-Type:"` or `"Content-Type: application/octet-stream"`.)
Where indicated, the format that you specify must include the sampling rate and
can optionally include the number of channels and the endianness of the audio.
* `audio/alaw` (**Required.** Specify the sampling rate (`rate`) of the audio.)
* `audio/basic` (**Required.** Use only with narrowband models.)
* `audio/flac`
* `audio/g729` (Use only with narrowband models.)
* `audio/l16` (**Required.** Specify the sampling rate (`rate`) and optionally the
number of channels (`channels`) and endianness (`endianness`) of the audio.)
* `audio/mp3`
* `audio/mpeg`
* `audio/mulaw` (**Required.** Specify the sampling rate (`rate`) of the audio.)
* `audio/ogg` (The service automatically detects the codec of the input audio.)
* `audio/ogg;codecs=opus`
* `audio/ogg;codecs=vorbis`
* `audio/wav` (Provide audio with a maximum of nine channels.)
* `audio/webm` (The service automatically detects the codec of the input audio.)
* `audio/webm;codecs=opus`
* `audio/webm;codecs=vorbis`
The sampling rate of the audio must match the sampling rate of the model for the
recognition request: for broadband models, at least 16 kHz; for narrowband models,
at least 8 kHz. If the sampling rate of the audio is higher than the minimum
required rate, the service down-samples the audio to the appropriate rate. If the
sampling rate of the audio is lower than the minimum required rate, the request
fails.
**See also:** [Supported audio
formats](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-audio-formats).
### Large speech models and Next-generation models
The service supports large speech models and next-generation `Multimedia` (16
kHz) and `Telephony` (8 kHz) models for many languages. Large speech models and
next-generation models have higher throughput than the service's previous
generation of `Broadband` and `Narrowband` models. When you use large speech
models and next-generation models, the service can return transcriptions more
quickly and also provide noticeably better transcription accuracy.
You specify a large speech model or next-generation model by using the `model`
query parameter, as you do a previous-generation model. Only the next-generation
models support the `low_latency` parameter, and all large speech models and
next-generation models support the `character_insertion_bias` parameter. These
parameters are not available with previous-generation models.
Large speech models and next-generation models do not support all of the speech
recognition parameters that are available for use with previous-generation models.
Next-generation models do not support the following parameters:
* `acoustic_customization_id`
* `keywords` and `keywords_threshold`
* `processing_metrics` and `processing_metrics_interval`
* `word_alternatives_threshold`
**Important:** Effective **31 July 2023**, all previous-generation models will be
removed from the service and the documentation. Most previous-generation models
were deprecated on 15 March 2022. You must migrate to the equivalent large speech
model or next-generation model by 31 July 2023. For more information, see
[Migrating to large speech
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-migrate).
**See also:**
* [Large speech languages and
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-large-speech-languages)
* [Supported features for large speech
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-large-speech-languages#models-lsm-supported-features)
* [Next-generation languages and
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-ng)
* [Supported features for next-generation
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-ng#models-ng-features).
:param BinaryIO audio: The audio to transcribe.
:param str content_type: (optional) The format (MIME type) of the audio.
For more information about specifying an audio format, see **Audio formats
(content types)** in the method description.
:param str model: (optional) The model to use for speech recognition. If
you omit the `model` parameter, the service uses the US English
`en-US_BroadbandModel` by default.
_For IBM Cloud Pak for Data,_ if you do not install the
`en-US_BroadbandModel`, you must either specify a model with the request or
specify a new default model for your installation of the service.
**See also:**
* [Using a model for speech
recognition](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-use)
* [Using the default
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-use#models-use-default).
:param str callback_url: (optional) A URL to which callback notifications
are to be sent. The URL must already be successfully allowlisted by using
the [Register a callback](#registercallback) method. You can include the
same callback URL with any number of job creation requests. Omit the
parameter to poll the service for job completion and results.
Use the `user_token` parameter to specify a unique user-specified string
with each job to differentiate the callback notifications for the jobs.
:param str events: (optional) If the job includes a callback URL, a
comma-separated list of notification events to which to subscribe. Valid
events are
* `recognitions.started` generates a callback notification when the service
begins to process the job.
* `recognitions.completed` generates a callback notification when the job
is complete. You must use the [Check a job](#checkjob) method to retrieve
the results before they time out or are deleted.
* `recognitions.completed_with_results` generates a callback notification
when the job is complete. The notification includes the results of the
request.
* `recognitions.failed` generates a callback notification if the service
experiences an error while processing the job.
The `recognitions.completed` and `recognitions.completed_with_results`
events are incompatible. You can specify only of the two events.
If the job includes a callback URL, omit the parameter to subscribe to the
default events: `recognitions.started`, `recognitions.completed`, and
`recognitions.failed`. If the job does not include a callback URL, omit the
parameter.
:param str user_token: (optional) If the job includes a callback URL, a
user-specified string that the service is to include with each callback
notification for the job; the token allows the user to maintain an internal
mapping between jobs and notification events. If the job does not include a
callback URL, omit the parameter.
:param int results_ttl: (optional) The number of minutes for which the
results are to be available after the job has finished. If not delivered
via a callback, the results must be retrieved within this time. Omit the
parameter to use a time to live of one week. The parameter is valid with or
without a callback URL.
:param str language_customization_id: (optional) The customization ID
(GUID) of a custom language model that is to be used with the recognition
request. The base model of the specified custom language model must match
the model specified with the `model` parameter. You must make the request
with credentials for the instance of the service that owns the custom
model. By default, no custom language model is used. See [Using a custom
language model for speech
recognition](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-languageUse).
**Note:** Use this parameter instead of the deprecated `customization_id`
parameter.
:param str acoustic_customization_id: (optional) The customization ID
(GUID) of a custom acoustic model that is to be used with the recognition
request. The base model of the specified custom acoustic model must match
the model specified with the `model` parameter. You must make the request
with credentials for the instance of the service that owns the custom
model. By default, no custom acoustic model is used. See [Using a custom
acoustic model for speech
recognition](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-acousticUse).
:param str base_model_version: (optional) The version of the specified base
model that is to be used with the recognition request. Multiple versions of
a base model can exist when a model is updated for internal improvements.
The parameter is intended primarily for use with custom models that have
been upgraded for a new base model. The default value depends on whether
the parameter is used with or without a custom model. See [Making speech
recognition requests with upgraded custom
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-upgrade-use#custom-upgrade-use-recognition).
:param float customization_weight: (optional) If you specify the
customization ID (GUID) of a custom language model with the recognition
request, the customization weight tells the service how much weight to give
to words from the custom language model compared to those from the base
model for the current request.
Specify a value between 0.0 and 1.0. Unless a different customization
weight was specified for the custom model when the model was trained, the
default value is:
* 0.5 for large speech models
* 0.3 for previous-generation models
* 0.2 for most next-generation models
* 0.1 for next-generation English and Japanese models
A customization weight that you specify overrides a weight that was
specified when the custom model was trained. The default value yields the
best performance in general. Assign a higher value if your audio makes
frequent use of OOV words from the custom model. Use caution when setting
the weight: a higher value can improve the accuracy of phrases from the
custom model's domain, but it can negatively affect performance on
non-domain phrases.
See [Using customization
weight](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-languageUse#weight).
:param int inactivity_timeout: (optional) The time in seconds after which,
if only silence (no speech) is detected in streaming audio, the connection
is closed with a 400 error. The parameter is useful for stopping audio
submission from a live microphone when a user simply walks away. Use `-1`
for infinity. See [Inactivity
timeout](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-input#timeouts-inactivity).
:param List[str] keywords: (optional) An array of keyword strings to spot
in the audio. Each keyword string can include one or more string tokens.
Keywords are spotted only in the final results, not in interim hypotheses.
If you specify any keywords, you must also specify a keywords threshold.
Omit the parameter or specify an empty array if you do not need to spot
keywords.
You can spot a maximum of 1000 keywords with a single request. A single
keyword can have a maximum length of 1024 characters, though the maximum
effective length for double-byte languages might be shorter. Keywords are
case-insensitive.
See [Keyword
spotting](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-spotting#keyword-spotting).
:param float keywords_threshold: (optional) A confidence value that is the
lower bound for spotting a keyword. A word is considered to match a keyword
if its confidence is greater than or equal to the threshold. Specify a
probability between 0.0 and 1.0. If you specify a threshold, you must also
specify one or more keywords. The service performs no keyword spotting if
you omit either parameter. See [Keyword
spotting](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-spotting#keyword-spotting).
:param int max_alternatives: (optional) The maximum number of alternative
transcripts that the service is to return. By default, the service returns
a single transcript. If you specify a value of `0`, the service uses the
default value, `1`. See [Maximum
alternatives](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-metadata#max-alternatives).
:param float word_alternatives_threshold: (optional) A confidence value
that is the lower bound for identifying a hypothesis as a possible word
alternative (also known as "Confusion Networks"). An alternative word is
considered if its confidence is greater than or equal to the threshold.
Specify a probability between 0.0 and 1.0. By default, the service computes
no alternative words. See [Word
alternatives](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-spotting#word-alternatives).
:param bool word_confidence: (optional) If `true`, the service returns a
confidence measure in the range of 0.0 to 1.0 for each word. By default,
the service returns no word confidence scores. See [Word
confidence](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-metadata#word-confidence).
:param bool timestamps: (optional) If `true`, the service returns time
alignment for each word. By default, no timestamps are returned. See [Word
timestamps](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-metadata#word-timestamps).
:param bool profanity_filter: (optional) If `true`, the service filters
profanity from all output except for keyword results by replacing
inappropriate words with a series of asterisks. Set the parameter to
`false` to return results with no censoring.
**Note:** The parameter can be used with US English and Japanese
transcription only. See [Profanity
filtering](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-formatting#profanity-filtering).
:param bool smart_formatting: (optional) If `true`, the service converts
dates, times, series of digits and numbers, phone numbers, currency values,
and internet addresses into more readable, conventional representations in
the final transcript of a recognition request. For US English, the service
also converts certain keyword strings to punctuation symbols. By default,
the service performs no smart formatting.
**Note:** The parameter can be used with US English, Japanese, and Spanish
(all dialects) transcription only.
See [Smart
formatting](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-formatting#smart-formatting).
:param int smart_formatting_version: (optional) Smart formatting version
for large speech models and next-generation models is supported in US
English, Brazilian Portuguese, French, German, Spanish and French Canadian
languages.
:param bool speaker_labels: (optional) If `true`, the response includes
labels that identify which words were spoken by which participants in a
multi-person exchange. By default, the service returns no speaker labels.
Setting `speaker_labels` to `true` forces the `timestamps` parameter to be
`true`, regardless of whether you specify `false` for the parameter.
* _For previous-generation models,_ the parameter can be used with
Australian English, US English, German, Japanese, Korean, and Spanish (both
broadband and narrowband models) and UK English (narrowband model)
transcription only.
* _For large speech models and next-generation models,_ the parameter can
be used with all available languages.
See [Speaker
labels](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-speaker-labels).
:param str grammar_name: (optional) The name of a grammar that is to be
used with the recognition request. If you specify a grammar, you must also
use the `language_customization_id` parameter to specify the name of the
custom language model for which the grammar is defined. The service
recognizes only strings that are recognized by the specified grammar; it
does not recognize other custom words from the model's words resource.
See [Using a grammar for speech
recognition](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-grammarUse).
:param bool redaction: (optional) If `true`, the service redacts, or masks,
numeric data from final transcripts. The feature redacts any number that
has three or more consecutive digits by replacing each digit with an `X`
character. It is intended to redact sensitive numeric data, such as credit
card numbers. By default, the service performs no redaction.
When you enable redaction, the service automatically enables smart
formatting, regardless of whether you explicitly disable that feature. To
ensure maximum security, the service also disables keyword spotting
(ignores the `keywords` and `keywords_threshold` parameters) and returns
only a single final transcript (forces the `max_alternatives` parameter to
be `1`).
**Note:** The parameter can be used with US English, Japanese, and Korean
transcription only.
See [Numeric
redaction](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-formatting#numeric-redaction).
:param bool processing_metrics: (optional) If `true`, requests processing
metrics about the service's transcription of the input audio. The service
returns processing metrics at the interval specified by the
`processing_metrics_interval` parameter. It also returns processing metrics
for transcription events, for example, for final and interim results. By
default, the service returns no processing metrics.
See [Processing
metrics](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-metrics#processing-metrics).
:param float processing_metrics_interval: (optional) Specifies the interval
in real wall-clock seconds at which the service is to return processing
metrics. The parameter is ignored unless the `processing_metrics` parameter
is set to `true`.
The parameter accepts a minimum value of 0.1 seconds. The level of
precision is not restricted, so you can specify values such as 0.25 and
0.125.
The service does not impose a maximum value. If you want to receive
processing metrics only for transcription events instead of at periodic
intervals, set the value to a large number. If the value is larger than the
duration of the audio, the service returns processing metrics only for
transcription events.
See [Processing
metrics](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-metrics#processing-metrics).
:param bool audio_metrics: (optional) If `true`, requests detailed
information about the signal characteristics of the input audio. The
service returns audio metrics with the final transcription results. By
default, the service returns no audio metrics.
See [Audio
metrics](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-metrics#audio-metrics).
:param float end_of_phrase_silence_time: (optional) Specifies the duration
of the pause interval at which the service splits a transcript into
multiple final results. If the service detects pauses or extended silence
before it reaches the end of the audio stream, its response can include
multiple final results. Silence indicates a point at which the speaker
pauses between spoken words or phrases.
Specify a value for the pause interval in the range of 0.0 to 120.0.
* A value greater than 0 specifies the interval that the service is to use
for speech recognition.
* A value of 0 indicates that the service is to use the default interval.
It is equivalent to omitting the parameter.
The default pause interval for most languages is 0.8 seconds; the default
for Chinese is 0.6 seconds.
See [End of phrase silence
time](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-parsing#silence-time).
:param bool split_transcript_at_phrase_end: (optional) If `true`, directs
the service to split the transcript into multiple final results based on
semantic features of the input, for example, at the conclusion of
meaningful phrases such as sentences. The service bases its understanding
of semantic features on the base language model that you use with a
request. Custom language models and grammars can also influence how and
where the service splits a transcript.
By default, the service splits transcripts based solely on the pause
interval. If the parameters are used together on the same request,
`end_of_phrase_silence_time` has precedence over
`split_transcript_at_phrase_end`.
See [Split transcript at phrase
end](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-parsing#split-transcript).
:param float speech_detector_sensitivity: (optional) The sensitivity of
speech activity detection that the service is to perform. Use the parameter
to suppress word insertions from music, coughing, and other non-speech
events. The service biases the audio it passes for speech recognition by
evaluating the input audio against prior models of speech and non-speech
activity.
Specify a value between 0.0 and 1.0:
* 0.0 suppresses all audio (no speech is transcribed).
* 0.5 (the default) provides a reasonable compromise for the level of
sensitivity.
* 1.0 suppresses no audio (speech detection sensitivity is disabled).
The values increase on a monotonic curve. Specifying one or two decimal
places of precision (for example, `0.55`) is typically more than
sufficient.
The parameter is supported with all large speech models, next-generation
models and with most previous-generation models. See [Speech detector
sensitivity](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-detection#detection-parameters-sensitivity)
and [Language model
support](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-detection#detection-support).
:param float background_audio_suppression: (optional) The level to which
the service is to suppress background audio based on its volume to prevent
it from being transcribed as speech. Use the parameter to suppress side
conversations or background noise.
Specify a value in the range of 0.0 to 1.0:
* 0.0 (the default) provides no suppression (background audio suppression
is disabled).
* 0.5 provides a reasonable level of audio suppression for general usage.
* 1.0 suppresses all audio (no audio is transcribed).
The values increase on a monotonic curve. Specifying one or two decimal
places of precision (for example, `0.55`) is typically more than
sufficient.
The parameter is supported with all large speech models, next-generation
models and with most previous-generation models. See [Background audio
suppression](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-detection#detection-parameters-suppression)
and [Language model
support](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-detection#detection-support).
:param bool low_latency: (optional) If `true` for next-generation
`Multimedia` and `Telephony` models that support low latency, directs the
service to produce results even more quickly than it usually does.
Next-generation models produce transcription results faster than
previous-generation models. The `low_latency` parameter causes the models
to produce results even more quickly, though the results might be less
accurate when the parameter is used.
The parameter is not available for large speech models and
previous-generation `Broadband` and `Narrowband` models. It is available
for most next-generation models.
* For a list of next-generation models that support low latency, see
[Supported next-generation language
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-ng#models-ng-supported).
* For more information about the `low_latency` parameter, see [Low
latency](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-interim#low-latency).
:param float character_insertion_bias: (optional) For large speech models
and next-generation models, an indication of whether the service is biased
to recognize shorter or longer strings of characters when developing
transcription hypotheses. By default, the service is optimized to produce
the best balance of strings of different lengths.
The default bias is 0.0. The allowable range of values is -1.0 to 1.0.
* Negative values bias the service to favor hypotheses with shorter strings
of characters.
* Positive values bias the service to favor hypotheses with longer strings
of characters.
As the value approaches -1.0 or 1.0, the impact of the parameter becomes
more pronounced. To determine the most effective value for your scenario,
start by setting the value of the parameter to a small increment, such as
-0.1, -0.05, 0.05, or 0.1, and assess how the value impacts the
transcription results. Then experiment with different values as necessary,
adjusting the value by small increments.
The parameter is not available for previous-generation models.
See [Character insertion
bias](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-parsing#insertion-bias).
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `RecognitionJob` object
"""
if audio is None:
raise ValueError('audio must be provided')
headers = {
'Content-Type': content_type,
}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='create_job',
)
headers.update(sdk_headers)
params = {
'model': model,
'callback_url': callback_url,
'events': events,
'user_token': user_token,
'results_ttl': results_ttl,
'language_customization_id': language_customization_id,
'acoustic_customization_id': acoustic_customization_id,
'base_model_version': base_model_version,
'customization_weight': customization_weight,
'inactivity_timeout': inactivity_timeout,
'keywords': convert_list(keywords),
'keywords_threshold': keywords_threshold,
'max_alternatives': max_alternatives,
'word_alternatives_threshold': word_alternatives_threshold,
'word_confidence': word_confidence,
'timestamps': timestamps,
'profanity_filter': profanity_filter,
'smart_formatting': smart_formatting,
'smart_formatting_version': smart_formatting_version,
'speaker_labels': speaker_labels,
'grammar_name': grammar_name,
'redaction': redaction,
'processing_metrics': processing_metrics,
'processing_metrics_interval': processing_metrics_interval,
'audio_metrics': audio_metrics,
'end_of_phrase_silence_time': end_of_phrase_silence_time,
'split_transcript_at_phrase_end': split_transcript_at_phrase_end,
'speech_detector_sensitivity': speech_detector_sensitivity,
'background_audio_suppression': background_audio_suppression,
'low_latency': low_latency,
'character_insertion_bias': character_insertion_bias,
}
data = audio
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
url = '/v1/recognitions'
request = self.prepare_request(
method='POST',
url=url,
headers=headers,
params=params,
data=data,
)
response = self.send(request, **kwargs)
return response
def check_jobs(
self,
**kwargs,
) -> DetailedResponse:
"""
Check jobs.
Returns the ID and status of the latest 100 outstanding jobs associated with the
credentials with which it is called. The method also returns the creation and
update times of each job, and, if a job was created with a callback URL and a user
token, the user token for the job. To obtain the results for a job whose status is
`completed` or not one of the latest 100 outstanding jobs, use the [Check a
job[(#checkjob) method. A job and its results remain available until you delete
them with the [Delete a job](#deletejob) method or until the job's time to live
expires, whichever comes first.
**See also:** [Checking the status of the latest
jobs](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-async#jobs).
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `RecognitionJobs` object
"""
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='check_jobs',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
url = '/v1/recognitions'
request = self.prepare_request(
method='GET',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
def check_job(
self,
id: str,
**kwargs,
) -> DetailedResponse:
"""
Check a job.
Returns information about the specified job. The response always includes the
status of the job and its creation and update times. If the status is `completed`,
the response includes the results of the recognition request. You must use
credentials for the instance of the service that owns a job to list information
about it.
You can use the method to retrieve the results of any job, regardless of whether
it was submitted with a callback URL and the `recognitions.completed_with_results`
event, and you can retrieve the results multiple times for as long as they remain
available. Use the [Check jobs](#checkjobs) method to request information about
the most recent jobs associated with the calling credentials.
**See also:** [Checking the status and retrieving the results of a
job](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-async#job).
:param str id: The identifier of the asynchronous job that is to be used
for the request. You must make the request with credentials for the
instance of the service that owns the job.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `RecognitionJob` object
"""
if not id:
raise ValueError('id must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='check_job',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['id']
path_param_values = self.encode_path_vars(id)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/recognitions/{id}'.format(**path_param_dict)
request = self.prepare_request(
method='GET',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
def delete_job(
self,
id: str,
**kwargs,
) -> DetailedResponse:
"""
Delete a job.
Deletes the specified job. You cannot delete a job that the service is actively
processing. Once you delete a job, its results are no longer available. The
service automatically deletes a job and its results when the time to live for the
results expires. You must use credentials for the instance of the service that
owns a job to delete it.
**See also:** [Deleting a
job](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-async#delete-async).
:param str id: The identifier of the asynchronous job that is to be used
for the request. You must make the request with credentials for the
instance of the service that owns the job.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse
"""
if not id:
raise ValueError('id must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='delete_job',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
path_param_keys = ['id']
path_param_values = self.encode_path_vars(id)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/recognitions/{id}'.format(**path_param_dict)
request = self.prepare_request(
method='DELETE',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
#########################
# Custom language models
#########################
def create_language_model(
self,
name: str,
base_model_name: str,
*,
dialect: Optional[str] = None,
description: Optional[str] = None,
**kwargs,
) -> DetailedResponse:
"""
Create a custom language model.
Creates a new custom language model for a specified base model. The custom
language model can be used only with the base model for which it is created. The
model is owned by the instance of the service whose credentials are used to create
it.
You can create a maximum of 1024 custom language models per owning credentials.
The service returns an error if you attempt to create more than 1024 models. You
do not lose any models, but you cannot create any more until your model count is
below the limit.
**Important:** Effective **31 July 2023**, all previous-generation models will be
removed from the service and the documentation. Most previous-generation models
were deprecated on 15 March 2022. You must migrate to the equivalent large speech
model or next-generation model by 31 July 2023. For more information, see
[Migrating to large speech
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-migrate).
**See also:**
* [Create a custom language
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-languageCreate#createModel-language)
* [Language support for
customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support)
### Large speech models and Next-generation models
The service supports large speech models and next-generation `Multimedia` (16
kHz) and `Telephony` (8 kHz) models for many languages. Large speech models and
next-generation models have higher throughput than the service's previous
generation of `Broadband` and `Narrowband` models. When you use large speech
models and next-generation models, the service can return transcriptions more
quickly and also provide noticeably better transcription accuracy.
You specify a large speech model or next-generation model by using the `model`
query parameter, as you do a previous-generation model. Only the next-generation
models support the `low_latency` parameter, and all large speech models and
next-generation models support the `character_insertion_bias` parameter. These
parameters are not available with previous-generation models.
Large speech models and next-generation models do not support all of the speech
recognition parameters that are available for use with previous-generation models.
Next-generation models do not support the following parameters:
* `acoustic_customization_id`
* `keywords` and `keywords_threshold`
* `processing_metrics` and `processing_metrics_interval`
* `word_alternatives_threshold`
**Important:** Effective **31 July 2023**, all previous-generation models will be
removed from the service and the documentation. Most previous-generation models
were deprecated on 15 March 2022. You must migrate to the equivalent large speech
model or next-generation model by 31 July 2023. For more information, see
[Migrating to large speech
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-migrate).
**See also:**
* [Large speech languages and
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-large-speech-languages)
* [Supported features for large speech
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-large-speech-languages#models-lsm-supported-features)
* [Next-generation languages and
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-ng)
* [Supported features for next-generation
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-ng#models-ng-features).
:param str name: A user-defined name for the new custom language model. Use
a localized name that matches the language of the custom model. Use a name
that describes the domain of the custom model, such as `Medical custom
model` or `Legal custom model`. Use a name that is unique among all custom
language models that you own.
Include a maximum of 256 characters in the name. Do not use backslashes,
slashes, colons, equal signs, ampersands, or question marks in the name.
:param str base_model_name: The name of the base language model that is to
be customized by the new custom language model. The new custom model can be
used only with the base model that it customizes.
To determine whether a base model supports language model customization,
use the [Get a model](#getmodel) method and check that the attribute
`custom_language_model` is set to `true`. You can also refer to [Language
support for
customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).
:param str dialect: (optional) The dialect of the specified language that
is to be used with the custom language model. _For all languages, it is
always safe to omit this field._ The service automatically uses the
language identifier from the name of the base model. For example, the
service automatically uses `en-US` for all US English models.
If you specify the `dialect` for a new custom model, follow these
guidelines. _For non-Spanish previous-generation models and for
next-generation models,_ you must specify a value that matches the
five-character language identifier from the name of the base model. _For
Spanish previous-generation models,_ you must specify one of the following
values:
* `es-ES` for Castilian Spanish (`es-ES` models)
* `es-LA` for Latin American Spanish (`es-AR`, `es-CL`, `es-CO`, and
`es-PE` models)
* `es-US` for Mexican (North American) Spanish (`es-MX` models)
All values that you pass for the `dialect` field are case-insensitive.
:param str description: (optional) A recommended description of the new
custom language model. Use a localized description that matches the
language of the custom model. Include a maximum of 128 characters in the
description.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `LanguageModel` object
"""
if name is None:
raise ValueError('name must be provided')
if base_model_name is None:
raise ValueError('base_model_name must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='create_language_model',
)
headers.update(sdk_headers)
data = {
'name': name,
'base_model_name': base_model_name,
'dialect': dialect,
'description': description,
}
data = {k: v for (k, v) in data.items() if v is not None}
data = json.dumps(data)
headers['content-type'] = 'application/json'
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
url = '/v1/customizations'
request = self.prepare_request(
method='POST',
url=url,
headers=headers,
data=data,
)
response = self.send(request, **kwargs)
return response
def list_language_models(
self,
*,
language: Optional[str] = None,
**kwargs,
) -> DetailedResponse:
"""
List custom language models.
Lists information about all custom language models that are owned by an instance
of the service. Use the `language` parameter to see all custom language models for
the specified language. Omit the parameter to see all custom language models for
all languages. You must use credentials for the instance of the service that owns
a model to list information about it.
**See also:**
* [Listing custom language
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageLanguageModels#listModels-language)
* [Language support for
customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).
:param str language: (optional) The identifier of the language for which
custom language or custom acoustic models are to be returned. Specify the
five-character language identifier; for example, specify `en-US` to see all
custom language or custom acoustic models that are based on US English
models. Omit the parameter to see all custom language or custom acoustic
models that are owned by the requesting credentials.
To determine the languages for which customization is available, see
[Language support for
customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `LanguageModels` object
"""
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='list_language_models',
)
headers.update(sdk_headers)
params = {
'language': language,
}
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
url = '/v1/customizations'
request = self.prepare_request(
method='GET',
url=url,
headers=headers,
params=params,
)
response = self.send(request, **kwargs)
return response
def get_language_model(
self,
customization_id: str,
**kwargs,
) -> DetailedResponse:
"""
Get a custom language model.
Gets information about a specified custom language model. You must use credentials
for the instance of the service that owns a model to list information about it.
**See also:**
* [Listing custom language
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageLanguageModels#listModels-language)
* [Language support for
customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).
:param str customization_id: The customization ID (GUID) of the custom
language model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `LanguageModel` object
"""
if not customization_id:
raise ValueError('customization_id must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='get_language_model',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id']
path_param_values = self.encode_path_vars(customization_id)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/customizations/{customization_id}'.format(**path_param_dict)
request = self.prepare_request(
method='GET',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
def delete_language_model(
self,
customization_id: str,
**kwargs,
) -> DetailedResponse:
"""
Delete a custom language model.
Deletes an existing custom language model. The custom model cannot be deleted if
another request, such as adding a corpus or grammar to the model, is currently
being processed. You must use credentials for the instance of the service that
owns a model to delete it.
**See also:**
* [Deleting a custom language
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageLanguageModels#deleteModel-language)
* [Language support for
customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).
:param str customization_id: The customization ID (GUID) of the custom
language model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse
"""
if not customization_id:
raise ValueError('customization_id must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='delete_language_model',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id']
path_param_values = self.encode_path_vars(customization_id)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/customizations/{customization_id}'.format(**path_param_dict)
request = self.prepare_request(
method='DELETE',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
def train_language_model(
self,
customization_id: str,
*,
word_type_to_add: Optional[str] = None,
customization_weight: Optional[float] = None,
strict: Optional[bool] = None,
force: Optional[bool] = None,
**kwargs,
) -> DetailedResponse:
"""
Train a custom language model.
Initiates the training of a custom language model with new resources such as
corpora, grammars, and custom words. After adding, modifying, or deleting
resources for a custom language model, use this method to begin the actual
training of the model on the latest data. You can specify whether the custom
language model is to be trained with all words from its words resource or only
with words that were added or modified by the user directly. You must use
credentials for the instance of the service that owns a model to train it.
The training method is asynchronous. It can take on the order of minutes to
complete depending on the amount of data on which the service is being trained and
the current load on the service. The method returns an HTTP 200 response code to
indicate that the training process has begun.
You can monitor the status of the training by using the [Get a custom language
model](#getlanguagemodel) method to poll the model's status. Use a loop to check
the status every 10 seconds. If you added custom words directly to a custom model
that is based on a next-generation model, allow for some minutes of extra training
time for the model.
The method returns a `LanguageModel` object that includes `status` and `progress`
fields. A status of `available` means that the custom model is trained and ready
to use. The service cannot accept subsequent training requests or requests to add
new resources until the existing request completes.
For custom models that are based on improved base language models, training also
performs an automatic upgrade to a newer version of the base model. You do not
need to use the [Upgrade a custom language model](#upgradelanguagemodel) method to
perform the upgrade.
**See also:**
* [Language support for
customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support)
* [Train the custom language
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-languageCreate#trainModel-language)
* [Upgrading custom language models that are based on improved next-generation
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-upgrade#custom-upgrade-language-ng)
### Training failures
Training can fail to start for the following reasons:
* The service is currently handling another request for the custom model, such as
another training request or a request to add a corpus or grammar to the model.
* No training data have been added to the custom model.
* The custom model contains one or more invalid corpora, grammars, or words (for
example, a custom word has an invalid sounds-like pronunciation). You can correct
the invalid resources or set the `strict` parameter to `false` to exclude the
invalid resources from the training. The model must contain at least one valid
resource for training to succeed.
:param str customization_id: The customization ID (GUID) of the custom
language model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param str word_type_to_add: (optional) _For custom models that are based
on previous-generation models_, the type of words from the custom language
model's words resource on which to train the model:
* `all` (the default) trains the model on all new words, regardless of
whether they were extracted from corpora or grammars or were added or
modified by the user.
* `user` trains the model only on custom words that were added or modified
by the user directly. The model is not trained on new words extracted from
corpora or grammars.
_For custom models that are based on large speech models and
next-generation models_, the service ignores the `word_type_to_add`
parameter. The words resource contains only custom words that the user adds
or modifies directly, so the parameter is unnecessary.
:param float customization_weight: (optional) Specifies a customization
weight for the custom language model. The customization weight tells the
service how much weight to give to words from the custom language model
compared to those from the base model for speech recognition. Specify a
value between 0.0 and 1.0. The default value is:
* 0.5 for large speech models
* 0.3 for previous-generation models
* 0.2 for most next-generation models
* 0.1 for next-generation English and Japanese models
The default value yields the best performance in general. Assign a higher
value if your audio makes frequent use of OOV words from the custom model.
Use caution when setting the weight: a higher value can improve the
accuracy of phrases from the custom model's domain, but it can negatively
affect performance on non-domain phrases.
The value that you assign is used for all recognition requests that use the
model. You can override it for any recognition request by specifying a
customization weight for that request.
See [Using customization
weight](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-languageUse#weight).
:param bool strict: (optional) If `false`, allows training of the custom
language model to proceed as long as the model contains at least one valid
resource. The method returns an array of `TrainingWarning` objects that
lists any invalid resources. By default (`true`), training of a custom
language model fails (status code 400) if the model contains one or more
invalid resources (corpus files, grammar files, or custom words).
:param bool force: (optional) If `true`, forces the training of the custom
language model regardless of whether it contains any changes (is in the
`ready` or `available` state). By default (`false`), the model must be in
the `ready` state to be trained. You can use the parameter to train and
thus upgrade a custom model that is based on an improved next-generation
model. *The parameter is available only for IBM Cloud, not for IBM Cloud
Pak for Data.*
See [Upgrading a custom language model based on an improved next-generation
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-upgrade#custom-upgrade-language-ng).
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `TrainingResponse` object
"""
if not customization_id:
raise ValueError('customization_id must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='train_language_model',
)
headers.update(sdk_headers)
params = {
'word_type_to_add': word_type_to_add,
'customization_weight': customization_weight,
'strict': strict,
'force': force,
}
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id']
path_param_values = self.encode_path_vars(customization_id)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/customizations/{customization_id}/train'.format(
**path_param_dict)
request = self.prepare_request(
method='POST',
url=url,
headers=headers,
params=params,
)
response = self.send(request, **kwargs)
return response
def reset_language_model(
self,
customization_id: str,
**kwargs,
) -> DetailedResponse:
"""
Reset a custom language model.
Resets a custom language model by removing all corpora, grammars, and words from
the model. Resetting a custom language model initializes the model to its state
when it was first created. Metadata such as the name and language of the model are
preserved, but the model's words resource is removed and must be re-created. You
must use credentials for the instance of the service that owns a model to reset
it.
**See also:**
* [Resetting a custom language
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageLanguageModels#resetModel-language)
* [Language support for
customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).
:param str customization_id: The customization ID (GUID) of the custom
language model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse
"""
if not customization_id:
raise ValueError('customization_id must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='reset_language_model',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id']
path_param_values = self.encode_path_vars(customization_id)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/customizations/{customization_id}/reset'.format(
**path_param_dict)
request = self.prepare_request(
method='POST',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
def upgrade_language_model(
self,
customization_id: str,
**kwargs,
) -> DetailedResponse:
"""
Upgrade a custom language model.
Initiates the upgrade of a custom language model to the latest version of its base
language model. The upgrade method is asynchronous. It can take on the order of
minutes to complete depending on the amount of data in the custom model and the
current load on the service. A custom model must be in the `ready` or `available`
state to be upgraded. You must use credentials for the instance of the service
that owns a model to upgrade it.
The method returns an HTTP 200 response code to indicate that the upgrade process
has begun successfully. You can monitor the status of the upgrade by using the
[Get a custom language model](#getlanguagemodel) method to poll the model's
status. The method returns a `LanguageModel` object that includes `status` and
`progress` fields. Use a loop to check the status every 10 seconds.
While it is being upgraded, the custom model has the status `upgrading`. When the
upgrade is complete, the model resumes the status that it had prior to upgrade.
The service cannot accept subsequent requests for the model until the upgrade
completes.
For custom models that are based on improved base language models, the [Train a
custom language model](#trainlanguagemodel) method also performs an automatic
upgrade to a newer version of the base model. You do not need to use the upgrade
method.
**See also:**
* [Language support for
customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support)
* [Upgrading a custom language
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-upgrade#custom-upgrade-language)
* [Upgrading custom language models that are based on improved next-generation
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-upgrade#custom-upgrade-language-ng).
:param str customization_id: The customization ID (GUID) of the custom
language model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse
"""
if not customization_id:
raise ValueError('customization_id must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='upgrade_language_model',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id']
path_param_values = self.encode_path_vars(customization_id)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/customizations/{customization_id}/upgrade_model'.format(
**path_param_dict)
request = self.prepare_request(
method='POST',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
#########################
# Custom corpora
#########################
def list_corpora(
self,
customization_id: str,
**kwargs,
) -> DetailedResponse:
"""
List corpora.
Lists information about all corpora from a custom language model. The information
includes the name, status, and total number of words for each corpus. _For custom
models that are based on previous-generation models_, it also includes the number
of out-of-vocabulary (OOV) words from the corpus. You must use credentials for the
instance of the service that owns a model to list its corpora.
**See also:** [Listing corpora for a custom language
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageCorpora#listCorpora).
:param str customization_id: The customization ID (GUID) of the custom
language model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `Corpora` object
"""
if not customization_id:
raise ValueError('customization_id must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='list_corpora',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id']
path_param_values = self.encode_path_vars(customization_id)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/customizations/{customization_id}/corpora'.format(
**path_param_dict)
request = self.prepare_request(
method='GET',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
def add_corpus(
self,
customization_id: str,
corpus_name: str,
corpus_file: BinaryIO,
*,
allow_overwrite: Optional[bool] = None,
**kwargs,
) -> DetailedResponse:
"""
Add a corpus.
Adds a single corpus text file of new training data to a custom language model.
Use multiple requests to submit multiple corpus text files. You must use
credentials for the instance of the service that owns a model to add a corpus to
it. Adding a corpus does not affect the custom language model until you train the
model for the new data by using the [Train a custom language
model](#trainlanguagemodel) method.
Submit a plain text file that contains sample sentences from the domain of
interest to enable the service to parse the words in context. The more sentences
you add that represent the context in which speakers use words from the domain,
the better the service's recognition accuracy.
The call returns an HTTP 201 response code if the corpus is valid. The service
then asynchronously processes and automatically extracts data from the contents of
the corpus. This operation can take on the order of minutes to complete depending
on the current load on the service, the total number of words in the corpus, and,
_for custom models that are based on previous-generation models_, the number of
new (out-of-vocabulary) words in the corpus. You cannot submit requests to add
additional resources to the custom model or to train the model until the service's
analysis of the corpus for the current request completes. Use the [Get a
corpus](#getcorpus) method to check the status of the analysis.
_For custom models that are based on large speech models_, the service parses and
extracts word sequences from one or multiple corpora files. The characters help
the service learn and predict character sequences from audio.
_For custom models that are based on previous-generation models_, the service
auto-populates the model's words resource with words from the corpus that are not
found in its base vocabulary. These words are referred to as out-of-vocabulary
(OOV) words. After adding a corpus, you must validate the words resource to ensure
that each OOV word's definition is complete and valid. You can use the [List
custom words](#listwords) method to examine the words resource. You can use other
words method to eliminate typos and modify how words are pronounced and displayed
as needed.
To add a corpus file that has the same name as an existing corpus, set the
`allow_overwrite` parameter to `true`; otherwise, the request fails. Overwriting
an existing corpus causes the service to process the corpus text file and extract
its data anew. _For a custom model that is based on a previous-generation model_,
the service first removes any OOV words that are associated with the existing
corpus from the model's words resource unless they were also added by another
corpus or grammar, or they have been modified in some way with the [Add custom
words](#addwords) or [Add a custom word](#addword) method.
The service limits the overall amount of data that you can add to a custom model
to a maximum of 10 million total words from all sources combined. _For a custom
model that is based on a previous-generation model_, you can add no more than 90
thousand custom (OOV) words to a model. This includes words that the service
extracts from corpora and grammars, and words that you add directly.
**See also:**
* [Add a corpus to the custom language
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-languageCreate#addCorpus)
* [Working with corpora for previous-generation
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords#workingCorpora)
* [Working with corpora for large speech models and next-generation
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords-ng#workingCorpora-ng)
* [Validating a words resource for previous-generation
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords#validateModel)
* [Validating a words resource for large speech models and next-generation
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords-ng#validateModel-ng).
:param str customization_id: The customization ID (GUID) of the custom
language model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param str corpus_name: The name of the new corpus for the custom language
model. Use a localized name that matches the language of the custom model
and reflects the contents of the corpus.
* Include a maximum of 128 characters in the name.
* Do not use characters that need to be URL-encoded. For example, do not
use spaces, slashes, backslashes, colons, ampersands, double quotes, plus
signs, equals signs, questions marks, and so on in the name. (The service
does not prevent the use of these characters. But because they must be
URL-encoded wherever used, their use is strongly discouraged.)
* Do not use the name of an existing corpus or grammar that is already
defined for the custom model.
* Do not use the name `user`, which is reserved by the service to denote
custom words that are added or modified by the user.
* Do not use the name `base_lm` or `default_lm`. Both names are reserved
for future use by the service.
:param BinaryIO corpus_file: A plain text file that contains the training
data for the corpus. Encode the file in UTF-8 if it contains non-ASCII
characters; the service assumes UTF-8 encoding if it encounters non-ASCII
characters.
Make sure that you know the character encoding of the file. You must use
that same encoding when working with the words in the custom language
model. For more information, see [Character encoding for custom
words](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageWords#charEncoding).
With the `curl` command, use the `--data-binary` option to upload the file
for the request.
:param bool allow_overwrite: (optional) If `true`, the specified corpus
overwrites an existing corpus with the same name. If `false`, the request
fails if a corpus with the same name already exists. The parameter has no
effect if a corpus with the same name does not already exist.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse
"""
if not customization_id:
raise ValueError('customization_id must be provided')
if not corpus_name:
raise ValueError('corpus_name must be provided')
if corpus_file is None:
raise ValueError('corpus_file must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='add_corpus',
)
headers.update(sdk_headers)
params = {
'allow_overwrite': allow_overwrite,
}
form_data = []
form_data.append(('corpus_file', (None, corpus_file, 'text/plain')))
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id', 'corpus_name']
path_param_values = self.encode_path_vars(customization_id, corpus_name)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/customizations/{customization_id}/corpora/{corpus_name}'.format(
**path_param_dict)
request = self.prepare_request(
method='POST',
url=url,
headers=headers,
params=params,
files=form_data,
)
response = self.send(request, **kwargs)
return response
def get_corpus(
self,
customization_id: str,
corpus_name: str,
**kwargs,
) -> DetailedResponse:
"""
Get a corpus.
Gets information about a corpus from a custom language model. The information
includes the name, status, and total number of words for the corpus. _For custom
models that are based on previous-generation models_, it also includes the number
of out-of-vocabulary (OOV) words from the corpus. You must use credentials for the
instance of the service that owns a model to list its corpora.
**See also:** [Listing corpora for a custom language
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageCorpora#listCorpora).
:param str customization_id: The customization ID (GUID) of the custom
language model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param str corpus_name: The name of the corpus for the custom language
model.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `Corpus` object
"""
if not customization_id:
raise ValueError('customization_id must be provided')
if not corpus_name:
raise ValueError('corpus_name must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='get_corpus',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id', 'corpus_name']
path_param_values = self.encode_path_vars(customization_id, corpus_name)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/customizations/{customization_id}/corpora/{corpus_name}'.format(
**path_param_dict)
request = self.prepare_request(
method='GET',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
def delete_corpus(
self,
customization_id: str,
corpus_name: str,
**kwargs,
) -> DetailedResponse:
"""
Delete a corpus.
Deletes an existing corpus from a custom language model. Removing a corpus does
not affect the custom model until you train the model with the [Train a custom
language model](#trainlanguagemodel) method. You must use credentials for the
instance of the service that owns a model to delete its corpora.
_For custom models that are based on previous-generation models_, the service
removes any out-of-vocabulary (OOV) words that are associated with the corpus from
the custom model's words resource unless they were also added by another corpus or
grammar, or they were modified in some way with the [Add custom words](#addwords)
or [Add a custom word](#addword) method.
**See also:** [Deleting a corpus from a custom language
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageCorpora#deleteCorpus).
:param str customization_id: The customization ID (GUID) of the custom
language model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param str corpus_name: The name of the corpus for the custom language
model.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse
"""
if not customization_id:
raise ValueError('customization_id must be provided')
if not corpus_name:
raise ValueError('corpus_name must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='delete_corpus',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id', 'corpus_name']
path_param_values = self.encode_path_vars(customization_id, corpus_name)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/customizations/{customization_id}/corpora/{corpus_name}'.format(
**path_param_dict)
request = self.prepare_request(
method='DELETE',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
#########################
# Custom words
#########################
def list_words(
self,
customization_id: str,
*,
word_type: Optional[str] = None,
sort: Optional[str] = None,
**kwargs,
) -> DetailedResponse:
"""
List custom words.
Lists information about custom words from a custom language model. You can list
all words from the custom model's words resource, only custom words that were
added or modified by the user, or, _for a custom model that is based on a
previous-generation model_, only out-of-vocabulary (OOV) words that were extracted
from corpora or are recognized by grammars. _For a custom model that is based on a
next-generation model_, you can list all words or only those words that were added
directly by a user, which return the same results.
You can also indicate the order in which the service is to return words; by
default, the service lists words in ascending alphabetical order. You must use
credentials for the instance of the service that owns a model to list information
about its words.
**See also:** [Listing words from a custom language
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageWords#listWords).
:param str customization_id: The customization ID (GUID) of the custom
language model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param str word_type: (optional) The type of words to be listed from the
custom language model's words resource:
* `all` (the default) shows all words.
* `user` shows only custom words that were added or modified by the user
directly.
* `corpora` shows only OOV that were extracted from corpora.
* `grammars` shows only OOV words that are recognized by grammars.
_For a custom model that is based on a next-generation model_, only `all`
and `user` apply. Both options return the same results. Words from other
sources are not added to custom models that are based on next-generation
models.
:param str sort: (optional) Indicates the order in which the words are to
be listed, `alphabetical` or by `count`. You can prepend an optional `+` or
`-` to an argument to indicate whether the results are to be sorted in
ascending or descending order. By default, words are sorted in ascending
alphabetical order. For alphabetical ordering, the lexicographical
precedence is numeric values, uppercase letters, and lowercase letters. For
count ordering, values with the same count are ordered alphabetically. With
the `curl` command, URL-encode the `+` symbol as `%2B`.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `Words` object
"""
if not customization_id:
raise ValueError('customization_id must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='list_words',
)
headers.update(sdk_headers)
params = {
'word_type': word_type,
'sort': sort,
}
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id']
path_param_values = self.encode_path_vars(customization_id)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/customizations/{customization_id}/words'.format(
**path_param_dict)
request = self.prepare_request(
method='GET',
url=url,
headers=headers,
params=params,
)
response = self.send(request, **kwargs)
return response
def add_words(
self,
customization_id: str,
words: List['CustomWord'],
**kwargs,
) -> DetailedResponse:
"""
Add custom words.
Adds one or more custom words to a custom language model. You can use this method
to add words or to modify existing words in a custom model's words resource. _For
custom models that are based on previous-generation models_, the service populates
the words resource for a custom model with out-of-vocabulary (OOV) words from each
corpus or grammar that is added to the model. You can use this method to modify
OOV words in the model's words resource.
_For a custom model that is based on a previous-generation model_, the words
resource for a model can contain a maximum of 90 thousand custom (OOV) words. This
includes words that the service extracts from corpora and grammars and words that
you add directly.
You must use credentials for the instance of the service that owns a model to add
or modify custom words for the model. Adding or modifying custom words does not
affect the custom model until you train the model for the new data by using the
[Train a custom language model](#trainlanguagemodel) method.
You add custom words by providing a `CustomWords` object, which is an array of
`CustomWord` objects, one per word. Use the object's `word` parameter to identify
the word that is to be added. You can also provide one or both of the optional
`display_as` or `sounds_like` fields for each word.
* The `display_as` field provides a different way of spelling the word in a
transcript. Use the parameter when you want the word to appear different from its
usual representation or from its spelling in training data. For example, you might
indicate that the word `IBM` is to be displayed as `IBM™`.
* The `sounds_like` field provides an array of one or more pronunciations for the
word. Use the parameter to specify how the word can be pronounced by users. Use
the parameter for words that are difficult to pronounce, foreign words, acronyms,
and so on. For example, you might specify that the word `IEEE` can sound like `I
triple E`. You can specify a maximum of five sounds-like pronunciations for a
word. _For a custom model that is based on a previous-generation model_, if you
omit the `sounds_like` field, the service attempts to set the field to its
pronunciation of the word. It cannot generate a pronunciation for all words, so
you must review the word's definition to ensure that it is complete and valid.
* The `mapping_only` field provides parameter for custom words. You can use the
'mapping_only' key in custom words as a form of post processing. This key
parameter has a boolean value to determine whether 'sounds_like' (for non-Japanese
models) or word (for Japanese) is not used for the model fine-tuning, but for the
replacement for 'display_as'. This feature helps you when you use custom words
exclusively to map 'sounds_like' (or word) to 'display_as' value. When you use
custom words solely for post-processing purposes that does not need fine-tuning.
If you add a custom word that already exists in the words resource for the custom
model, the new definition overwrites the existing data for the word. If the
service encounters an error with the input data, it returns a failure code and
does not add any of the words to the words resource.
The call returns an HTTP 201 response code if the input data is valid. It then
asynchronously processes the words to add them to the model's words resource. The
time that it takes for the analysis to complete depends on the number of new words
that you add but is generally faster than adding a corpus or grammar.
You can monitor the status of the request by using the [Get a custom language
model](#getlanguagemodel) method to poll the model's status. Use a loop to check
the status every 10 seconds. The method returns a `Customization` object that
includes a `status` field. A status of `ready` means that the words have been
added to the custom model. The service cannot accept requests to add new data or
to train the model until the existing request completes.
You can use the [List custom words](#listwords) or [Get a custom word](#getword)
method to review the words that you add. Words with an invalid `sounds_like` field
include an `error` field that describes the problem. You can use other
words-related methods to correct errors, eliminate typos, and modify how words are
pronounced as needed.
**See also:**
* [Add words to the custom language
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-languageCreate#addWords)
* [Working with custom words for previous-generation
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords#workingWords)
* [Working with custom words for large speech models and next-generation
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords-ng#workingWords-ng)
* [Validating a words resource for previous-generation
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords#validateModel)
* [Validating a words resource for large speech models and next-generation
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords-ng#validateModel-ng).
:param str customization_id: The customization ID (GUID) of the custom
language model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param List[CustomWord] words: An array of `CustomWord` objects that
provides information about each custom word that is to be added to or
updated in the custom language model.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse
"""
if not customization_id:
raise ValueError('customization_id must be provided')
if words is None:
raise ValueError('words must be provided')
words = [convert_model(x) for x in words]
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='add_words',
)
headers.update(sdk_headers)
data = {
'words': words,
}
data = {k: v for (k, v) in data.items() if v is not None}
data = json.dumps(data)
headers['content-type'] = 'application/json'
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id']
path_param_values = self.encode_path_vars(customization_id)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/customizations/{customization_id}/words'.format(
**path_param_dict)
request = self.prepare_request(
method='POST',
url=url,
headers=headers,
data=data,
)
response = self.send(request, **kwargs)
return response
def add_word(
self,
customization_id: str,
word_name: str,
*,
word: Optional[str] = None,
mapping_only: Optional[List[str]] = None,
sounds_like: Optional[List[str]] = None,
display_as: Optional[str] = None,
**kwargs,
) -> DetailedResponse:
"""
Add a custom word.
Adds a custom word to a custom language model. You can use this method to add a
word or to modify an existing word in the words resource. _For custom models that
are based on previous-generation models_, the service populates the words resource
for a custom model with out-of-vocabulary (OOV) words from each corpus or grammar
that is added to the model. You can use this method to modify OOV words in the
model's words resource.
_For a custom model that is based on a previous-generation models_, the words
resource for a model can contain a maximum of 90 thousand custom (OOV) words. This
includes words that the service extracts from corpora and grammars and words that
you add directly.
You must use credentials for the instance of the service that owns a model to add
or modify a custom word for the model. Adding or modifying a custom word does not
affect the custom model until you train the model for the new data by using the
[Train a custom language model](#trainlanguagemodel) method.
Use the `word_name` parameter to specify the custom word that is to be added or
modified. Use the `CustomWord` object to provide one or both of the optional
`display_as` or `sounds_like` fields for the word.
* The `display_as` field provides a different way of spelling the word in a
transcript. Use the parameter when you want the word to appear different from its
usual representation or from its spelling in training data. For example, you might
indicate that the word `IBM` is to be displayed as `IBM™`.
* The `sounds_like` field provides an array of one or more pronunciations for the
word. Use the parameter to specify how the word can be pronounced by users. Use
the parameter for words that are difficult to pronounce, foreign words, acronyms,
and so on. For example, you might specify that the word `IEEE` can sound like `i
triple e`. You can specify a maximum of five sounds-like pronunciations for a
word. _For custom models that are based on previous-generation models_, if you
omit the `sounds_like` field, the service attempts to set the field to its
pronunciation of the word. It cannot generate a pronunciation for all words, so
you must review the word's definition to ensure that it is complete and valid.
If you add a custom word that already exists in the words resource for the custom
model, the new definition overwrites the existing data for the word. If the
service encounters an error, it does not add the word to the words resource. Use
the [Get a custom word](#getword) method to review the word that you add.
**See also:**
* [Add words to the custom language
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-languageCreate#addWords)
* [Working with custom words for previous-generation
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords#workingWords)
* [Working with custom words for large speech models and next-generation
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords-ng#workingWords-ng)
* [Validating a words resource for previous-generation
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords#validateModel)
* [Validating a words resource for large speech models and next-generation
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords-ng#validateModel-ng).
:param str customization_id: The customization ID (GUID) of the custom
language model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param str word_name: The custom word that is to be added to or updated in
the custom language model. Do not use characters that need to be
URL-encoded, for example, spaces, slashes, backslashes, colons, ampersands,
double quotes, plus signs, equals signs, or question marks. Use a `-`
(dash) or `_` (underscore) to connect the tokens of compound words.
URL-encode the word if it includes non-ASCII characters. For more
information, see [Character
encoding](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords#charEncoding).
:param str word: (optional) For the [Add custom words](#addwords) method,
you must specify the custom word that is to be added to or updated in the
custom model. Do not use characters that need to be URL-encoded, for
example, spaces, slashes, backslashes, colons, ampersands, double quotes,
plus signs, equals signs, or question marks. Use a `-` (dash) or `_`
(underscore) to connect the tokens of compound words. A Japanese custom
word can include at most 25 characters, not including leading or trailing
spaces.
Omit this parameter for the [Add a custom word](#addword) method.
:param List[str] mapping_only: (optional) Parameter for custom words. You
can use the 'mapping_only' key in custom words as a form of post
processing. This key parameter has a boolean value to determine whether
'sounds_like' (for non-Japanese models) or word (for Japanese) is not used
for the model fine-tuning, but for the replacement for 'display_as'. This
feature helps you when you use custom words exclusively to map
'sounds_like' (or word) to 'display_as' value. When you use custom words
solely for post-processing purposes that does not need fine-tuning.
:param List[str] sounds_like: (optional) As array of sounds-like
pronunciations for the custom word. Specify how words that are difficult to
pronounce, foreign words, acronyms, and so on can be pronounced by users.
* _For custom models that are based on previous-generation models_, for a
word that is not in the service's base vocabulary, omit the parameter to
have the service automatically generate a sounds-like pronunciation for the
word.
* For a word that is in the service's base vocabulary, use the parameter to
specify additional pronunciations for the word. You cannot override the
default pronunciation of a word; pronunciations you add augment the
pronunciation from the base vocabulary.
A word can have at most five sounds-like pronunciations. A pronunciation
can include at most 40 characters, not including leading or trailing
spaces. A Japanese pronunciation can include at most 25 characters, not
including leading or trailing spaces.
:param str display_as: (optional) An alternative spelling for the custom
word when it appears in a transcript. Use the parameter when you want the
word to have a spelling that is different from its usual representation or
from its spelling in corpora training data.
_For custom models that are based on next-generation models_, the service
uses the spelling of the word as the display-as value if you omit the
field.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse
"""
if not customization_id:
raise ValueError('customization_id must be provided')
if not word_name:
raise ValueError('word_name must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='add_word',
)
headers.update(sdk_headers)
data = {
'word': word,
'mapping_only': mapping_only,
'sounds_like': sounds_like,
'display_as': display_as,
}
data = {k: v for (k, v) in data.items() if v is not None}
data = json.dumps(data)
headers['content-type'] = 'application/json'
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id', 'word_name']
path_param_values = self.encode_path_vars(customization_id, word_name)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/customizations/{customization_id}/words/{word_name}'.format(
**path_param_dict)
request = self.prepare_request(
method='PUT',
url=url,
headers=headers,
data=data,
)
response = self.send(request, **kwargs)
return response
def get_word(
self,
customization_id: str,
word_name: str,
**kwargs,
) -> DetailedResponse:
"""
Get a custom word.
Gets information about a custom word from a custom language model. You must use
credentials for the instance of the service that owns a model to list information
about its words.
**See also:** [Listing words from a custom language
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageWords#listWords).
:param str customization_id: The customization ID (GUID) of the custom
language model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param str word_name: The custom word that is to be read from the custom
language model. URL-encode the word if it includes non-ASCII characters.
For more information, see [Character
encoding](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords#charEncoding).
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `Word` object
"""
if not customization_id:
raise ValueError('customization_id must be provided')
if not word_name:
raise ValueError('word_name must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='get_word',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id', 'word_name']
path_param_values = self.encode_path_vars(customization_id, word_name)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/customizations/{customization_id}/words/{word_name}'.format(
**path_param_dict)
request = self.prepare_request(
method='GET',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
def delete_word(
self,
customization_id: str,
word_name: str,
**kwargs,
) -> DetailedResponse:
"""
Delete a custom word.
Deletes a custom word from a custom language model. You can remove any word that
you added to the custom model's words resource via any means. However, if the word
also exists in the service's base vocabulary, the service removes the word only
from the words resource; the word remains in the base vocabulary. Removing a
custom word does not affect the custom model until you train the model with the
[Train a custom language model](#trainlanguagemodel) method. You must use
credentials for the instance of the service that owns a model to delete its words.
**See also:** [Deleting a word from a custom language
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageWords#deleteWord).
:param str customization_id: The customization ID (GUID) of the custom
language model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param str word_name: The custom word that is to be deleted from the custom
language model. URL-encode the word if it includes non-ASCII characters.
For more information, see [Character
encoding](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-corporaWords#charEncoding).
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse
"""
if not customization_id:
raise ValueError('customization_id must be provided')
if not word_name:
raise ValueError('word_name must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='delete_word',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id', 'word_name']
path_param_values = self.encode_path_vars(customization_id, word_name)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/customizations/{customization_id}/words/{word_name}'.format(
**path_param_dict)
request = self.prepare_request(
method='DELETE',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
#########################
# Custom grammars
#########################
def list_grammars(
self,
customization_id: str,
**kwargs,
) -> DetailedResponse:
"""
List grammars.
Lists information about all grammars from a custom language model. For each
grammar, the information includes the name, status, and (for grammars that are
based on previous-generation models) the total number of out-of-vocabulary (OOV)
words. You must use credentials for the instance of the service that owns a model
to list its grammars.
**See also:**
* [Listing grammars from a custom language
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageGrammars#listGrammars)
* [Language support for
customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).
:param str customization_id: The customization ID (GUID) of the custom
language model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `Grammars` object
"""
if not customization_id:
raise ValueError('customization_id must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='list_grammars',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id']
path_param_values = self.encode_path_vars(customization_id)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/customizations/{customization_id}/grammars'.format(
**path_param_dict)
request = self.prepare_request(
method='GET',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
def add_grammar(
self,
customization_id: str,
grammar_name: str,
grammar_file: BinaryIO,
content_type: str,
*,
allow_overwrite: Optional[bool] = None,
**kwargs,
) -> DetailedResponse:
"""
Add a grammar.
Adds a single grammar file to a custom language model. Submit a plain text file in
UTF-8 format that defines the grammar. Use multiple requests to submit multiple
grammar files. You must use credentials for the instance of the service that owns
a model to add a grammar to it. Adding a grammar does not affect the custom
language model until you train the model for the new data by using the [Train a
custom language model](#trainlanguagemodel) method.
The call returns an HTTP 201 response code if the grammar is valid. The service
then asynchronously processes the contents of the grammar and automatically
extracts new words that it finds. This operation can take a few seconds or minutes
to complete depending on the size and complexity of the grammar, as well as the
current load on the service. You cannot submit requests to add additional
resources to the custom model or to train the model until the service's analysis
of the grammar for the current request completes. Use the [Get a
grammar](#getgrammar) method to check the status of the analysis.
_For grammars that are based on previous-generation models,_ the service populates
the model's words resource with any word that is recognized by the grammar that is
not found in the model's base vocabulary. These are referred to as
out-of-vocabulary (OOV) words. You can use the [List custom words](#listwords)
method to examine the words resource and use other words-related methods to
eliminate typos and modify how words are pronounced as needed. _For grammars that
are based on next-generation models,_ the service extracts no OOV words from the
grammars.
To add a grammar that has the same name as an existing grammar, set the
`allow_overwrite` parameter to `true`; otherwise, the request fails. Overwriting
an existing grammar causes the service to process the grammar file and extract OOV
words anew. Before doing so, it removes any OOV words associated with the existing
grammar from the model's words resource unless they were also added by another
resource or they have been modified in some way with the [Add custom
words](#addwords) or [Add a custom word](#addword) method.
_For grammars that are based on previous-generation models,_ the service limits
the overall amount of data that you can add to a custom model to a maximum of 10
million total words from all sources combined. Also, you can add no more than 90
thousand OOV words to a model. This includes words that the service extracts from
corpora and grammars and words that you add directly.
**See also:**
* [Understanding
grammars](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-grammarUnderstand#grammarUnderstand)
* [Add a grammar to the custom language
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-grammarAdd#addGrammar)
* [Language support for
customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).
:param str customization_id: The customization ID (GUID) of the custom
language model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param str grammar_name: The name of the new grammar for the custom
language model. Use a localized name that matches the language of the
custom model and reflects the contents of the grammar.
* Include a maximum of 128 characters in the name.
* Do not use characters that need to be URL-encoded. For example, do not
use spaces, slashes, backslashes, colons, ampersands, double quotes, plus
signs, equals signs, questions marks, and so on in the name. (The service
does not prevent the use of these characters. But because they must be
URL-encoded wherever used, their use is strongly discouraged.)
* Do not use the name of an existing grammar or corpus that is already
defined for the custom model.
* Do not use the name `user`, which is reserved by the service to denote
custom words that are added or modified by the user.
* Do not use the name `base_lm` or `default_lm`. Both names are reserved
for future use by the service.
:param BinaryIO grammar_file: A plain text file that contains the grammar
in the format specified by the `Content-Type` header. Encode the file in
UTF-8 (ASCII is a subset of UTF-8). Using any other encoding can lead to
issues when compiling the grammar or to unexpected results in decoding. The
service ignores an encoding that is specified in the header of the grammar.
With the `curl` command, use the `--data-binary` option to upload the file
for the request.
:param str content_type: The format (MIME type) of the grammar file:
* `application/srgs` for Augmented Backus-Naur Form (ABNF), which uses a
plain-text representation that is similar to traditional BNF grammars.
* `application/srgs+xml` for XML Form, which uses XML elements to represent
the grammar.
:param bool allow_overwrite: (optional) If `true`, the specified grammar
overwrites an existing grammar with the same name. If `false`, the request
fails if a grammar with the same name already exists. The parameter has no
effect if a grammar with the same name does not already exist.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse
"""
if not customization_id:
raise ValueError('customization_id must be provided')
if not grammar_name:
raise ValueError('grammar_name must be provided')
if grammar_file is None:
raise ValueError('grammar_file must be provided')
if not content_type:
raise ValueError('content_type must be provided')
headers = {
'Content-Type': content_type,
}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='add_grammar',
)
headers.update(sdk_headers)
params = {
'allow_overwrite': allow_overwrite,
}
data = grammar_file
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id', 'grammar_name']
path_param_values = self.encode_path_vars(customization_id,
grammar_name)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/customizations/{customization_id}/grammars/{grammar_name}'.format(
**path_param_dict)
request = self.prepare_request(
method='POST',
url=url,
headers=headers,
params=params,
data=data,
)
response = self.send(request, **kwargs)
return response
def get_grammar(
self,
customization_id: str,
grammar_name: str,
**kwargs,
) -> DetailedResponse:
"""
Get a grammar.
Gets information about a grammar from a custom language model. For each grammar,
the information includes the name, status, and (for grammars that are based on
previous-generation models) the total number of out-of-vocabulary (OOV) words. You
must use credentials for the instance of the service that owns a model to list its
grammars.
**See also:**
* [Listing grammars from a custom language
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageGrammars#listGrammars)
* [Language support for
customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).
:param str customization_id: The customization ID (GUID) of the custom
language model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param str grammar_name: The name of the grammar for the custom language
model.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `Grammar` object
"""
if not customization_id:
raise ValueError('customization_id must be provided')
if not grammar_name:
raise ValueError('grammar_name must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='get_grammar',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id', 'grammar_name']
path_param_values = self.encode_path_vars(customization_id,
grammar_name)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/customizations/{customization_id}/grammars/{grammar_name}'.format(
**path_param_dict)
request = self.prepare_request(
method='GET',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
def delete_grammar(
self,
customization_id: str,
grammar_name: str,
**kwargs,
) -> DetailedResponse:
"""
Delete a grammar.
Deletes an existing grammar from a custom language model. _For grammars that are
based on previous-generation models,_ the service removes any out-of-vocabulary
(OOV) words associated with the grammar from the custom model's words resource
unless they were also added by another resource or they were modified in some way
with the [Add custom words](#addwords) or [Add a custom word](#addword) method.
Removing a grammar does not affect the custom model until you train the model with
the [Train a custom language model](#trainlanguagemodel) method. You must use
credentials for the instance of the service that owns a model to delete its
grammar.
**See also:**
* [Deleting a grammar from a custom language
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageGrammars#deleteGrammar)
* [Language support for
customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).
:param str customization_id: The customization ID (GUID) of the custom
language model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param str grammar_name: The name of the grammar for the custom language
model.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse
"""
if not customization_id:
raise ValueError('customization_id must be provided')
if not grammar_name:
raise ValueError('grammar_name must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='delete_grammar',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id', 'grammar_name']
path_param_values = self.encode_path_vars(customization_id,
grammar_name)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/customizations/{customization_id}/grammars/{grammar_name}'.format(
**path_param_dict)
request = self.prepare_request(
method='DELETE',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
#########################
# Custom acoustic models
#########################
def create_acoustic_model(
self,
name: str,
base_model_name: str,
*,
description: Optional[str] = None,
**kwargs,
) -> DetailedResponse:
"""
Create a custom acoustic model.
Creates a new custom acoustic model for a specified base model. The custom
acoustic model can be used only with the base model for which it is created. The
model is owned by the instance of the service whose credentials are used to create
it.
You can create a maximum of 1024 custom acoustic models per owning credentials.
The service returns an error if you attempt to create more than 1024 models. You
do not lose any models, but you cannot create any more until your model count is
below the limit.
**Note:** Acoustic model customization is supported only for use with
previous-generation models. It is not supported for large speech models and
next-generation models.
**Important:** Effective **31 July 2023**, all previous-generation models will be
removed from the service and the documentation. Most previous-generation models
were deprecated on 15 March 2022. You must migrate to the equivalent large speech
model or next-generation model by 31 July 2023. For more information, see
[Migrating to large speech
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-migrate).
**See also:** [Create a custom acoustic
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-acoustic#createModel-acoustic).
:param str name: A user-defined name for the new custom acoustic model. Use
a localized name that matches the language of the custom model. Use a name
that describes the acoustic environment of the custom model, such as
`Mobile custom model` or `Noisy car custom model`. Use a name that is
unique among all custom acoustic models that you own.
Include a maximum of 256 characters in the name. Do not use backslashes,
slashes, colons, equal signs, ampersands, or question marks in the name.
:param str base_model_name: The name of the base language model that is to
be customized by the new custom acoustic model. The new custom model can be
used only with the base model that it customizes.
To determine whether a base model supports acoustic model customization,
refer to [Language support for
customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).
:param str description: (optional) A recommended description of the new
custom acoustic model. Use a localized description that matches the
language of the custom model. Include a maximum of 128 characters in the
description.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `AcousticModel` object
"""
if name is None:
raise ValueError('name must be provided')
if base_model_name is None:
raise ValueError('base_model_name must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='create_acoustic_model',
)
headers.update(sdk_headers)
data = {
'name': name,
'base_model_name': base_model_name,
'description': description,
}
data = {k: v for (k, v) in data.items() if v is not None}
data = json.dumps(data)
headers['content-type'] = 'application/json'
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
url = '/v1/acoustic_customizations'
request = self.prepare_request(
method='POST',
url=url,
headers=headers,
data=data,
)
response = self.send(request, **kwargs)
return response
def list_acoustic_models(
self,
*,
language: Optional[str] = None,
**kwargs,
) -> DetailedResponse:
"""
List custom acoustic models.
Lists information about all custom acoustic models that are owned by an instance
of the service. Use the `language` parameter to see all custom acoustic models for
the specified language. Omit the parameter to see all custom acoustic models for
all languages. You must use credentials for the instance of the service that owns
a model to list information about it.
**Note:** Acoustic model customization is supported only for use with
previous-generation models. It is not supported for large speech models and
next-generation models.
**See also:** [Listing custom acoustic
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageAcousticModels#listModels-acoustic).
:param str language: (optional) The identifier of the language for which
custom language or custom acoustic models are to be returned. Specify the
five-character language identifier; for example, specify `en-US` to see all
custom language or custom acoustic models that are based on US English
models. Omit the parameter to see all custom language or custom acoustic
models that are owned by the requesting credentials.
To determine the languages for which customization is available, see
[Language support for
customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `AcousticModels` object
"""
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='list_acoustic_models',
)
headers.update(sdk_headers)
params = {
'language': language,
}
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
url = '/v1/acoustic_customizations'
request = self.prepare_request(
method='GET',
url=url,
headers=headers,
params=params,
)
response = self.send(request, **kwargs)
return response
def get_acoustic_model(
self,
customization_id: str,
**kwargs,
) -> DetailedResponse:
"""
Get a custom acoustic model.
Gets information about a specified custom acoustic model. You must use credentials
for the instance of the service that owns a model to list information about it.
**Note:** Acoustic model customization is supported only for use with
previous-generation models. It is not supported for large speech models and
next-generation models.
**See also:** [Listing custom acoustic
models](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageAcousticModels#listModels-acoustic).
:param str customization_id: The customization ID (GUID) of the custom
acoustic model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `AcousticModel` object
"""
if not customization_id:
raise ValueError('customization_id must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='get_acoustic_model',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id']
path_param_values = self.encode_path_vars(customization_id)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/acoustic_customizations/{customization_id}'.format(
**path_param_dict)
request = self.prepare_request(
method='GET',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
def delete_acoustic_model(
self,
customization_id: str,
**kwargs,
) -> DetailedResponse:
"""
Delete a custom acoustic model.
Deletes an existing custom acoustic model. The custom model cannot be deleted if
another request, such as adding an audio resource to the model, is currently being
processed. You must use credentials for the instance of the service that owns a
model to delete it.
**Note:** Acoustic model customization is supported only for use with
previous-generation models. It is not supported for large speech models and
next-generation models.
**See also:** [Deleting a custom acoustic
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageAcousticModels#deleteModel-acoustic).
:param str customization_id: The customization ID (GUID) of the custom
acoustic model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse
"""
if not customization_id:
raise ValueError('customization_id must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='delete_acoustic_model',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id']
path_param_values = self.encode_path_vars(customization_id)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/acoustic_customizations/{customization_id}'.format(
**path_param_dict)
request = self.prepare_request(
method='DELETE',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
def train_acoustic_model(
self,
customization_id: str,
*,
custom_language_model_id: Optional[str] = None,
strict: Optional[bool] = None,
**kwargs,
) -> DetailedResponse:
"""
Train a custom acoustic model.
Initiates the training of a custom acoustic model with new or changed audio
resources. After adding or deleting audio resources for a custom acoustic model,
use this method to begin the actual training of the model on the latest audio
data. The custom acoustic model does not reflect its changed data until you train
it. You must use credentials for the instance of the service that owns a model to
train it.
The training method is asynchronous. Training time depends on the cumulative
amount of audio data that the custom acoustic model contains and the current load
on the service. When you train or retrain a model, the service uses all of the
model's audio data in the training. Training a custom acoustic model takes
approximately as long as the length of its cumulative audio data. For example, it
takes approximately 2 hours to train a model that contains a total of 2 hours of
audio. The method returns an HTTP 200 response code to indicate that the training
process has begun.
You can monitor the status of the training by using the [Get a custom acoustic
model](#getacousticmodel) method to poll the model's status. Use a loop to check
the status once a minute. The method returns an `AcousticModel` object that
includes `status` and `progress` fields. A status of `available` indicates that
the custom model is trained and ready to use. The service cannot train a model
while it is handling another request for the model. The service cannot accept
subsequent training requests, or requests to add new audio resources, until the
existing training request completes.
You can use the optional `custom_language_model_id` parameter to specify the GUID
of a separately created custom language model that is to be used during training.
Train with a custom language model if you have verbatim transcriptions of the
audio files that you have added to the custom model or you have either corpora
(text files) or a list of words that are relevant to the contents of the audio
files. For training to succeed, both of the custom models must be based on the
same version of the same base model, and the custom language model must be fully
trained and available.
**Note:** Acoustic model customization is supported only for use with
previous-generation models. It is not supported for large speech models and
next-generation models.
**See also:**
* [Train the custom acoustic
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-acoustic#trainModel-acoustic)
* [Using custom acoustic and custom language models
together](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-useBoth#useBoth)
### Training failures
Training can fail to start for the following reasons:
* The service is currently handling another request for the custom model, such as
another training request or a request to add audio resources to the model.
* The custom model contains less than 10 minutes of audio that includes speech,
not silence.
* The custom model contains more than 50 hours of audio (for IBM Cloud) or more
that 200 hours of audio (for IBM Cloud Pak for Data). **Note:** For IBM Cloud, the
maximum hours of audio for a custom acoustic model was reduced from 200 to 50
hours in August and September 2022. For more information, see [Maximum hours of
audio](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-audioResources#audioMaximum).
* You passed a custom language model with the `custom_language_model_id` query
parameter that is not in the available state. A custom language model must be
fully trained and available to be used to train a custom acoustic model.
* You passed an incompatible custom language model with the
`custom_language_model_id` query parameter. Both custom models must be based on
the same version of the same base model.
* The custom model contains one or more invalid audio resources. You can correct
the invalid audio resources or set the `strict` parameter to `false` to exclude
the invalid resources from the training. The model must contain at least one valid
resource for training to succeed.
:param str customization_id: The customization ID (GUID) of the custom
acoustic model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param str custom_language_model_id: (optional) The customization ID (GUID)
of a custom language model that is to be used during training of the custom
acoustic model. Specify a custom language model that has been trained with
verbatim transcriptions of the audio resources or that contains words that
are relevant to the contents of the audio resources. The custom language
model must be based on the same version of the same base model as the
custom acoustic model, and the custom language model must be fully trained
and available. The credentials specified with the request must own both
custom models.
:param bool strict: (optional) If `false`, allows training of the custom
acoustic model to proceed as long as the model contains at least one valid
audio resource. The method returns an array of `TrainingWarning` objects
that lists any invalid resources. By default (`true`), training of a custom
acoustic model fails (status code 400) if the model contains one or more
invalid audio resources.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `TrainingResponse` object
"""
if not customization_id:
raise ValueError('customization_id must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='train_acoustic_model',
)
headers.update(sdk_headers)
params = {
'custom_language_model_id': custom_language_model_id,
'strict': strict,
}
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id']
path_param_values = self.encode_path_vars(customization_id)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/acoustic_customizations/{customization_id}/train'.format(
**path_param_dict)
request = self.prepare_request(
method='POST',
url=url,
headers=headers,
params=params,
)
response = self.send(request, **kwargs)
return response
def reset_acoustic_model(
self,
customization_id: str,
**kwargs,
) -> DetailedResponse:
"""
Reset a custom acoustic model.
Resets a custom acoustic model by removing all audio resources from the model.
Resetting a custom acoustic model initializes the model to its state when it was
first created. Metadata such as the name and language of the model are preserved,
but the model's audio resources are removed and must be re-created. The service
cannot reset a model while it is handling another request for the model. The
service cannot accept subsequent requests for the model until the existing reset
request completes. You must use credentials for the instance of the service that
owns a model to reset it.
**Note:** Acoustic model customization is supported only for use with
previous-generation models. It is not supported for large speech models and
next-generation models.
**See also:** [Resetting a custom acoustic
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageAcousticModels#resetModel-acoustic).
:param str customization_id: The customization ID (GUID) of the custom
acoustic model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse
"""
if not customization_id:
raise ValueError('customization_id must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='reset_acoustic_model',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id']
path_param_values = self.encode_path_vars(customization_id)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/acoustic_customizations/{customization_id}/reset'.format(
**path_param_dict)
request = self.prepare_request(
method='POST',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
def upgrade_acoustic_model(
self,
customization_id: str,
*,
custom_language_model_id: Optional[str] = None,
force: Optional[bool] = None,
**kwargs,
) -> DetailedResponse:
"""
Upgrade a custom acoustic model.
Initiates the upgrade of a custom acoustic model to the latest version of its base
language model. The upgrade method is asynchronous. It can take on the order of
minutes or hours to complete depending on the amount of data in the custom model
and the current load on the service; typically, upgrade takes approximately twice
the length of the total audio contained in the custom model. A custom model must
be in the `ready` or `available` state to be upgraded. You must use credentials
for the instance of the service that owns a model to upgrade it.
The method returns an HTTP 200 response code to indicate that the upgrade process
has begun successfully. You can monitor the status of the upgrade by using the
[Get a custom acoustic model](#getacousticmodel) method to poll the model's
status. The method returns an `AcousticModel` object that includes `status` and
`progress` fields. Use a loop to check the status once a minute.
While it is being upgraded, the custom model has the status `upgrading`. When the
upgrade is complete, the model resumes the status that it had prior to upgrade.
The service cannot upgrade a model while it is handling another request for the
model. The service cannot accept subsequent requests for the model until the
existing upgrade request completes.
If the custom acoustic model was trained with a separately created custom language
model, you must use the `custom_language_model_id` parameter to specify the GUID
of that custom language model. The custom language model must be upgraded before
the custom acoustic model can be upgraded. Omit the parameter if the custom
acoustic model was not trained with a custom language model.
**Note:** Acoustic model customization is supported only for use with
previous-generation models. It is not supported for large speech models and
next-generation models.
**See also:** [Upgrading a custom acoustic
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-upgrade#custom-upgrade-acoustic).
:param str customization_id: The customization ID (GUID) of the custom
acoustic model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param str custom_language_model_id: (optional) If the custom acoustic
model was trained with a custom language model, the customization ID (GUID)
of that custom language model. The custom language model must be upgraded
before the custom acoustic model can be upgraded. The custom language model
must be fully trained and available. The credentials specified with the
request must own both custom models.
:param bool force: (optional) If `true`, forces the upgrade of a custom
acoustic model for which no input data has been modified since it was last
trained. Use this parameter only to force the upgrade of a custom acoustic
model that is trained with a custom language model, and only if you receive
a 400 response code and the message `No input data modified since last
training`. See [Upgrading a custom acoustic
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-upgrade#custom-upgrade-acoustic).
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse
"""
if not customization_id:
raise ValueError('customization_id must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='upgrade_acoustic_model',
)
headers.update(sdk_headers)
params = {
'custom_language_model_id': custom_language_model_id,
'force': force,
}
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id']
path_param_values = self.encode_path_vars(customization_id)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/acoustic_customizations/{customization_id}/upgrade_model'.format(
**path_param_dict)
request = self.prepare_request(
method='POST',
url=url,
headers=headers,
params=params,
)
response = self.send(request, **kwargs)
return response
#########################
# Custom audio resources
#########################
def list_audio(
self,
customization_id: str,
**kwargs,
) -> DetailedResponse:
"""
List audio resources.
Lists information about all audio resources from a custom acoustic model. The
information includes the name of the resource and information about its audio
data, such as its duration. It also includes the status of the audio resource,
which is important for checking the service's analysis of the resource in response
to a request to add it to the custom acoustic model. You must use credentials for
the instance of the service that owns a model to list its audio resources.
**Note:** Acoustic model customization is supported only for use with
previous-generation models. It is not supported for large speech models and
next-generation models.
**See also:** [Listing audio resources for a custom acoustic
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageAudio#listAudio).
:param str customization_id: The customization ID (GUID) of the custom
acoustic model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `AudioResources` object
"""
if not customization_id:
raise ValueError('customization_id must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='list_audio',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id']
path_param_values = self.encode_path_vars(customization_id)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/acoustic_customizations/{customization_id}/audio'.format(
**path_param_dict)
request = self.prepare_request(
method='GET',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
def add_audio(
self,
customization_id: str,
audio_name: str,
audio_resource: BinaryIO,
*,
content_type: Optional[str] = None,
contained_content_type: Optional[str] = None,
allow_overwrite: Optional[bool] = None,
**kwargs,
) -> DetailedResponse:
"""
Add an audio resource.
Adds an audio resource to a custom acoustic model. Add audio content that reflects
the acoustic characteristics of the audio that you plan to transcribe. You must
use credentials for the instance of the service that owns a model to add an audio
resource to it. Adding audio data does not affect the custom acoustic model until
you train the model for the new data by using the [Train a custom acoustic
model](#trainacousticmodel) method.
You can add individual audio files or an archive file that contains multiple audio
files. Adding multiple audio files via a single archive file is significantly more
efficient than adding each file individually. You can add audio resources in any
format that the service supports for speech recognition.
You can use this method to add any number of audio resources to a custom model by
calling the method once for each audio or archive file. You can add multiple
different audio resources at the same time. You must add a minimum of 10 minutes
of audio that includes speech, not just silence, to a custom acoustic model before
you can train it. No audio resource, audio- or archive-type, can be larger than
100 MB. To add an audio resource that has the same name as an existing audio
resource, set the `allow_overwrite` parameter to `true`; otherwise, the request
fails. A custom model can contain no more than 50 hours of audio (for IBM Cloud)
or 200 hours of audio (for IBM Cloud Pak for Data). **Note:** For IBM Cloud, the
maximum hours of audio for a custom acoustic model was reduced from 200 to 50
hours in August and September 2022. For more information, see [Maximum hours of
audio](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-audioResources#audioMaximum).
The method is asynchronous. It can take several seconds or minutes to complete
depending on the duration of the audio and, in the case of an archive file, the
total number of audio files being processed. The service returns a 201 response
code if the audio is valid. It then asynchronously analyzes the contents of the
audio file or files and automatically extracts information about the audio such as
its length, sampling rate, and encoding. You cannot submit requests to train or
upgrade the model until the service's analysis of all audio resources for current
requests completes.
To determine the status of the service's analysis of the audio, use the [Get an
audio resource](#getaudio) method to poll the status of the audio. The method
accepts the customization ID of the custom model and the name of the audio
resource, and it returns the status of the resource. Use a loop to check the
status of the audio every few seconds until it becomes `ok`.
**Note:** Acoustic model customization is supported only for use with
previous-generation models. It is not supported for large speech models and
next-generation models.
**See also:** [Add audio to the custom acoustic
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-acoustic#addAudio).
### Content types for audio-type resources
You can add an individual audio file in any format that the service supports for
speech recognition. For an audio-type resource, use the `Content-Type` parameter
to specify the audio format (MIME type) of the audio file, including specifying
the sampling rate, channels, and endianness where indicated.
* `audio/alaw` (Specify the sampling rate (`rate`) of the audio.)
* `audio/basic` (Use only with narrowband models.)
* `audio/flac`
* `audio/g729` (Use only with narrowband models.)
* `audio/l16` (Specify the sampling rate (`rate`) and optionally the number of
channels (`channels`) and endianness (`endianness`) of the audio.)
* `audio/mp3`
* `audio/mpeg`
* `audio/mulaw` (Specify the sampling rate (`rate`) of the audio.)
* `audio/ogg` (The service automatically detects the codec of the input audio.)
* `audio/ogg;codecs=opus`
* `audio/ogg;codecs=vorbis`
* `audio/wav` (Provide audio with a maximum of nine channels.)
* `audio/webm` (The service automatically detects the codec of the input audio.)
* `audio/webm;codecs=opus`
* `audio/webm;codecs=vorbis`
The sampling rate of an audio file must match the sampling rate of the base model
for the custom model: for broadband models, at least 16 kHz; for narrowband
models, at least 8 kHz. If the sampling rate of the audio is higher than the
minimum required rate, the service down-samples the audio to the appropriate rate.
If the sampling rate of the audio is lower than the minimum required rate, the
service labels the audio file as `invalid`.
**See also:** [Supported audio
formats](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-audio-formats).
### Content types for archive-type resources
You can add an archive file (**.zip** or **.tar.gz** file) that contains audio
files in any format that the service supports for speech recognition. For an
archive-type resource, use the `Content-Type` parameter to specify the media type
of the archive file:
* `application/zip` for a **.zip** file
* `application/gzip` for a **.tar.gz** file.
When you add an archive-type resource, the `Contained-Content-Type` header is
optional depending on the format of the files that you are adding:
* For audio files of type `audio/alaw`, `audio/basic`, `audio/l16`, or
`audio/mulaw`, you must use the `Contained-Content-Type` header to specify the
format of the contained audio files. Include the `rate`, `channels`, and
`endianness` parameters where necessary. In this case, all audio files contained
in the archive file must have the same audio format.
* For audio files of all other types, you can omit the `Contained-Content-Type`
header. In this case, the audio files contained in the archive file can have any
of the formats not listed in the previous bullet. The audio files do not need to
have the same format.
Do not use the `Contained-Content-Type` header when adding an audio-type resource.
### Naming restrictions for embedded audio files
The name of an audio file that is contained in an archive-type resource can
include a maximum of 128 characters. This includes the file extension and all
elements of the name (for example, slashes).
:param str customization_id: The customization ID (GUID) of the custom
acoustic model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param str audio_name: The name of the new audio resource for the custom
acoustic model. Use a localized name that matches the language of the
custom model and reflects the contents of the resource.
* Include a maximum of 128 characters in the name.
* Do not use characters that need to be URL-encoded. For example, do not
use spaces, slashes, backslashes, colons, ampersands, double quotes, plus
signs, equals signs, questions marks, and so on in the name. (The service
does not prevent the use of these characters. But because they must be
URL-encoded wherever used, their use is strongly discouraged.)
* Do not use the name of an audio resource that has already been added to
the custom model.
:param BinaryIO audio_resource: The audio resource that is to be added to
the custom acoustic model, an individual audio file or an archive file.
With the `curl` command, use the `--data-binary` option to upload the file
for the request.
:param str content_type: (optional) For an audio-type resource, the format
(MIME type) of the audio. For more information, see **Content types for
audio-type resources** in the method description.
For an archive-type resource, the media type of the archive file. For more
information, see **Content types for archive-type resources** in the method
description.
:param str contained_content_type: (optional) _For an archive-type
resource_, specify the format of the audio files that are contained in the
archive file if they are of type `audio/alaw`, `audio/basic`, `audio/l16`,
or `audio/mulaw`. Include the `rate`, `channels`, and `endianness`
parameters where necessary. In this case, all audio files that are
contained in the archive file must be of the indicated type.
For all other audio formats, you can omit the header. In this case, the
audio files can be of multiple types as long as they are not of the types
listed in the previous paragraph.
The parameter accepts all of the audio formats that are supported for use
with speech recognition. For more information, see **Content types for
audio-type resources** in the method description.
_For an audio-type resource_, omit the header.
:param bool allow_overwrite: (optional) If `true`, the specified audio
resource overwrites an existing audio resource with the same name. If
`false`, the request fails if an audio resource with the same name already
exists. The parameter has no effect if an audio resource with the same name
does not already exist.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse
"""
if not customization_id:
raise ValueError('customization_id must be provided')
if not audio_name:
raise ValueError('audio_name must be provided')
if audio_resource is None:
raise ValueError('audio_resource must be provided')
headers = {
'Content-Type': content_type,
'Contained-Content-Type': contained_content_type,
}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='add_audio',
)
headers.update(sdk_headers)
params = {
'allow_overwrite': allow_overwrite,
}
data = audio_resource
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id', 'audio_name']
path_param_values = self.encode_path_vars(customization_id, audio_name)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/acoustic_customizations/{customization_id}/audio/{audio_name}'.format(
**path_param_dict)
request = self.prepare_request(
method='POST',
url=url,
headers=headers,
params=params,
data=data,
)
response = self.send(request, **kwargs)
return response
def get_audio(
self,
customization_id: str,
audio_name: str,
**kwargs,
) -> DetailedResponse:
"""
Get an audio resource.
Gets information about an audio resource from a custom acoustic model. The method
returns an `AudioListing` object whose fields depend on the type of audio resource
that you specify with the method's `audio_name` parameter:
* _For an audio-type resource_, the object's fields match those of an
`AudioResource` object: `duration`, `name`, `details`, and `status`.
* _For an archive-type resource_, the object includes a `container` field whose
fields match those of an `AudioResource` object. It also includes an `audio`
field, which contains an array of `AudioResource` objects that provides
information about the audio files that are contained in the archive.
The information includes the status of the specified audio resource. The status is
important for checking the service's analysis of a resource that you add to the
custom model.
* _For an audio-type resource_, the `status` field is located in the
`AudioListing` object.
* _For an archive-type resource_, the `status` field is located in the
`AudioResource` object that is returned in the `container` field.
You must use credentials for the instance of the service that owns a model to list
its audio resources.
**Note:** Acoustic model customization is supported only for use with
previous-generation models. It is not supported for large speech models and
next-generation models.
**See also:** [Listing audio resources for a custom acoustic
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageAudio#listAudio).
:param str customization_id: The customization ID (GUID) of the custom
acoustic model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param str audio_name: The name of the audio resource for the custom
acoustic model.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse with `dict` result representing a `AudioListing` object
"""
if not customization_id:
raise ValueError('customization_id must be provided')
if not audio_name:
raise ValueError('audio_name must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='get_audio',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id', 'audio_name']
path_param_values = self.encode_path_vars(customization_id, audio_name)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/acoustic_customizations/{customization_id}/audio/{audio_name}'.format(
**path_param_dict)
request = self.prepare_request(
method='GET',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
def delete_audio(
self,
customization_id: str,
audio_name: str,
**kwargs,
) -> DetailedResponse:
"""
Delete an audio resource.
Deletes an existing audio resource from a custom acoustic model. Deleting an
archive-type audio resource removes the entire archive of files. The service does
not allow deletion of individual files from an archive resource.
Removing an audio resource does not affect the custom model until you train the
model on its updated data by using the [Train a custom acoustic
model](#trainacousticmodel) method. You can delete an existing audio resource from
a model while a different resource is being added to the model. You must use
credentials for the instance of the service that owns a model to delete its audio
resources.
**Note:** Acoustic model customization is supported only for use with
previous-generation models. It is not supported for large speech models and
next-generation models.
**See also:** [Deleting an audio resource from a custom acoustic
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-manageAudio#deleteAudio).
:param str customization_id: The customization ID (GUID) of the custom
acoustic model that is to be used for the request. You must make the
request with credentials for the instance of the service that owns the
custom model.
:param str audio_name: The name of the audio resource for the custom
acoustic model.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse
"""
if not customization_id:
raise ValueError('customization_id must be provided')
if not audio_name:
raise ValueError('audio_name must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='delete_audio',
)
headers.update(sdk_headers)
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
headers['Accept'] = 'application/json'
path_param_keys = ['customization_id', 'audio_name']
path_param_values = self.encode_path_vars(customization_id, audio_name)
path_param_dict = dict(zip(path_param_keys, path_param_values))
url = '/v1/acoustic_customizations/{customization_id}/audio/{audio_name}'.format(
**path_param_dict)
request = self.prepare_request(
method='DELETE',
url=url,
headers=headers,
)
response = self.send(request, **kwargs)
return response
#########################
# User data
#########################
def delete_user_data(
self,
customer_id: str,
**kwargs,
) -> DetailedResponse:
"""
Delete labeled data.
Deletes all data that is associated with a specified customer ID. The method
deletes all data for the customer ID, regardless of the method by which the
information was added. The method has no effect if no data is associated with the
customer ID. You must issue the request with credentials for the same instance of
the service that was used to associate the customer ID with the data. You
associate a customer ID with data by passing the `X-Watson-Metadata` header with a
request that passes the data.
**Note:** If you delete an instance of the service from the service console, all
data associated with that service instance is automatically deleted. This includes
all custom language models, corpora, grammars, and words; all custom acoustic
models and audio resources; all registered endpoints for the asynchronous HTTP
interface; and all data related to speech recognition requests.
**See also:** [Information
security](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-information-security#information-security).
:param str customer_id: The customer ID for which all data is to be
deleted.
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse
"""
if not customer_id:
raise ValueError('customer_id must be provided')
headers = {}
sdk_headers = get_sdk_headers(
service_name=self.DEFAULT_SERVICE_NAME,
service_version='V1',
operation_id='delete_user_data',
)
headers.update(sdk_headers)
params = {
'customer_id': customer_id,
}
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
del kwargs['headers']
url = '/v1/user_data'
request = self.prepare_request(
method='DELETE',
url=url,
headers=headers,
params=params,
)
response = self.send(request, **kwargs)
return response
class GetModelEnums:
"""
Enums for get_model parameters.
"""
class ModelId(str, Enum):
"""
The identifier of the model in the form of its name from the output of the [List
models](#listmodels) method.
"""
AR_MS_BROADBANDMODEL = 'ar-MS_BroadbandModel'
AR_MS_TELEPHONY = 'ar-MS_Telephony'
CS_CZ_TELEPHONY = 'cs-CZ_Telephony'
DE_DE_BROADBANDMODEL = 'de-DE_BroadbandModel'
DE_DE_MULTIMEDIA = 'de-DE_Multimedia'
DE_DE_NARROWBANDMODEL = 'de-DE_NarrowbandModel'
DE_DE_TELEPHONY = 'de-DE_Telephony'
EN_AU = 'en-AU'
EN_AU_BROADBANDMODEL = 'en-AU_BroadbandModel'
EN_AU_MULTIMEDIA = 'en-AU_Multimedia'
EN_AU_NARROWBANDMODEL = 'en-AU_NarrowbandModel'
EN_AU_TELEPHONY = 'en-AU_Telephony'
EN_GB = 'en-GB'
EN_GB_BROADBANDMODEL = 'en-GB_BroadbandModel'
EN_GB_MULTIMEDIA = 'en-GB_Multimedia'
EN_GB_NARROWBANDMODEL = 'en-GB_NarrowbandModel'
EN_GB_TELEPHONY = 'en-GB_Telephony'
EN_IN = 'en-IN'
EN_IN_TELEPHONY = 'en-IN_Telephony'
EN_US = 'en-US'
EN_US_BROADBANDMODEL = 'en-US_BroadbandModel'
EN_US_MULTIMEDIA = 'en-US_Multimedia'
EN_US_NARROWBANDMODEL = 'en-US_NarrowbandModel'
EN_US_SHORTFORM_NARROWBANDMODEL = 'en-US_ShortForm_NarrowbandModel'
EN_US_TELEPHONY = 'en-US_Telephony'
EN_WW_MEDICAL_TELEPHONY = 'en-WW_Medical_Telephony'
ES_AR = 'es-AR'
ES_AR_BROADBANDMODEL = 'es-AR_BroadbandModel'
ES_AR_NARROWBANDMODEL = 'es-AR_NarrowbandModel'
ES_CL = 'es-CL'
ES_CL_BROADBANDMODEL = 'es-CL_BroadbandModel'
ES_CL_NARROWBANDMODEL = 'es-CL_NarrowbandModel'
ES_CO = 'es-CO'
ES_CO_BROADBANDMODEL = 'es-CO_BroadbandModel'
ES_CO_NARROWBANDMODEL = 'es-CO_NarrowbandModel'
ES_ES = 'es-ES'
ES_ES_BROADBANDMODEL = 'es-ES_BroadbandModel'
ES_ES_NARROWBANDMODEL = 'es-ES_NarrowbandModel'
ES_ES_MULTIMEDIA = 'es-ES_Multimedia'
ES_ES_TELEPHONY = 'es-ES_Telephony'
ES_LA_TELEPHONY = 'es-LA_Telephony'
ES_MX = 'es-MX'
ES_MX_BROADBANDMODEL = 'es-MX_BroadbandModel'
ES_MX_NARROWBANDMODEL = 'es-MX_NarrowbandModel'
ES_PE = 'es-PE'
ES_PE_BROADBANDMODEL = 'es-PE_BroadbandModel'
ES_PE_NARROWBANDMODEL = 'es-PE_NarrowbandModel'
FR_CA = 'fr-CA'
FR_CA_BROADBANDMODEL = 'fr-CA_BroadbandModel'
FR_CA_MULTIMEDIA = 'fr-CA_Multimedia'
FR_CA_NARROWBANDMODEL = 'fr-CA_NarrowbandModel'
FR_CA_TELEPHONY = 'fr-CA_Telephony'
FR_FR = 'fr-FR'
FR_FR_BROADBANDMODEL = 'fr-FR_BroadbandModel'
FR_FR_MULTIMEDIA = 'fr-FR_Multimedia'
FR_FR_NARROWBANDMODEL = 'fr-FR_NarrowbandModel'
FR_FR_TELEPHONY = 'fr-FR_Telephony'
HI_IN_TELEPHONY = 'hi-IN_Telephony'
IT_IT_BROADBANDMODEL = 'it-IT_BroadbandModel'
IT_IT_NARROWBANDMODEL = 'it-IT_NarrowbandModel'
IT_IT_MULTIMEDIA = 'it-IT_Multimedia'
IT_IT_TELEPHONY = 'it-IT_Telephony'
JA_JP = 'ja-JP'
JA_JP_BROADBANDMODEL = 'ja-JP_BroadbandModel'
JA_JP_MULTIMEDIA = 'ja-JP_Multimedia'
JA_JP_NARROWBANDMODEL = 'ja-JP_NarrowbandModel'
JA_JP_TELEPHONY = 'ja-JP_Telephony'
KO_KR_BROADBANDMODEL = 'ko-KR_BroadbandModel'
KO_KR_MULTIMEDIA = 'ko-KR_Multimedia'
KO_KR_NARROWBANDMODEL = 'ko-KR_NarrowbandModel'
KO_KR_TELEPHONY = 'ko-KR_Telephony'
NL_BE_TELEPHONY = 'nl-BE_Telephony'
NL_NL_BROADBANDMODEL = 'nl-NL_BroadbandModel'
NL_NL_MULTIMEDIA = 'nl-NL_Multimedia'
NL_NL_NARROWBANDMODEL = 'nl-NL_NarrowbandModel'
NL_NL_TELEPHONY = 'nl-NL_Telephony'
PT_BR = 'pt-BR'
PT_BR_BROADBANDMODEL = 'pt-BR_BroadbandModel'
PT_BR_MULTIMEDIA = 'pt-BR_Multimedia'
PT_BR_NARROWBANDMODEL = 'pt-BR_NarrowbandModel'
PT_BR_TELEPHONY = 'pt-BR_Telephony'
SV_SE_TELEPHONY = 'sv-SE_Telephony'
ZH_CN_BROADBANDMODEL = 'zh-CN_BroadbandModel'
ZH_CN_NARROWBANDMODEL = 'zh-CN_NarrowbandModel'
ZH_CN_TELEPHONY = 'zh-CN_Telephony'
class RecognizeEnums:
"""
Enums for recognize parameters.
"""
class ContentType(str, Enum):
"""
The format (MIME type) of the audio. For more information about specifying an
audio format, see **Audio formats (content types)** in the method description.
"""
APPLICATION_OCTET_STREAM = 'application/octet-stream'
AUDIO_ALAW = 'audio/alaw'
AUDIO_BASIC = 'audio/basic'
AUDIO_FLAC = 'audio/flac'
AUDIO_G729 = 'audio/g729'
AUDIO_L16 = 'audio/l16'
AUDIO_MP3 = 'audio/mp3'
AUDIO_MPEG = 'audio/mpeg'
AUDIO_MULAW = 'audio/mulaw'
AUDIO_OGG = 'audio/ogg'
AUDIO_OGG_CODECS_OPUS = 'audio/ogg;codecs=opus'
AUDIO_OGG_CODECS_VORBIS = 'audio/ogg;codecs=vorbis'
AUDIO_WAV = 'audio/wav'
AUDIO_WEBM = 'audio/webm'
AUDIO_WEBM_CODECS_OPUS = 'audio/webm;codecs=opus'
AUDIO_WEBM_CODECS_VORBIS = 'audio/webm;codecs=vorbis'
class Model(str, Enum):
"""
The model to use for speech recognition. If you omit the `model` parameter, the
service uses the US English `en-US_BroadbandModel` by default.
_For IBM Cloud Pak for Data,_ if you do not install the `en-US_BroadbandModel`,
you must either specify a model with the request or specify a new default model
for your installation of the service.
**See also:**
* [Using a model for speech
recognition](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-use)
* [Using the default
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-use#models-use-default).
"""
AR_MS_BROADBANDMODEL = 'ar-MS_BroadbandModel'
AR_MS_TELEPHONY = 'ar-MS_Telephony'
CS_CZ_TELEPHONY = 'cs-CZ_Telephony'
DE_DE_BROADBANDMODEL = 'de-DE_BroadbandModel'
DE_DE_MULTIMEDIA = 'de-DE_Multimedia'
DE_DE_NARROWBANDMODEL = 'de-DE_NarrowbandModel'
DE_DE_TELEPHONY = 'de-DE_Telephony'
EN_AU = 'en-AU'
EN_AU_BROADBANDMODEL = 'en-AU_BroadbandModel'
EN_AU_MULTIMEDIA = 'en-AU_Multimedia'
EN_AU_NARROWBANDMODEL = 'en-AU_NarrowbandModel'
EN_AU_TELEPHONY = 'en-AU_Telephony'
EN_IN = 'en-IN'
EN_IN_TELEPHONY = 'en-IN_Telephony'
EN_GB = 'en-GB'
EN_GB_BROADBANDMODEL = 'en-GB_BroadbandModel'
EN_GB_MULTIMEDIA = 'en-GB_Multimedia'
EN_GB_NARROWBANDMODEL = 'en-GB_NarrowbandModel'
EN_GB_TELEPHONY = 'en-GB_Telephony'
EN_US = 'en-US'
EN_US_BROADBANDMODEL = 'en-US_BroadbandModel'
EN_US_MULTIMEDIA = 'en-US_Multimedia'
EN_US_NARROWBANDMODEL = 'en-US_NarrowbandModel'
EN_US_SHORTFORM_NARROWBANDMODEL = 'en-US_ShortForm_NarrowbandModel'
EN_US_TELEPHONY = 'en-US_Telephony'
EN_WW_MEDICAL_TELEPHONY = 'en-WW_Medical_Telephony'
ES_AR = 'es-AR'
ES_AR_BROADBANDMODEL = 'es-AR_BroadbandModel'
ES_AR_NARROWBANDMODEL = 'es-AR_NarrowbandModel'
ES_CL = 'es-CL'
ES_CL_BROADBANDMODEL = 'es-CL_BroadbandModel'
ES_CL_NARROWBANDMODEL = 'es-CL_NarrowbandModel'
ES_CO = 'es-CO'
ES_CO_BROADBANDMODEL = 'es-CO_BroadbandModel'
ES_CO_NARROWBANDMODEL = 'es-CO_NarrowbandModel'
ES_ES = 'es-ES'
ES_ES_BROADBANDMODEL = 'es-ES_BroadbandModel'
ES_ES_NARROWBANDMODEL = 'es-ES_NarrowbandModel'
ES_ES_MULTIMEDIA = 'es-ES_Multimedia'
ES_ES_TELEPHONY = 'es-ES_Telephony'
ES_LA_TELEPHONY = 'es-LA_Telephony'
ES_MX = 'es-MX'
ES_MX_BROADBANDMODEL = 'es-MX_BroadbandModel'
ES_MX_NARROWBANDMODEL = 'es-MX_NarrowbandModel'
ES_PE = 'es-PE'
ES_PE_BROADBANDMODEL = 'es-PE_BroadbandModel'
ES_PE_NARROWBANDMODEL = 'es-PE_NarrowbandModel'
FR_CA = 'fr-CA'
FR_CA_BROADBANDMODEL = 'fr-CA_BroadbandModel'
FR_CA_MULTIMEDIA = 'fr-CA_Multimedia'
FR_CA_NARROWBANDMODEL = 'fr-CA_NarrowbandModel'
FR_CA_TELEPHONY = 'fr-CA_Telephony'
FR_FR = 'fr-FR'
FR_FR_BROADBANDMODEL = 'fr-FR_BroadbandModel'
FR_FR_MULTIMEDIA = 'fr-FR_Multimedia'
FR_FR_NARROWBANDMODEL = 'fr-FR_NarrowbandModel'
FR_FR_TELEPHONY = 'fr-FR_Telephony'
HI_IN_TELEPHONY = 'hi-IN_Telephony'
IT_IT_BROADBANDMODEL = 'it-IT_BroadbandModel'
IT_IT_NARROWBANDMODEL = 'it-IT_NarrowbandModel'
IT_IT_MULTIMEDIA = 'it-IT_Multimedia'
IT_IT_TELEPHONY = 'it-IT_Telephony'
JA_JP = 'ja-JP'
JA_JP_BROADBANDMODEL = 'ja-JP_BroadbandModel'
JA_JP_MULTIMEDIA = 'ja-JP_Multimedia'
JA_JP_NARROWBANDMODEL = 'ja-JP_NarrowbandModel'
JA_JP_TELEPHONY = 'ja-JP_Telephony'
KO_KR_BROADBANDMODEL = 'ko-KR_BroadbandModel'
KO_KR_MULTIMEDIA = 'ko-KR_Multimedia'
KO_KR_NARROWBANDMODEL = 'ko-KR_NarrowbandModel'
KO_KR_TELEPHONY = 'ko-KR_Telephony'
NL_BE_TELEPHONY = 'nl-BE_Telephony'
NL_NL_BROADBANDMODEL = 'nl-NL_BroadbandModel'
NL_NL_MULTIMEDIA = 'nl-NL_Multimedia'
NL_NL_NARROWBANDMODEL = 'nl-NL_NarrowbandModel'
NL_NL_TELEPHONY = 'nl-NL_Telephony'
PT_BR = 'pt-BR'
PT_BR_BROADBANDMODEL = 'pt-BR_BroadbandModel'
PT_BR_MULTIMEDIA = 'pt-BR_Multimedia'
PT_BR_NARROWBANDMODEL = 'pt-BR_NarrowbandModel'
PT_BR_TELEPHONY = 'pt-BR_Telephony'
SV_SE_TELEPHONY = 'sv-SE_Telephony'
ZH_CN_BROADBANDMODEL = 'zh-CN_BroadbandModel'
ZH_CN_NARROWBANDMODEL = 'zh-CN_NarrowbandModel'
ZH_CN_TELEPHONY = 'zh-CN_Telephony'
class CreateJobEnums:
"""
Enums for create_job parameters.
"""
class ContentType(str, Enum):
"""
The format (MIME type) of the audio. For more information about specifying an
audio format, see **Audio formats (content types)** in the method description.
"""
APPLICATION_OCTET_STREAM = 'application/octet-stream'
AUDIO_ALAW = 'audio/alaw'
AUDIO_BASIC = 'audio/basic'
AUDIO_FLAC = 'audio/flac'
AUDIO_G729 = 'audio/g729'
AUDIO_L16 = 'audio/l16'
AUDIO_MP3 = 'audio/mp3'
AUDIO_MPEG = 'audio/mpeg'
AUDIO_MULAW = 'audio/mulaw'
AUDIO_OGG = 'audio/ogg'
AUDIO_OGG_CODECS_OPUS = 'audio/ogg;codecs=opus'
AUDIO_OGG_CODECS_VORBIS = 'audio/ogg;codecs=vorbis'
AUDIO_WAV = 'audio/wav'
AUDIO_WEBM = 'audio/webm'
AUDIO_WEBM_CODECS_OPUS = 'audio/webm;codecs=opus'
AUDIO_WEBM_CODECS_VORBIS = 'audio/webm;codecs=vorbis'
class Model(str, Enum):
"""
The model to use for speech recognition. If you omit the `model` parameter, the
service uses the US English `en-US_BroadbandModel` by default.
_For IBM Cloud Pak for Data,_ if you do not install the `en-US_BroadbandModel`,
you must either specify a model with the request or specify a new default model
for your installation of the service.
**See also:**
* [Using a model for speech
recognition](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-use)
* [Using the default
model](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-models-use#models-use-default).
"""
AR_MS_BROADBANDMODEL = 'ar-MS_BroadbandModel'
AR_MS_TELEPHONY = 'ar-MS_Telephony'
CS_CZ_TELEPHONY = 'cs-CZ_Telephony'
DE_DE_BROADBANDMODEL = 'de-DE_BroadbandModel'
DE_DE_MULTIMEDIA = 'de-DE_Multimedia'
DE_DE_NARROWBANDMODEL = 'de-DE_NarrowbandModel'
DE_DE_TELEPHONY = 'de-DE_Telephony'
EN_AU = 'en-AU'
EN_AU_BROADBANDMODEL = 'en-AU_BroadbandModel'
EN_AU_MULTIMEDIA = 'en-AU_Multimedia'
EN_AU_NARROWBANDMODEL = 'en-AU_NarrowbandModel'
EN_AU_TELEPHONY = 'en-AU_Telephony'
EN_IN = 'en-IN'
EN_IN_TELEPHONY = 'en-IN_Telephony'
EN_GB = 'en-GB'
EN_GB_BROADBANDMODEL = 'en-GB_BroadbandModel'
EN_GB_MULTIMEDIA = 'en-GB_Multimedia'
EN_GB_NARROWBANDMODEL = 'en-GB_NarrowbandModel'
EN_GB_TELEPHONY = 'en-GB_Telephony'
EN_US = 'en-US'
EN_US_BROADBANDMODEL = 'en-US_BroadbandModel'
EN_US_MULTIMEDIA = 'en-US_Multimedia'
EN_US_NARROWBANDMODEL = 'en-US_NarrowbandModel'
EN_US_SHORTFORM_NARROWBANDMODEL = 'en-US_ShortForm_NarrowbandModel'
EN_US_TELEPHONY = 'en-US_Telephony'
EN_WW_MEDICAL_TELEPHONY = 'en-WW_Medical_Telephony'
ES_AR = 'es-AR'
ES_AR_BROADBANDMODEL = 'es-AR_BroadbandModel'
ES_AR_NARROWBANDMODEL = 'es-AR_NarrowbandModel'
ES_CL = 'es-CL'
ES_CL_BROADBANDMODEL = 'es-CL_BroadbandModel'
ES_CL_NARROWBANDMODEL = 'es-CL_NarrowbandModel'
ES_CO = 'es-CO'
ES_CO_BROADBANDMODEL = 'es-CO_BroadbandModel'
ES_CO_NARROWBANDMODEL = 'es-CO_NarrowbandModel'
ES_ES = 'es-ES'
ES_ES_BROADBANDMODEL = 'es-ES_BroadbandModel'
ES_ES_NARROWBANDMODEL = 'es-ES_NarrowbandModel'
ES_ES_MULTIMEDIA = 'es-ES_Multimedia'
ES_ES_TELEPHONY = 'es-ES_Telephony'
ES_LA_TELEPHONY = 'es-LA_Telephony'
ES_MX = 'es-MX'
ES_MX_BROADBANDMODEL = 'es-MX_BroadbandModel'
ES_MX_NARROWBANDMODEL = 'es-MX_NarrowbandModel'
ES_PE = 'es-PE'
ES_PE_BROADBANDMODEL = 'es-PE_BroadbandModel'
ES_PE_NARROWBANDMODEL = 'es-PE_NarrowbandModel'
FR_CA = 'fr-CA'
FR_CA_BROADBANDMODEL = 'fr-CA_BroadbandModel'
FR_CA_MULTIMEDIA = 'fr-CA_Multimedia'
FR_CA_NARROWBANDMODEL = 'fr-CA_NarrowbandModel'
FR_CA_TELEPHONY = 'fr-CA_Telephony'
FR_FR = 'fr-FR'
FR_FR_BROADBANDMODEL = 'fr-FR_BroadbandModel'
FR_FR_MULTIMEDIA = 'fr-FR_Multimedia'
FR_FR_NARROWBANDMODEL = 'fr-FR_NarrowbandModel'
FR_FR_TELEPHONY = 'fr-FR_Telephony'
HI_IN_TELEPHONY = 'hi-IN_Telephony'
IT_IT_BROADBANDMODEL = 'it-IT_BroadbandModel'
IT_IT_NARROWBANDMODEL = 'it-IT_NarrowbandModel'
IT_IT_MULTIMEDIA = 'it-IT_Multimedia'
IT_IT_TELEPHONY = 'it-IT_Telephony'
JA_JP = 'ja-JP'
JA_JP_BROADBANDMODEL = 'ja-JP_BroadbandModel'
JA_JP_MULTIMEDIA = 'ja-JP_Multimedia'
JA_JP_NARROWBANDMODEL = 'ja-JP_NarrowbandModel'
JA_JP_TELEPHONY = 'ja-JP_Telephony'
KO_KR_BROADBANDMODEL = 'ko-KR_BroadbandModel'
KO_KR_MULTIMEDIA = 'ko-KR_Multimedia'
KO_KR_NARROWBANDMODEL = 'ko-KR_NarrowbandModel'
KO_KR_TELEPHONY = 'ko-KR_Telephony'
NL_BE_TELEPHONY = 'nl-BE_Telephony'
NL_NL_BROADBANDMODEL = 'nl-NL_BroadbandModel'
NL_NL_MULTIMEDIA = 'nl-NL_Multimedia'
NL_NL_NARROWBANDMODEL = 'nl-NL_NarrowbandModel'
NL_NL_TELEPHONY = 'nl-NL_Telephony'
PT_BR = 'pt-BR'
PT_BR_BROADBANDMODEL = 'pt-BR_BroadbandModel'
PT_BR_MULTIMEDIA = 'pt-BR_Multimedia'
PT_BR_NARROWBANDMODEL = 'pt-BR_NarrowbandModel'
PT_BR_TELEPHONY = 'pt-BR_Telephony'
SV_SE_TELEPHONY = 'sv-SE_Telephony'
ZH_CN_BROADBANDMODEL = 'zh-CN_BroadbandModel'
ZH_CN_NARROWBANDMODEL = 'zh-CN_NarrowbandModel'
ZH_CN_TELEPHONY = 'zh-CN_Telephony'
class Events(str, Enum):
"""
If the job includes a callback URL, a comma-separated list of notification events
to which to subscribe. Valid events are
* `recognitions.started` generates a callback notification when the service begins
to process the job.
* `recognitions.completed` generates a callback notification when the job is
complete. You must use the [Check a job](#checkjob) method to retrieve the results
before they time out or are deleted.
* `recognitions.completed_with_results` generates a callback notification when the
job is complete. The notification includes the results of the request.
* `recognitions.failed` generates a callback notification if the service
experiences an error while processing the job.
The `recognitions.completed` and `recognitions.completed_with_results` events are
incompatible. You can specify only of the two events.
If the job includes a callback URL, omit the parameter to subscribe to the default
events: `recognitions.started`, `recognitions.completed`, and
`recognitions.failed`. If the job does not include a callback URL, omit the
parameter.
"""
RECOGNITIONS_STARTED = 'recognitions.started'
RECOGNITIONS_COMPLETED = 'recognitions.completed'
RECOGNITIONS_COMPLETED_WITH_RESULTS = 'recognitions.completed_with_results'
RECOGNITIONS_FAILED = 'recognitions.failed'
class ListLanguageModelsEnums:
"""
Enums for list_language_models parameters.
"""
class Language(str, Enum):
"""
The identifier of the language for which custom language or custom acoustic models
are to be returned. Specify the five-character language identifier; for example,
specify `en-US` to see all custom language or custom acoustic models that are
based on US English models. Omit the parameter to see all custom language or
custom acoustic models that are owned by the requesting credentials.
To determine the languages for which customization is available, see [Language
support for
customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).
"""
AR_MS = 'ar-MS'
CS_CZ = 'cs-CZ'
DE_DE = 'de-DE'
EN_AU = 'en-AU'
EN_GB = 'en-GB'
EN_IN = 'en-IN'
EN_US = 'en-US'
EN_WW = 'en-WW'
ES_AR = 'es-AR'
ES_CL = 'es-CL'
ES_CO = 'es-CO'
ES_ES = 'es-ES'
ES_LA = 'es-LA'
ES_MX = 'es-MX'
ES_PE = 'es-PE'
FR_CA = 'fr-CA'
FR_FR = 'fr-FR'
HI_IN = 'hi-IN'
IT_IT = 'it-IT'
JA_JP = 'ja-JP'
KO_KR = 'ko-KR'
NL_BE = 'nl-BE'
NL_NL = 'nl-NL'
PT_BR = 'pt-BR'
SV_SE = 'sv-SE'
ZH_CN = 'zh-CN'
class TrainLanguageModelEnums:
"""
Enums for train_language_model parameters.
"""
class WordTypeToAdd(str, Enum):
"""
_For custom models that are based on previous-generation models_, the type of
words from the custom language model's words resource on which to train the model:
* `all` (the default) trains the model on all new words, regardless of whether
they were extracted from corpora or grammars or were added or modified by the
user.
* `user` trains the model only on custom words that were added or modified by the
user directly. The model is not trained on new words extracted from corpora or
grammars.
_For custom models that are based on large speech models and next-generation
models_, the service ignores the `word_type_to_add` parameter. The words resource
contains only custom words that the user adds or modifies directly, so the
parameter is unnecessary.
"""
ALL = 'all'
USER = 'user'
class ListWordsEnums:
"""
Enums for list_words parameters.
"""
class WordType(str, Enum):
"""
The type of words to be listed from the custom language model's words resource:
* `all` (the default) shows all words.
* `user` shows only custom words that were added or modified by the user directly.
* `corpora` shows only OOV that were extracted from corpora.
* `grammars` shows only OOV words that are recognized by grammars.
_For a custom model that is based on a next-generation model_, only `all` and
`user` apply. Both options return the same results. Words from other sources are
not added to custom models that are based on next-generation models.
"""
ALL = 'all'
USER = 'user'
CORPORA = 'corpora'
GRAMMARS = 'grammars'
class Sort(str, Enum):
"""
Indicates the order in which the words are to be listed, `alphabetical` or by
`count`. You can prepend an optional `+` or `-` to an argument to indicate whether
the results are to be sorted in ascending or descending order. By default, words
are sorted in ascending alphabetical order. For alphabetical ordering, the
lexicographical precedence is numeric values, uppercase letters, and lowercase
letters. For count ordering, values with the same count are ordered
alphabetically. With the `curl` command, URL-encode the `+` symbol as `%2B`.
"""
ALPHABETICAL = 'alphabetical'
COUNT = 'count'
class AddGrammarEnums:
"""
Enums for add_grammar parameters.
"""
class ContentType(str, Enum):
"""
The format (MIME type) of the grammar file:
* `application/srgs` for Augmented Backus-Naur Form (ABNF), which uses a
plain-text representation that is similar to traditional BNF grammars.
* `application/srgs+xml` for XML Form, which uses XML elements to represent the
grammar.
"""
APPLICATION_SRGS = 'application/srgs'
APPLICATION_SRGS_XML = 'application/srgs+xml'
class ListAcousticModelsEnums:
"""
Enums for list_acoustic_models parameters.
"""
class Language(str, Enum):
"""
The identifier of the language for which custom language or custom acoustic models
are to be returned. Specify the five-character language identifier; for example,
specify `en-US` to see all custom language or custom acoustic models that are
based on US English models. Omit the parameter to see all custom language or
custom acoustic models that are owned by the requesting credentials.
To determine the languages for which customization is available, see [Language
support for
customization](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-custom-support).
"""
AR_MS = 'ar-MS'
CS_CZ = 'cs-CZ'
DE_DE = 'de-DE'
EN_AU = 'en-AU'
EN_GB = 'en-GB'
EN_IN = 'en-IN'
EN_US = 'en-US'
EN_WW = 'en-WW'
ES_AR = 'es-AR'
ES_CL = 'es-CL'
ES_CO = 'es-CO'
ES_ES = 'es-ES'
ES_LA = 'es-LA'
ES_MX = 'es-MX'
ES_PE = 'es-PE'
FR_CA = 'fr-CA'
FR_FR = 'fr-FR'
HI_IN = 'hi-IN'
IT_IT = 'it-IT'
JA_JP = 'ja-JP'
KO_KR = 'ko-KR'
NL_BE = 'nl-BE'
NL_NL = 'nl-NL'
PT_BR = 'pt-BR'
SV_SE = 'sv-SE'
ZH_CN = 'zh-CN'
class AddAudioEnums:
"""
Enums for add_audio parameters.
"""
class ContentType(str, Enum):
"""
For an audio-type resource, the format (MIME type) of the audio. For more
information, see **Content types for audio-type resources** in the method
description.
For an archive-type resource, the media type of the archive file. For more
information, see **Content types for archive-type resources** in the method
description.
"""
APPLICATION_ZIP = 'application/zip'
APPLICATION_GZIP = 'application/gzip'
AUDIO_ALAW = 'audio/alaw'
AUDIO_BASIC = 'audio/basic'
AUDIO_FLAC = 'audio/flac'
AUDIO_G729 = 'audio/g729'
AUDIO_L16 = 'audio/l16'
AUDIO_MP3 = 'audio/mp3'
AUDIO_MPEG = 'audio/mpeg'
AUDIO_MULAW = 'audio/mulaw'
AUDIO_OGG = 'audio/ogg'
AUDIO_OGG_CODECS_OPUS = 'audio/ogg;codecs=opus'
AUDIO_OGG_CODECS_VORBIS = 'audio/ogg;codecs=vorbis'
AUDIO_WAV = 'audio/wav'
AUDIO_WEBM = 'audio/webm'
AUDIO_WEBM_CODECS_OPUS = 'audio/webm;codecs=opus'
AUDIO_WEBM_CODECS_VORBIS = 'audio/webm;codecs=vorbis'
class ContainedContentType(str, Enum):
"""
_For an archive-type resource_, specify the format of the audio files that are
contained in the archive file if they are of type `audio/alaw`, `audio/basic`,
`audio/l16`, or `audio/mulaw`. Include the `rate`, `channels`, and `endianness`
parameters where necessary. In this case, all audio files that are contained in
the archive file must be of the indicated type.
For all other audio formats, you can omit the header. In this case, the audio
files can be of multiple types as long as they are not of the types listed in the
previous paragraph.
The parameter accepts all of the audio formats that are supported for use with
speech recognition. For more information, see **Content types for audio-type
resources** in the method description.
_For an audio-type resource_, omit the header.
"""
AUDIO_ALAW = 'audio/alaw'
AUDIO_BASIC = 'audio/basic'
AUDIO_FLAC = 'audio/flac'
AUDIO_G729 = 'audio/g729'
AUDIO_L16 = 'audio/l16'
AUDIO_MP3 = 'audio/mp3'
AUDIO_MPEG = 'audio/mpeg'
AUDIO_MULAW = 'audio/mulaw'
AUDIO_OGG = 'audio/ogg'
AUDIO_OGG_CODECS_OPUS = 'audio/ogg;codecs=opus'
AUDIO_OGG_CODECS_VORBIS = 'audio/ogg;codecs=vorbis'
AUDIO_WAV = 'audio/wav'
AUDIO_WEBM = 'audio/webm'
AUDIO_WEBM_CODECS_OPUS = 'audio/webm;codecs=opus'
AUDIO_WEBM_CODECS_VORBIS = 'audio/webm;codecs=vorbis'
##############################################################################
# Models
##############################################################################
class AcousticModel:
"""
Information about an existing custom acoustic model.
:param str customization_id: The customization ID (GUID) of the custom acoustic
model. The [Create a custom acoustic model](#createacousticmodel) method returns
only this field of the object; it does not return the other fields.
:param str created: (optional) The date and time in Coordinated Universal Time
(UTC) at which the custom acoustic model was created. The value is provided in
full ISO 8601 format (`YYYY-MM-DDThh:mm:ss.sTZD`).
:param str updated: (optional) The date and time in Coordinated Universal Time
(UTC) at which the custom acoustic model was last modified. The `created` and
`updated` fields are equal when an acoustic model is first added but has yet to
be updated. The value is provided in full ISO 8601 format
(YYYY-MM-DDThh:mm:ss.sTZD).
:param str language: (optional) The language identifier of the custom acoustic
model (for example, `en-US`).
:param List[str] versions: (optional) A list of the available versions of the
custom acoustic model. Each element of the array indicates a version of the base
model with which the custom model can be used. Multiple versions exist only if
the custom model has been upgraded to a new version of its base model.
Otherwise, only a single version is shown.
:param str owner: (optional) The GUID of the credentials for the instance of the
service that owns the custom acoustic model.
:param str name: (optional) The name of the custom acoustic model.
:param str description: (optional) The description of the custom acoustic model.
:param str base_model_name: (optional) The name of the language model for which
the custom acoustic model was created.
:param str status: (optional) The current status of the custom acoustic model:
* `pending`: The model was created but is waiting either for valid training data
to be added or for the service to finish analyzing added data.
* `ready`: The model contains valid data and is ready to be trained. If the
model contains a mix of valid and invalid resources, you need to set the
`strict` parameter to `false` for the training to proceed.
* `training`: The model is currently being trained.
* `available`: The model is trained and ready to use.
* `upgrading`: The model is currently being upgraded.
* `failed`: Training of the model failed.
:param int progress: (optional) A percentage that indicates the progress of the
custom acoustic model's current training. A value of `100` means that the model
is fully trained. **Note:** The `progress` field does not currently reflect the
progress of the training. The field changes from `0` to `100` when training is
complete.
:param str warnings: (optional) If the request included unknown parameters, the
following message: `Unexpected query parameter(s) ['parameters'] detected`,
where `parameters` is a list that includes a quoted string for each unknown
parameter.
"""
def __init__(
self,
customization_id: str,
*,
created: Optional[str] = None,
updated: Optional[str] = None,
language: Optional[str] = None,
versions: Optional[List[str]] = None,
owner: Optional[str] = None,
name: Optional[str] = None,
description: Optional[str] = None,
base_model_name: Optional[str] = None,
status: Optional[str] = None,
progress: Optional[int] = None,
warnings: Optional[str] = None,
) -> None:
"""
Initialize a AcousticModel object.
:param str customization_id: The customization ID (GUID) of the custom
acoustic model. The [Create a custom acoustic model](#createacousticmodel)
method returns only this field of the object; it does not return the other
fields.
:param str created: (optional) The date and time in Coordinated Universal
Time (UTC) at which the custom acoustic model was created. The value is
provided in full ISO 8601 format (`YYYY-MM-DDThh:mm:ss.sTZD`).
:param str updated: (optional) The date and time in Coordinated Universal
Time (UTC) at which the custom acoustic model was last modified. The
`created` and `updated` fields are equal when an acoustic model is first
added but has yet to be updated. The value is provided in full ISO 8601
format (YYYY-MM-DDThh:mm:ss.sTZD).
:param str language: (optional) The language identifier of the custom
acoustic model (for example, `en-US`).
:param List[str] versions: (optional) A list of the available versions of
the custom acoustic model. Each element of the array indicates a version of
the base model with which the custom model can be used. Multiple versions
exist only if the custom model has been upgraded to a new version of its
base model. Otherwise, only a single version is shown.
:param str owner: (optional) The GUID of the credentials for the instance
of the service that owns the custom acoustic model.
:param str name: (optional) The name of the custom acoustic model.
:param str description: (optional) The description of the custom acoustic
model.
:param str base_model_name: (optional) The name of the language model for
which the custom acoustic model was created.
:param str status: (optional) The current status of the custom acoustic
model:
* `pending`: The model was created but is waiting either for valid training
data to be added or for the service to finish analyzing added data.
* `ready`: The model contains valid data and is ready to be trained. If the
model contains a mix of valid and invalid resources, you need to set the
`strict` parameter to `false` for the training to proceed.
* `training`: The model is currently being trained.
* `available`: The model is trained and ready to use.
* `upgrading`: The model is currently being upgraded.
* `failed`: Training of the model failed.
:param int progress: (optional) A percentage that indicates the progress of
the custom acoustic model's current training. A value of `100` means that
the model is fully trained. **Note:** The `progress` field does not
currently reflect the progress of the training. The field changes from `0`
to `100` when training is complete.
:param str warnings: (optional) If the request included unknown parameters,
the following message: `Unexpected query parameter(s) ['parameters']
detected`, where `parameters` is a list that includes a quoted string for
each unknown parameter.
"""
self.customization_id = customization_id
self.created = created
self.updated = updated
self.language = language
self.versions = versions
self.owner = owner
self.name = name
self.description = description
self.base_model_name = base_model_name
self.status = status
self.progress = progress
self.warnings = warnings
@classmethod
def from_dict(cls, _dict: Dict) -> 'AcousticModel':
"""Initialize a AcousticModel object from a json dictionary."""
args = {}
if (customization_id := _dict.get('customization_id')) is not None:
args['customization_id'] = customization_id
else:
raise ValueError(
'Required property \'customization_id\' not present in AcousticModel JSON'
)
if (created := _dict.get('created')) is not None:
args['created'] = created
if (updated := _dict.get('updated')) is not None:
args['updated'] = updated
if (language := _dict.get('language')) is not None:
args['language'] = language
if (versions := _dict.get('versions')) is not None:
args['versions'] = versions
if (owner := _dict.get('owner')) is not None:
args['owner'] = owner
if (name := _dict.get('name')) is not None:
args['name'] = name
if (description := _dict.get('description')) is not None:
args['description'] = description
if (base_model_name := _dict.get('base_model_name')) is not None:
args['base_model_name'] = base_model_name
if (status := _dict.get('status')) is not None:
args['status'] = status
if (progress := _dict.get('progress')) is not None:
args['progress'] = progress
if (warnings := _dict.get('warnings')) is not None:
args['warnings'] = warnings
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a AcousticModel object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self,
'customization_id') and self.customization_id is not None:
_dict['customization_id'] = self.customization_id
if hasattr(self, 'created') and self.created is not None:
_dict['created'] = self.created
if hasattr(self, 'updated') and self.updated is not None:
_dict['updated'] = self.updated
if hasattr(self, 'language') and self.language is not None:
_dict['language'] = self.language
if hasattr(self, 'versions') and self.versions is not None:
_dict['versions'] = self.versions
if hasattr(self, 'owner') and self.owner is not None:
_dict['owner'] = self.owner
if hasattr(self, 'name') and self.name is not None:
_dict['name'] = self.name
if hasattr(self, 'description') and self.description is not None:
_dict['description'] = self.description
if hasattr(self,
'base_model_name') and self.base_model_name is not None:
_dict['base_model_name'] = self.base_model_name
if hasattr(self, 'status') and self.status is not None:
_dict['status'] = self.status
if hasattr(self, 'progress') and self.progress is not None:
_dict['progress'] = self.progress
if hasattr(self, 'warnings') and self.warnings is not None:
_dict['warnings'] = self.warnings
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this AcousticModel object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'AcousticModel') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'AcousticModel') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class StatusEnum(str, Enum):
"""
The current status of the custom acoustic model:
* `pending`: The model was created but is waiting either for valid training data
to be added or for the service to finish analyzing added data.
* `ready`: The model contains valid data and is ready to be trained. If the model
contains a mix of valid and invalid resources, you need to set the `strict`
parameter to `false` for the training to proceed.
* `training`: The model is currently being trained.
* `available`: The model is trained and ready to use.
* `upgrading`: The model is currently being upgraded.
* `failed`: Training of the model failed.
"""
PENDING = 'pending'
READY = 'ready'
TRAINING = 'training'
AVAILABLE = 'available'
UPGRADING = 'upgrading'
FAILED = 'failed'
class AcousticModels:
"""
Information about existing custom acoustic models.
:param List[AcousticModel] customizations: An array of `AcousticModel` objects
that provides information about each available custom acoustic model. The array
is empty if the requesting credentials own no custom acoustic models (if no
language is specified) or own no custom acoustic models for the specified
language.
"""
def __init__(
self,
customizations: List['AcousticModel'],
) -> None:
"""
Initialize a AcousticModels object.
:param List[AcousticModel] customizations: An array of `AcousticModel`
objects that provides information about each available custom acoustic
model. The array is empty if the requesting credentials own no custom
acoustic models (if no language is specified) or own no custom acoustic
models for the specified language.
"""
self.customizations = customizations
@classmethod
def from_dict(cls, _dict: Dict) -> 'AcousticModels':
"""Initialize a AcousticModels object from a json dictionary."""
args = {}
if (customizations := _dict.get('customizations')) is not None:
args['customizations'] = [
AcousticModel.from_dict(v) for v in customizations
]
else:
raise ValueError(
'Required property \'customizations\' not present in AcousticModels JSON'
)
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a AcousticModels object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'customizations') and self.customizations is not None:
customizations_list = []
for v in self.customizations:
if isinstance(v, dict):
customizations_list.append(v)
else:
customizations_list.append(v.to_dict())
_dict['customizations'] = customizations_list
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this AcousticModels object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'AcousticModels') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'AcousticModels') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class AudioDetails:
"""
Information about an audio resource from a custom acoustic model.
:param str type: (optional) The type of the audio resource:
* `audio` for an individual audio file
* `archive` for an archive (**.zip** or **.tar.gz**) file that contains audio
files
* `undetermined` for a resource that the service cannot validate (for example,
if the user mistakenly passes a file that does not contain audio, such as a JPEG
file).
:param str codec: (optional) _For an audio-type resource_, the codec in which
the audio is encoded. Omitted for an archive-type resource.
:param int frequency: (optional) _For an audio-type resource_, the sampling rate
of the audio in Hertz (samples per second). Omitted for an archive-type
resource.
:param str compression: (optional) _For an archive-type resource_, the format of
the compressed archive:
* `zip` for a **.zip** file
* `gzip` for a **.tar.gz** file
Omitted for an audio-type resource.
"""
def __init__(
self,
*,
type: Optional[str] = None,
codec: Optional[str] = None,
frequency: Optional[int] = None,
compression: Optional[str] = None,
) -> None:
"""
Initialize a AudioDetails object.
:param str type: (optional) The type of the audio resource:
* `audio` for an individual audio file
* `archive` for an archive (**.zip** or **.tar.gz**) file that contains
audio files
* `undetermined` for a resource that the service cannot validate (for
example, if the user mistakenly passes a file that does not contain audio,
such as a JPEG file).
:param str codec: (optional) _For an audio-type resource_, the codec in
which the audio is encoded. Omitted for an archive-type resource.
:param int frequency: (optional) _For an audio-type resource_, the sampling
rate of the audio in Hertz (samples per second). Omitted for an
archive-type resource.
:param str compression: (optional) _For an archive-type resource_, the
format of the compressed archive:
* `zip` for a **.zip** file
* `gzip` for a **.tar.gz** file
Omitted for an audio-type resource.
"""
self.type = type
self.codec = codec
self.frequency = frequency
self.compression = compression
@classmethod
def from_dict(cls, _dict: Dict) -> 'AudioDetails':
"""Initialize a AudioDetails object from a json dictionary."""
args = {}
if (type := _dict.get('type')) is not None:
args['type'] = type
if (codec := _dict.get('codec')) is not None:
args['codec'] = codec
if (frequency := _dict.get('frequency')) is not None:
args['frequency'] = frequency
if (compression := _dict.get('compression')) is not None:
args['compression'] = compression
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a AudioDetails object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'type') and self.type is not None:
_dict['type'] = self.type
if hasattr(self, 'codec') and self.codec is not None:
_dict['codec'] = self.codec
if hasattr(self, 'frequency') and self.frequency is not None:
_dict['frequency'] = self.frequency
if hasattr(self, 'compression') and self.compression is not None:
_dict['compression'] = self.compression
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this AudioDetails object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'AudioDetails') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'AudioDetails') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class TypeEnum(str, Enum):
"""
The type of the audio resource:
* `audio` for an individual audio file
* `archive` for an archive (**.zip** or **.tar.gz**) file that contains audio
files
* `undetermined` for a resource that the service cannot validate (for example, if
the user mistakenly passes a file that does not contain audio, such as a JPEG
file).
"""
AUDIO = 'audio'
ARCHIVE = 'archive'
UNDETERMINED = 'undetermined'
class CompressionEnum(str, Enum):
"""
_For an archive-type resource_, the format of the compressed archive:
* `zip` for a **.zip** file
* `gzip` for a **.tar.gz** file
Omitted for an audio-type resource.
"""
ZIP = 'zip'
GZIP = 'gzip'
class AudioListing:
"""
Information about an audio resource from a custom acoustic model.
:param int duration: (optional) _For an audio-type resource_, the total seconds
of audio in the resource. Omitted for an archive-type resource.
:param str name: (optional) _For an audio-type resource_, the user-specified
name of the resource. Omitted for an archive-type resource.
:param AudioDetails details: (optional) _For an audio-type resource_, an
`AudioDetails` object that provides detailed information about the resource. The
object is empty until the service finishes processing the audio. Omitted for an
archive-type resource.
:param str status: (optional) _For an audio-type resource_, the status of the
resource:
* `ok`: The service successfully analyzed the audio data. The data can be used
to train the custom model.
* `being_processed`: The service is still analyzing the audio data. The service
cannot accept requests to add new audio resources or to train the custom model
until its analysis is complete.
* `invalid`: The audio data is not valid for training the custom model (possibly
because it has the wrong format or sampling rate, or because it is corrupted).
Omitted for an archive-type resource.
:param AudioResource container: (optional) _For an archive-type resource_, an
object of type `AudioResource` that provides information about the resource.
Omitted for an audio-type resource.
:param List[AudioResource] audio: (optional) _For an archive-type resource_, an
array of `AudioResource` objects that provides information about the audio-type
resources that are contained in the resource. Omitted for an audio-type
resource.
"""
def __init__(
self,
*,
duration: Optional[int] = None,
name: Optional[str] = None,
details: Optional['AudioDetails'] = None,
status: Optional[str] = None,
container: Optional['AudioResource'] = None,
audio: Optional[List['AudioResource']] = None,
) -> None:
"""
Initialize a AudioListing object.
:param int duration: (optional) _For an audio-type resource_, the total
seconds of audio in the resource. Omitted for an archive-type resource.
:param str name: (optional) _For an audio-type resource_, the
user-specified name of the resource. Omitted for an archive-type resource.
:param AudioDetails details: (optional) _For an audio-type resource_, an
`AudioDetails` object that provides detailed information about the
resource. The object is empty until the service finishes processing the
audio. Omitted for an archive-type resource.
:param str status: (optional) _For an audio-type resource_, the status of
the resource:
* `ok`: The service successfully analyzed the audio data. The data can be
used to train the custom model.
* `being_processed`: The service is still analyzing the audio data. The
service cannot accept requests to add new audio resources or to train the
custom model until its analysis is complete.
* `invalid`: The audio data is not valid for training the custom model
(possibly because it has the wrong format or sampling rate, or because it
is corrupted).
Omitted for an archive-type resource.
:param AudioResource container: (optional) _For an archive-type resource_,
an object of type `AudioResource` that provides information about the
resource. Omitted for an audio-type resource.
:param List[AudioResource] audio: (optional) _For an archive-type
resource_, an array of `AudioResource` objects that provides information
about the audio-type resources that are contained in the resource. Omitted
for an audio-type resource.
"""
self.duration = duration
self.name = name
self.details = details
self.status = status
self.container = container
self.audio = audio
@classmethod
def from_dict(cls, _dict: Dict) -> 'AudioListing':
"""Initialize a AudioListing object from a json dictionary."""
args = {}
if (duration := _dict.get('duration')) is not None:
args['duration'] = duration
if (name := _dict.get('name')) is not None:
args['name'] = name
if (details := _dict.get('details')) is not None:
args['details'] = AudioDetails.from_dict(details)
if (status := _dict.get('status')) is not None:
args['status'] = status
if (container := _dict.get('container')) is not None:
args['container'] = AudioResource.from_dict(container)
if (audio := _dict.get('audio')) is not None:
args['audio'] = [AudioResource.from_dict(v) for v in audio]
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a AudioListing object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'duration') and self.duration is not None:
_dict['duration'] = self.duration
if hasattr(self, 'name') and self.name is not None:
_dict['name'] = self.name
if hasattr(self, 'details') and self.details is not None:
if isinstance(self.details, dict):
_dict['details'] = self.details
else:
_dict['details'] = self.details.to_dict()
if hasattr(self, 'status') and self.status is not None:
_dict['status'] = self.status
if hasattr(self, 'container') and self.container is not None:
if isinstance(self.container, dict):
_dict['container'] = self.container
else:
_dict['container'] = self.container.to_dict()
if hasattr(self, 'audio') and self.audio is not None:
audio_list = []
for v in self.audio:
if isinstance(v, dict):
audio_list.append(v)
else:
audio_list.append(v.to_dict())
_dict['audio'] = audio_list
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this AudioListing object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'AudioListing') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'AudioListing') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class StatusEnum(str, Enum):
"""
_For an audio-type resource_, the status of the resource:
* `ok`: The service successfully analyzed the audio data. The data can be used to
train the custom model.
* `being_processed`: The service is still analyzing the audio data. The service
cannot accept requests to add new audio resources or to train the custom model
until its analysis is complete.
* `invalid`: The audio data is not valid for training the custom model (possibly
because it has the wrong format or sampling rate, or because it is corrupted).
Omitted for an archive-type resource.
"""
OK = 'ok'
BEING_PROCESSED = 'being_processed'
INVALID = 'invalid'
class AudioMetrics:
"""
If audio metrics are requested, information about the signal characteristics of the
input audio.
:param float sampling_interval: The interval in seconds (typically 0.1 seconds)
at which the service calculated the audio metrics. In other words, how often the
service calculated the metrics. A single unit in each histogram (see the
`AudioMetricsHistogramBin` object) is calculated based on a `sampling_interval`
length of audio.
:param AudioMetricsDetails accumulated: Detailed information about the signal
characteristics of the input audio.
"""
def __init__(
self,
sampling_interval: float,
accumulated: 'AudioMetricsDetails',
) -> None:
"""
Initialize a AudioMetrics object.
:param float sampling_interval: The interval in seconds (typically 0.1
seconds) at which the service calculated the audio metrics. In other words,
how often the service calculated the metrics. A single unit in each
histogram (see the `AudioMetricsHistogramBin` object) is calculated based
on a `sampling_interval` length of audio.
:param AudioMetricsDetails accumulated: Detailed information about the
signal characteristics of the input audio.
"""
self.sampling_interval = sampling_interval
self.accumulated = accumulated
@classmethod
def from_dict(cls, _dict: Dict) -> 'AudioMetrics':
"""Initialize a AudioMetrics object from a json dictionary."""
args = {}
if (sampling_interval := _dict.get('sampling_interval')) is not None:
args['sampling_interval'] = sampling_interval
else:
raise ValueError(
'Required property \'sampling_interval\' not present in AudioMetrics JSON'
)
if (accumulated := _dict.get('accumulated')) is not None:
args['accumulated'] = AudioMetricsDetails.from_dict(accumulated)
else:
raise ValueError(
'Required property \'accumulated\' not present in AudioMetrics JSON'
)
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a AudioMetrics object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self,
'sampling_interval') and self.sampling_interval is not None:
_dict['sampling_interval'] = self.sampling_interval
if hasattr(self, 'accumulated') and self.accumulated is not None:
if isinstance(self.accumulated, dict):
_dict['accumulated'] = self.accumulated
else:
_dict['accumulated'] = self.accumulated.to_dict()
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this AudioMetrics object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'AudioMetrics') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'AudioMetrics') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class AudioMetricsDetails:
"""
Detailed information about the signal characteristics of the input audio.
:param bool final: If `true`, indicates the end of the audio stream, meaning
that transcription is complete. Currently, the field is always `true`. The
service returns metrics just once per audio stream. The results provide
aggregated audio metrics that pertain to the complete audio stream.
:param float end_time: The end time in seconds of the block of audio to which
the metrics apply.
:param float signal_to_noise_ratio: (optional) The signal-to-noise ratio (SNR)
for the audio signal. The value indicates the ratio of speech to noise in the
audio. A valid value lies in the range of 0 to 100 decibels (dB). The service
omits the field if it cannot compute the SNR for the audio.
:param float speech_ratio: The ratio of speech to non-speech segments in the
audio signal. The value lies in the range of 0.0 to 1.0.
:param float high_frequency_loss: The probability that the audio signal is
missing the upper half of its frequency content.
* A value close to 1.0 typically indicates artificially up-sampled audio, which
negatively impacts the accuracy of the transcription results.
* A value at or near 0.0 indicates that the audio signal is good and has a full
spectrum.
* A value around 0.5 means that detection of the frequency content is unreliable
or not available.
:param List[AudioMetricsHistogramBin] direct_current_offset: An array of
`AudioMetricsHistogramBin` objects that defines a histogram of the cumulative
direct current (DC) component of the audio signal.
:param List[AudioMetricsHistogramBin] clipping_rate: An array of
`AudioMetricsHistogramBin` objects that defines a histogram of the clipping rate
for the audio segments. The clipping rate is defined as the fraction of samples
in the segment that reach the maximum or minimum value that is offered by the
audio quantization range. The service auto-detects either a 16-bit Pulse-Code
Modulation(PCM) audio range (-32768 to +32767) or a unit range (-1.0 to +1.0).
The clipping rate is between 0.0 and 1.0, with higher values indicating possible
degradation of speech recognition.
:param List[AudioMetricsHistogramBin] speech_level: An array of
`AudioMetricsHistogramBin` objects that defines a histogram of the signal level
in segments of the audio that contain speech. The signal level is computed as
the Root-Mean-Square (RMS) value in a decibel (dB) scale normalized to the range
0.0 (minimum level) to 1.0 (maximum level).
:param List[AudioMetricsHistogramBin] non_speech_level: An array of
`AudioMetricsHistogramBin` objects that defines a histogram of the signal level
in segments of the audio that do not contain speech. The signal level is
computed as the Root-Mean-Square (RMS) value in a decibel (dB) scale normalized
to the range 0.0 (minimum level) to 1.0 (maximum level).
"""
def __init__(
self,
final: bool,
end_time: float,
speech_ratio: float,
high_frequency_loss: float,
direct_current_offset: List['AudioMetricsHistogramBin'],
clipping_rate: List['AudioMetricsHistogramBin'],
speech_level: List['AudioMetricsHistogramBin'],
non_speech_level: List['AudioMetricsHistogramBin'],
*,
signal_to_noise_ratio: Optional[float] = None,
) -> None:
"""
Initialize a AudioMetricsDetails object.
:param bool final: If `true`, indicates the end of the audio stream,
meaning that transcription is complete. Currently, the field is always
`true`. The service returns metrics just once per audio stream. The results
provide aggregated audio metrics that pertain to the complete audio stream.
:param float end_time: The end time in seconds of the block of audio to
which the metrics apply.
:param float speech_ratio: The ratio of speech to non-speech segments in
the audio signal. The value lies in the range of 0.0 to 1.0.
:param float high_frequency_loss: The probability that the audio signal is
missing the upper half of its frequency content.
* A value close to 1.0 typically indicates artificially up-sampled audio,
which negatively impacts the accuracy of the transcription results.
* A value at or near 0.0 indicates that the audio signal is good and has a
full spectrum.
* A value around 0.5 means that detection of the frequency content is
unreliable or not available.
:param List[AudioMetricsHistogramBin] direct_current_offset: An array of
`AudioMetricsHistogramBin` objects that defines a histogram of the
cumulative direct current (DC) component of the audio signal.
:param List[AudioMetricsHistogramBin] clipping_rate: An array of
`AudioMetricsHistogramBin` objects that defines a histogram of the clipping
rate for the audio segments. The clipping rate is defined as the fraction
of samples in the segment that reach the maximum or minimum value that is
offered by the audio quantization range. The service auto-detects either a
16-bit Pulse-Code Modulation(PCM) audio range (-32768 to +32767) or a unit
range (-1.0 to +1.0). The clipping rate is between 0.0 and 1.0, with higher
values indicating possible degradation of speech recognition.
:param List[AudioMetricsHistogramBin] speech_level: An array of
`AudioMetricsHistogramBin` objects that defines a histogram of the signal
level in segments of the audio that contain speech. The signal level is
computed as the Root-Mean-Square (RMS) value in a decibel (dB) scale
normalized to the range 0.0 (minimum level) to 1.0 (maximum level).
:param List[AudioMetricsHistogramBin] non_speech_level: An array of
`AudioMetricsHistogramBin` objects that defines a histogram of the signal
level in segments of the audio that do not contain speech. The signal level
is computed as the Root-Mean-Square (RMS) value in a decibel (dB) scale
normalized to the range 0.0 (minimum level) to 1.0 (maximum level).
:param float signal_to_noise_ratio: (optional) The signal-to-noise ratio
(SNR) for the audio signal. The value indicates the ratio of speech to
noise in the audio. A valid value lies in the range of 0 to 100 decibels
(dB). The service omits the field if it cannot compute the SNR for the
audio.
"""
self.final = final
self.end_time = end_time
self.signal_to_noise_ratio = signal_to_noise_ratio
self.speech_ratio = speech_ratio
self.high_frequency_loss = high_frequency_loss
self.direct_current_offset = direct_current_offset
self.clipping_rate = clipping_rate
self.speech_level = speech_level
self.non_speech_level = non_speech_level
@classmethod
def from_dict(cls, _dict: Dict) -> 'AudioMetricsDetails':
"""Initialize a AudioMetricsDetails object from a json dictionary."""
args = {}
if (final := _dict.get('final')) is not None:
args['final'] = final
else:
raise ValueError(
'Required property \'final\' not present in AudioMetricsDetails JSON'
)
if (end_time := _dict.get('end_time')) is not None:
args['end_time'] = end_time
else:
raise ValueError(
'Required property \'end_time\' not present in AudioMetricsDetails JSON'
)
if (signal_to_noise_ratio :=
_dict.get('signal_to_noise_ratio')) is not None:
args['signal_to_noise_ratio'] = signal_to_noise_ratio
if (speech_ratio := _dict.get('speech_ratio')) is not None:
args['speech_ratio'] = speech_ratio
else:
raise ValueError(
'Required property \'speech_ratio\' not present in AudioMetricsDetails JSON'
)
if (high_frequency_loss :=
_dict.get('high_frequency_loss')) is not None:
args['high_frequency_loss'] = high_frequency_loss
else:
raise ValueError(
'Required property \'high_frequency_loss\' not present in AudioMetricsDetails JSON'
)
if (direct_current_offset :=
_dict.get('direct_current_offset')) is not None:
args['direct_current_offset'] = [
AudioMetricsHistogramBin.from_dict(v)
for v in direct_current_offset
]
else:
raise ValueError(
'Required property \'direct_current_offset\' not present in AudioMetricsDetails JSON'
)
if (clipping_rate := _dict.get('clipping_rate')) is not None:
args['clipping_rate'] = [
AudioMetricsHistogramBin.from_dict(v) for v in clipping_rate
]
else:
raise ValueError(
'Required property \'clipping_rate\' not present in AudioMetricsDetails JSON'
)
if (speech_level := _dict.get('speech_level')) is not None:
args['speech_level'] = [
AudioMetricsHistogramBin.from_dict(v) for v in speech_level
]
else:
raise ValueError(
'Required property \'speech_level\' not present in AudioMetricsDetails JSON'
)
if (non_speech_level := _dict.get('non_speech_level')) is not None:
args['non_speech_level'] = [
AudioMetricsHistogramBin.from_dict(v) for v in non_speech_level
]
else:
raise ValueError(
'Required property \'non_speech_level\' not present in AudioMetricsDetails JSON'
)
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a AudioMetricsDetails object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'final') and self.final is not None:
_dict['final'] = self.final
if hasattr(self, 'end_time') and self.end_time is not None:
_dict['end_time'] = self.end_time
if hasattr(self, 'signal_to_noise_ratio'
) and self.signal_to_noise_ratio is not None:
_dict['signal_to_noise_ratio'] = self.signal_to_noise_ratio
if hasattr(self, 'speech_ratio') and self.speech_ratio is not None:
_dict['speech_ratio'] = self.speech_ratio
if hasattr(
self,
'high_frequency_loss') and self.high_frequency_loss is not None:
_dict['high_frequency_loss'] = self.high_frequency_loss
if hasattr(self, 'direct_current_offset'
) and self.direct_current_offset is not None:
direct_current_offset_list = []
for v in self.direct_current_offset:
if isinstance(v, dict):
direct_current_offset_list.append(v)
else:
direct_current_offset_list.append(v.to_dict())
_dict['direct_current_offset'] = direct_current_offset_list
if hasattr(self, 'clipping_rate') and self.clipping_rate is not None:
clipping_rate_list = []
for v in self.clipping_rate:
if isinstance(v, dict):
clipping_rate_list.append(v)
else:
clipping_rate_list.append(v.to_dict())
_dict['clipping_rate'] = clipping_rate_list
if hasattr(self, 'speech_level') and self.speech_level is not None:
speech_level_list = []
for v in self.speech_level:
if isinstance(v, dict):
speech_level_list.append(v)
else:
speech_level_list.append(v.to_dict())
_dict['speech_level'] = speech_level_list
if hasattr(self,
'non_speech_level') and self.non_speech_level is not None:
non_speech_level_list = []
for v in self.non_speech_level:
if isinstance(v, dict):
non_speech_level_list.append(v)
else:
non_speech_level_list.append(v.to_dict())
_dict['non_speech_level'] = non_speech_level_list
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this AudioMetricsDetails object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'AudioMetricsDetails') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'AudioMetricsDetails') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class AudioMetricsHistogramBin:
"""
A bin with defined boundaries that indicates the number of values in a range of signal
characteristics for a histogram. The first and last bins of a histogram are the
boundary bins. They cover the intervals between negative infinity and the first
boundary, and between the last boundary and positive infinity, respectively.
:param float begin: The lower boundary of the bin in the histogram.
:param float end: The upper boundary of the bin in the histogram.
:param int count: The number of values in the bin of the histogram.
"""
def __init__(
self,
begin: float,
end: float,
count: int,
) -> None:
"""
Initialize a AudioMetricsHistogramBin object.
:param float begin: The lower boundary of the bin in the histogram.
:param float end: The upper boundary of the bin in the histogram.
:param int count: The number of values in the bin of the histogram.
"""
self.begin = begin
self.end = end
self.count = count
@classmethod
def from_dict(cls, _dict: Dict) -> 'AudioMetricsHistogramBin':
"""Initialize a AudioMetricsHistogramBin object from a json dictionary."""
args = {}
if (begin := _dict.get('begin')) is not None:
args['begin'] = begin
else:
raise ValueError(
'Required property \'begin\' not present in AudioMetricsHistogramBin JSON'
)
if (end := _dict.get('end')) is not None:
args['end'] = end
else:
raise ValueError(
'Required property \'end\' not present in AudioMetricsHistogramBin JSON'
)
if (count := _dict.get('count')) is not None:
args['count'] = count
else:
raise ValueError(
'Required property \'count\' not present in AudioMetricsHistogramBin JSON'
)
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a AudioMetricsHistogramBin object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'begin') and self.begin is not None:
_dict['begin'] = self.begin
if hasattr(self, 'end') and self.end is not None:
_dict['end'] = self.end
if hasattr(self, 'count') and self.count is not None:
_dict['count'] = self.count
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this AudioMetricsHistogramBin object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'AudioMetricsHistogramBin') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'AudioMetricsHistogramBin') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class AudioResource:
"""
Information about an audio resource from a custom acoustic model.
:param int duration: The total seconds of audio in the audio resource.
:param str name: _For an archive-type resource_, the user-specified name of the
resource.
_For an audio-type resource_, the user-specified name of the resource or the
name of the audio file that the user added for the resource. The value depends
on the method that is called.
:param AudioDetails details: An `AudioDetails` object that provides detailed
information about the audio resource. The object is empty until the service
finishes processing the audio.
:param str status: The status of the audio resource:
* `ok`: The service successfully analyzed the audio data. The data can be used
to train the custom model.
* `being_processed`: The service is still analyzing the audio data. The service
cannot accept requests to add new audio resources or to train the custom model
until its analysis is complete.
* `invalid`: The audio data is not valid for training the custom model (possibly
because it has the wrong format or sampling rate, or because it is corrupted).
For an archive file, the entire archive is invalid if any of its audio files are
invalid.
"""
def __init__(
self,
duration: int,
name: str,
details: 'AudioDetails',
status: str,
) -> None:
"""
Initialize a AudioResource object.
:param int duration: The total seconds of audio in the audio resource.
:param str name: _For an archive-type resource_, the user-specified name of
the resource.
_For an audio-type resource_, the user-specified name of the resource or
the name of the audio file that the user added for the resource. The value
depends on the method that is called.
:param AudioDetails details: An `AudioDetails` object that provides
detailed information about the audio resource. The object is empty until
the service finishes processing the audio.
:param str status: The status of the audio resource:
* `ok`: The service successfully analyzed the audio data. The data can be
used to train the custom model.
* `being_processed`: The service is still analyzing the audio data. The
service cannot accept requests to add new audio resources or to train the
custom model until its analysis is complete.
* `invalid`: The audio data is not valid for training the custom model
(possibly because it has the wrong format or sampling rate, or because it
is corrupted). For an archive file, the entire archive is invalid if any of
its audio files are invalid.
"""
self.duration = duration
self.name = name
self.details = details
self.status = status
@classmethod
def from_dict(cls, _dict: Dict) -> 'AudioResource':
"""Initialize a AudioResource object from a json dictionary."""
args = {}
if (duration := _dict.get('duration')) is not None:
args['duration'] = duration
else:
raise ValueError(
'Required property \'duration\' not present in AudioResource JSON'
)
if (name := _dict.get('name')) is not None:
args['name'] = name
else:
raise ValueError(
'Required property \'name\' not present in AudioResource JSON')
if (details := _dict.get('details')) is not None:
args['details'] = AudioDetails.from_dict(details)
else:
raise ValueError(
'Required property \'details\' not present in AudioResource JSON'
)
if (status := _dict.get('status')) is not None:
args['status'] = status
else:
raise ValueError(
'Required property \'status\' not present in AudioResource JSON'
)
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a AudioResource object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'duration') and self.duration is not None:
_dict['duration'] = self.duration
if hasattr(self, 'name') and self.name is not None:
_dict['name'] = self.name
if hasattr(self, 'details') and self.details is not None:
if isinstance(self.details, dict):
_dict['details'] = self.details
else:
_dict['details'] = self.details.to_dict()
if hasattr(self, 'status') and self.status is not None:
_dict['status'] = self.status
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this AudioResource object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'AudioResource') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'AudioResource') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class StatusEnum(str, Enum):
"""
The status of the audio resource:
* `ok`: The service successfully analyzed the audio data. The data can be used to
train the custom model.
* `being_processed`: The service is still analyzing the audio data. The service
cannot accept requests to add new audio resources or to train the custom model
until its analysis is complete.
* `invalid`: The audio data is not valid for training the custom model (possibly
because it has the wrong format or sampling rate, or because it is corrupted). For
an archive file, the entire archive is invalid if any of its audio files are
invalid.
"""
OK = 'ok'
BEING_PROCESSED = 'being_processed'
INVALID = 'invalid'
class AudioResources:
"""
Information about the audio resources from a custom acoustic model.
:param float total_minutes_of_audio: The total minutes of accumulated audio
summed over all of the valid audio resources for the custom acoustic model. You
can use this value to determine whether the custom model has too little or too
much audio to begin training.
:param List[AudioResource] audio: An array of `AudioResource` objects that
provides information about the audio resources of the custom acoustic model. The
array is empty if the custom model has no audio resources.
"""
def __init__(
self,
total_minutes_of_audio: float,
audio: List['AudioResource'],
) -> None:
"""
Initialize a AudioResources object.
:param float total_minutes_of_audio: The total minutes of accumulated audio
summed over all of the valid audio resources for the custom acoustic model.
You can use this value to determine whether the custom model has too little
or too much audio to begin training.
:param List[AudioResource] audio: An array of `AudioResource` objects that
provides information about the audio resources of the custom acoustic
model. The array is empty if the custom model has no audio resources.
"""
self.total_minutes_of_audio = total_minutes_of_audio
self.audio = audio
@classmethod
def from_dict(cls, _dict: Dict) -> 'AudioResources':
"""Initialize a AudioResources object from a json dictionary."""
args = {}
if (total_minutes_of_audio :=
_dict.get('total_minutes_of_audio')) is not None:
args['total_minutes_of_audio'] = total_minutes_of_audio
else:
raise ValueError(
'Required property \'total_minutes_of_audio\' not present in AudioResources JSON'
)
if (audio := _dict.get('audio')) is not None:
args['audio'] = [AudioResource.from_dict(v) for v in audio]
else:
raise ValueError(
'Required property \'audio\' not present in AudioResources JSON'
)
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a AudioResources object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'total_minutes_of_audio'
) and self.total_minutes_of_audio is not None:
_dict['total_minutes_of_audio'] = self.total_minutes_of_audio
if hasattr(self, 'audio') and self.audio is not None:
audio_list = []
for v in self.audio:
if isinstance(v, dict):
audio_list.append(v)
else:
audio_list.append(v.to_dict())
_dict['audio'] = audio_list
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this AudioResources object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'AudioResources') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'AudioResources') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class Corpora:
"""
Information about the corpora from a custom language model.
:param List[Corpus] corpora: An array of `Corpus` objects that provides
information about the corpora for the custom model. The array is empty if the
custom model has no corpora.
"""
def __init__(
self,
corpora: List['Corpus'],
) -> None:
"""
Initialize a Corpora object.
:param List[Corpus] corpora: An array of `Corpus` objects that provides
information about the corpora for the custom model. The array is empty if
the custom model has no corpora.
"""
self.corpora = corpora
@classmethod
def from_dict(cls, _dict: Dict) -> 'Corpora':
"""Initialize a Corpora object from a json dictionary."""
args = {}
if (corpora := _dict.get('corpora')) is not None:
args['corpora'] = [Corpus.from_dict(v) for v in corpora]
else:
raise ValueError(
'Required property \'corpora\' not present in Corpora JSON')
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a Corpora object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'corpora') and self.corpora is not None:
corpora_list = []
for v in self.corpora:
if isinstance(v, dict):
corpora_list.append(v)
else:
corpora_list.append(v.to_dict())
_dict['corpora'] = corpora_list
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this Corpora object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'Corpora') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'Corpora') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class Corpus:
"""
Information about a corpus from a custom language model.
:param str name: The name of the corpus.
:param int total_words: The total number of words in the corpus. The value is
`0` while the corpus is being processed.
:param int out_of_vocabulary_words: _For custom models that are based on large
speech models and previous-generation models_, the number of OOV words extracted
from the corpus. The value is `0` while the corpus is being processed.
_For custom models that are based on next-generation models_, no OOV words are
extracted from corpora, so the value is always `0`.
:param str status: The status of the corpus:
* `analyzed`: The service successfully analyzed the corpus. The custom model can
be trained with data from the corpus.
* `being_processed`: The service is still analyzing the corpus. The service
cannot accept requests to add new resources or to train the custom model.
* `undetermined`: The service encountered an error while processing the corpus.
The `error` field describes the failure.
:param str error: (optional) If the status of the corpus is `undetermined`, the
following message: `Analysis of corpus 'name' failed. Please try adding the
corpus again by setting the 'allow_overwrite' flag to 'true'`.
"""
def __init__(
self,
name: str,
total_words: int,
out_of_vocabulary_words: int,
status: str,
*,
error: Optional[str] = None,
) -> None:
"""
Initialize a Corpus object.
:param str name: The name of the corpus.
:param int total_words: The total number of words in the corpus. The value
is `0` while the corpus is being processed.
:param int out_of_vocabulary_words: _For custom models that are based on
large speech models and previous-generation models_, the number of OOV
words extracted from the corpus. The value is `0` while the corpus is being
processed.
_For custom models that are based on next-generation models_, no OOV words
are extracted from corpora, so the value is always `0`.
:param str status: The status of the corpus:
* `analyzed`: The service successfully analyzed the corpus. The custom
model can be trained with data from the corpus.
* `being_processed`: The service is still analyzing the corpus. The service
cannot accept requests to add new resources or to train the custom model.
* `undetermined`: The service encountered an error while processing the
corpus. The `error` field describes the failure.
:param str error: (optional) If the status of the corpus is `undetermined`,
the following message: `Analysis of corpus 'name' failed. Please try adding
the corpus again by setting the 'allow_overwrite' flag to 'true'`.
"""
self.name = name
self.total_words = total_words
self.out_of_vocabulary_words = out_of_vocabulary_words
self.status = status
self.error = error
@classmethod
def from_dict(cls, _dict: Dict) -> 'Corpus':
"""Initialize a Corpus object from a json dictionary."""
args = {}
if (name := _dict.get('name')) is not None:
args['name'] = name
else:
raise ValueError(
'Required property \'name\' not present in Corpus JSON')
if (total_words := _dict.get('total_words')) is not None:
args['total_words'] = total_words
else:
raise ValueError(
'Required property \'total_words\' not present in Corpus JSON')
if (out_of_vocabulary_words :=
_dict.get('out_of_vocabulary_words')) is not None:
args['out_of_vocabulary_words'] = out_of_vocabulary_words
else:
raise ValueError(
'Required property \'out_of_vocabulary_words\' not present in Corpus JSON'
)
if (status := _dict.get('status')) is not None:
args['status'] = status
else:
raise ValueError(
'Required property \'status\' not present in Corpus JSON')
if (error := _dict.get('error')) is not None:
args['error'] = error
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a Corpus object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'name') and self.name is not None:
_dict['name'] = self.name
if hasattr(self, 'total_words') and self.total_words is not None:
_dict['total_words'] = self.total_words
if hasattr(self, 'out_of_vocabulary_words'
) and self.out_of_vocabulary_words is not None:
_dict['out_of_vocabulary_words'] = self.out_of_vocabulary_words
if hasattr(self, 'status') and self.status is not None:
_dict['status'] = self.status
if hasattr(self, 'error') and self.error is not None:
_dict['error'] = self.error
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this Corpus object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'Corpus') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'Corpus') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class StatusEnum(str, Enum):
"""
The status of the corpus:
* `analyzed`: The service successfully analyzed the corpus. The custom model can
be trained with data from the corpus.
* `being_processed`: The service is still analyzing the corpus. The service cannot
accept requests to add new resources or to train the custom model.
* `undetermined`: The service encountered an error while processing the corpus.
The `error` field describes the failure.
"""
ANALYZED = 'analyzed'
BEING_PROCESSED = 'being_processed'
UNDETERMINED = 'undetermined'
class CustomWord:
"""
Information about a word that is to be added to a custom language model.
:param str word: (optional) For the [Add custom words](#addwords) method, you
must specify the custom word that is to be added to or updated in the custom
model. Do not use characters that need to be URL-encoded, for example, spaces,
slashes, backslashes, colons, ampersands, double quotes, plus signs, equals
signs, or question marks. Use a `-` (dash) or `_` (underscore) to connect the
tokens of compound words. A Japanese custom word can include at most 25
characters, not including leading or trailing spaces.
Omit this parameter for the [Add a custom word](#addword) method.
:param List[str] mapping_only: (optional) Parameter for custom words. You can
use the 'mapping_only' key in custom words as a form of post processing. This
key parameter has a boolean value to determine whether 'sounds_like' (for
non-Japanese models) or word (for Japanese) is not used for the model
fine-tuning, but for the replacement for 'display_as'. This feature helps you
when you use custom words exclusively to map 'sounds_like' (or word) to
'display_as' value. When you use custom words solely for post-processing
purposes that does not need fine-tuning.
:param List[str] sounds_like: (optional) As array of sounds-like pronunciations
for the custom word. Specify how words that are difficult to pronounce, foreign
words, acronyms, and so on can be pronounced by users.
* _For custom models that are based on previous-generation models_, for a word
that is not in the service's base vocabulary, omit the parameter to have the
service automatically generate a sounds-like pronunciation for the word.
* For a word that is in the service's base vocabulary, use the parameter to
specify additional pronunciations for the word. You cannot override the default
pronunciation of a word; pronunciations you add augment the pronunciation from
the base vocabulary.
A word can have at most five sounds-like pronunciations. A pronunciation can
include at most 40 characters, not including leading or trailing spaces. A
Japanese pronunciation can include at most 25 characters, not including leading
or trailing spaces.
:param str display_as: (optional) An alternative spelling for the custom word
when it appears in a transcript. Use the parameter when you want the word to
have a spelling that is different from its usual representation or from its
spelling in corpora training data.
_For custom models that are based on next-generation models_, the service uses
the spelling of the word as the display-as value if you omit the field.
"""
def __init__(
self,
*,
word: Optional[str] = None,
mapping_only: Optional[List[str]] = None,
sounds_like: Optional[List[str]] = None,
display_as: Optional[str] = None,
) -> None:
"""
Initialize a CustomWord object.
:param str word: (optional) For the [Add custom words](#addwords) method,
you must specify the custom word that is to be added to or updated in the
custom model. Do not use characters that need to be URL-encoded, for
example, spaces, slashes, backslashes, colons, ampersands, double quotes,
plus signs, equals signs, or question marks. Use a `-` (dash) or `_`
(underscore) to connect the tokens of compound words. A Japanese custom
word can include at most 25 characters, not including leading or trailing
spaces.
Omit this parameter for the [Add a custom word](#addword) method.
:param List[str] mapping_only: (optional) Parameter for custom words. You
can use the 'mapping_only' key in custom words as a form of post
processing. This key parameter has a boolean value to determine whether
'sounds_like' (for non-Japanese models) or word (for Japanese) is not used
for the model fine-tuning, but for the replacement for 'display_as'. This
feature helps you when you use custom words exclusively to map
'sounds_like' (or word) to 'display_as' value. When you use custom words
solely for post-processing purposes that does not need fine-tuning.
:param List[str] sounds_like: (optional) As array of sounds-like
pronunciations for the custom word. Specify how words that are difficult to
pronounce, foreign words, acronyms, and so on can be pronounced by users.
* _For custom models that are based on previous-generation models_, for a
word that is not in the service's base vocabulary, omit the parameter to
have the service automatically generate a sounds-like pronunciation for the
word.
* For a word that is in the service's base vocabulary, use the parameter to
specify additional pronunciations for the word. You cannot override the
default pronunciation of a word; pronunciations you add augment the
pronunciation from the base vocabulary.
A word can have at most five sounds-like pronunciations. A pronunciation
can include at most 40 characters, not including leading or trailing
spaces. A Japanese pronunciation can include at most 25 characters, not
including leading or trailing spaces.
:param str display_as: (optional) An alternative spelling for the custom
word when it appears in a transcript. Use the parameter when you want the
word to have a spelling that is different from its usual representation or
from its spelling in corpora training data.
_For custom models that are based on next-generation models_, the service
uses the spelling of the word as the display-as value if you omit the
field.
"""
self.word = word
self.mapping_only = mapping_only
self.sounds_like = sounds_like
self.display_as = display_as
@classmethod
def from_dict(cls, _dict: Dict) -> 'CustomWord':
"""Initialize a CustomWord object from a json dictionary."""
args = {}
if (word := _dict.get('word')) is not None:
args['word'] = word
if (mapping_only := _dict.get('mapping_only')) is not None:
args['mapping_only'] = mapping_only
if (sounds_like := _dict.get('sounds_like')) is not None:
args['sounds_like'] = sounds_like
if (display_as := _dict.get('display_as')) is not None:
args['display_as'] = display_as
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a CustomWord object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'word') and self.word is not None:
_dict['word'] = self.word
if hasattr(self, 'mapping_only') and self.mapping_only is not None:
_dict['mapping_only'] = self.mapping_only
if hasattr(self, 'sounds_like') and self.sounds_like is not None:
_dict['sounds_like'] = self.sounds_like
if hasattr(self, 'display_as') and self.display_as is not None:
_dict['display_as'] = self.display_as
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this CustomWord object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'CustomWord') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'CustomWord') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class Grammar:
"""
Information about a grammar from a custom language model.
:param str name: The name of the grammar.
:param int out_of_vocabulary_words: _For custom models that are based on
previous-generation models_, the number of OOV words extracted from the grammar.
The value is `0` while the grammar is being processed.
_For custom models that are based on next-generation models_, no OOV words are
extracted from grammars, so the value is always `0`.
:param str status: The status of the grammar:
* `analyzed`: The service successfully analyzed the grammar. The custom model
can be trained with data from the grammar.
* `being_processed`: The service is still analyzing the grammar. The service
cannot accept requests to add new resources or to train the custom model.
* `undetermined`: The service encountered an error while processing the grammar.
The `error` field describes the failure.
:param str error: (optional) If the status of the grammar is `undetermined`, the
following message: `Analysis of grammar '{grammar_name}' failed. Please try
fixing the error or adding the grammar again by setting the 'allow_overwrite'
flag to 'true'.`.
"""
def __init__(
self,
name: str,
out_of_vocabulary_words: int,
status: str,
*,
error: Optional[str] = None,
) -> None:
"""
Initialize a Grammar object.
:param str name: The name of the grammar.
:param int out_of_vocabulary_words: _For custom models that are based on
previous-generation models_, the number of OOV words extracted from the
grammar. The value is `0` while the grammar is being processed.
_For custom models that are based on next-generation models_, no OOV words
are extracted from grammars, so the value is always `0`.
:param str status: The status of the grammar:
* `analyzed`: The service successfully analyzed the grammar. The custom
model can be trained with data from the grammar.
* `being_processed`: The service is still analyzing the grammar. The
service cannot accept requests to add new resources or to train the custom
model.
* `undetermined`: The service encountered an error while processing the
grammar. The `error` field describes the failure.
:param str error: (optional) If the status of the grammar is
`undetermined`, the following message: `Analysis of grammar
'{grammar_name}' failed. Please try fixing the error or adding the grammar
again by setting the 'allow_overwrite' flag to 'true'.`.
"""
self.name = name
self.out_of_vocabulary_words = out_of_vocabulary_words
self.status = status
self.error = error
@classmethod
def from_dict(cls, _dict: Dict) -> 'Grammar':
"""Initialize a Grammar object from a json dictionary."""
args = {}
if (name := _dict.get('name')) is not None:
args['name'] = name
else:
raise ValueError(
'Required property \'name\' not present in Grammar JSON')
if (out_of_vocabulary_words :=
_dict.get('out_of_vocabulary_words')) is not None:
args['out_of_vocabulary_words'] = out_of_vocabulary_words
else:
raise ValueError(
'Required property \'out_of_vocabulary_words\' not present in Grammar JSON'
)
if (status := _dict.get('status')) is not None:
args['status'] = status
else:
raise ValueError(
'Required property \'status\' not present in Grammar JSON')
if (error := _dict.get('error')) is not None:
args['error'] = error
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a Grammar object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'name') and self.name is not None:
_dict['name'] = self.name
if hasattr(self, 'out_of_vocabulary_words'
) and self.out_of_vocabulary_words is not None:
_dict['out_of_vocabulary_words'] = self.out_of_vocabulary_words
if hasattr(self, 'status') and self.status is not None:
_dict['status'] = self.status
if hasattr(self, 'error') and self.error is not None:
_dict['error'] = self.error
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this Grammar object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'Grammar') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'Grammar') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class StatusEnum(str, Enum):
"""
The status of the grammar:
* `analyzed`: The service successfully analyzed the grammar. The custom model can
be trained with data from the grammar.
* `being_processed`: The service is still analyzing the grammar. The service
cannot accept requests to add new resources or to train the custom model.
* `undetermined`: The service encountered an error while processing the grammar.
The `error` field describes the failure.
"""
ANALYZED = 'analyzed'
BEING_PROCESSED = 'being_processed'
UNDETERMINED = 'undetermined'
class Grammars:
"""
Information about the grammars from a custom language model.
:param List[Grammar] grammars: An array of `Grammar` objects that provides
information about the grammars for the custom model. The array is empty if the
custom model has no grammars.
"""
def __init__(
self,
grammars: List['Grammar'],
) -> None:
"""
Initialize a Grammars object.
:param List[Grammar] grammars: An array of `Grammar` objects that provides
information about the grammars for the custom model. The array is empty if
the custom model has no grammars.
"""
self.grammars = grammars
@classmethod
def from_dict(cls, _dict: Dict) -> 'Grammars':
"""Initialize a Grammars object from a json dictionary."""
args = {}
if (grammars := _dict.get('grammars')) is not None:
args['grammars'] = [Grammar.from_dict(v) for v in grammars]
else:
raise ValueError(
'Required property \'grammars\' not present in Grammars JSON')
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a Grammars object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'grammars') and self.grammars is not None:
grammars_list = []
for v in self.grammars:
if isinstance(v, dict):
grammars_list.append(v)
else:
grammars_list.append(v.to_dict())
_dict['grammars'] = grammars_list
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this Grammars object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'Grammars') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'Grammars') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class KeywordResult:
"""
Information about a match for a keyword from speech recognition results.
:param str normalized_text: A specified keyword normalized to the spoken phrase
that matched in the audio input.
:param float start_time: The start time in seconds of the keyword match.
:param float end_time: The end time in seconds of the keyword match.
:param float confidence: A confidence score for the keyword match in the range
of 0.0 to 1.0.
"""
def __init__(
self,
normalized_text: str,
start_time: float,
end_time: float,
confidence: float,
) -> None:
"""
Initialize a KeywordResult object.
:param str normalized_text: A specified keyword normalized to the spoken
phrase that matched in the audio input.
:param float start_time: The start time in seconds of the keyword match.
:param float end_time: The end time in seconds of the keyword match.
:param float confidence: A confidence score for the keyword match in the
range of 0.0 to 1.0.
"""
self.normalized_text = normalized_text
self.start_time = start_time
self.end_time = end_time
self.confidence = confidence
@classmethod
def from_dict(cls, _dict: Dict) -> 'KeywordResult':
"""Initialize a KeywordResult object from a json dictionary."""
args = {}
if (normalized_text := _dict.get('normalized_text')) is not None:
args['normalized_text'] = normalized_text
else:
raise ValueError(
'Required property \'normalized_text\' not present in KeywordResult JSON'
)
if (start_time := _dict.get('start_time')) is not None:
args['start_time'] = start_time
else:
raise ValueError(
'Required property \'start_time\' not present in KeywordResult JSON'
)
if (end_time := _dict.get('end_time')) is not None:
args['end_time'] = end_time
else:
raise ValueError(
'Required property \'end_time\' not present in KeywordResult JSON'
)
if (confidence := _dict.get('confidence')) is not None:
args['confidence'] = confidence
else:
raise ValueError(
'Required property \'confidence\' not present in KeywordResult JSON'
)
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a KeywordResult object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self,
'normalized_text') and self.normalized_text is not None:
_dict['normalized_text'] = self.normalized_text
if hasattr(self, 'start_time') and self.start_time is not None:
_dict['start_time'] = self.start_time
if hasattr(self, 'end_time') and self.end_time is not None:
_dict['end_time'] = self.end_time
if hasattr(self, 'confidence') and self.confidence is not None:
_dict['confidence'] = self.confidence
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this KeywordResult object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'KeywordResult') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'KeywordResult') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class LanguageModel:
"""
Information about an existing custom language model.
:param str customization_id: The customization ID (GUID) of the custom language
model. The [Create a custom language model](#createlanguagemodel) method returns
only this field of the object; it does not return the other fields.
:param str created: (optional) The date and time in Coordinated Universal Time
(UTC) at which the custom language model was created. The value is provided in
full ISO 8601 format (`YYYY-MM-DDThh:mm:ss.sTZD`).
:param str updated: (optional) The date and time in Coordinated Universal Time
(UTC) at which the custom language model was last modified. The `created` and
`updated` fields are equal when a language model is first added but has yet to
be updated. The value is provided in full ISO 8601 format
(YYYY-MM-DDThh:mm:ss.sTZD).
:param str language: (optional) The language identifier of the custom language
model (for example, `en-US`). The value matches the five-character language
identifier from the name of the base model for the custom model. This value
might be different from the value of the `dialect` field.
:param str dialect: (optional) The dialect of the language for the custom
language model. _For custom models that are based on non-Spanish
previous-generation models and on next-generation models,_ the field matches the
language of the base model; for example, `en-US` for one of the US English
models. _For custom models that are based on Spanish previous-generation
models,_ the field indicates the dialect with which the model was created. The
value can match the name of the base model or, if it was specified by the user,
can be one of the following:
* `es-ES` for Castilian Spanish (`es-ES` models)
* `es-LA` for Latin American Spanish (`es-AR`, `es-CL`, `es-CO`, and `es-PE`
models)
* `es-US` for Mexican (North American) Spanish (`es-MX` models)
Dialect values are case-insensitive.
:param List[str] versions: (optional) A list of the available versions of the
custom language model. Each element of the array indicates a version of the base
model with which the custom model can be used. Multiple versions exist only if
the custom model has been upgraded to a new version of its base model.
Otherwise, only a single version is shown.
:param str owner: (optional) The GUID of the credentials for the instance of the
service that owns the custom language model.
:param str name: (optional) The name of the custom language model.
:param str description: (optional) The description of the custom language model.
:param str base_model_name: (optional) The name of the language model for which
the custom language model was created.
:param str status: (optional) The current status of the custom language model:
* `pending`: The model was created but is waiting either for valid training data
to be added or for the service to finish analyzing added data.
* `ready`: The model contains valid data and is ready to be trained. If the
model contains a mix of valid and invalid resources, you need to set the
`strict` parameter to `false` for the training to proceed.
* `training`: The model is currently being trained.
* `available`: The model is trained and ready to use.
* `upgrading`: The model is currently being upgraded.
* `failed`: Training of the model failed.
:param int progress: (optional) A percentage that indicates the progress of the
custom language model's current training. A value of `100` means that the model
is fully trained. **Note:** The `progress` field does not currently reflect the
progress of the training. The field changes from `0` to `100` when training is
complete.
:param str error: (optional) If an error occurred while adding a grammar file to
the custom language model, a message that describes an `Internal Server Error`
and includes the string `Cannot compile grammar`. The status of the custom model
is not affected by the error, but the grammar cannot be used with the model.
:param str warnings: (optional) If the request included unknown parameters, the
following message: `Unexpected query parameter(s) ['parameters'] detected`,
where `parameters` is a list that includes a quoted string for each unknown
parameter.
"""
def __init__(
self,
customization_id: str,
*,
created: Optional[str] = None,
updated: Optional[str] = None,
language: Optional[str] = None,
dialect: Optional[str] = None,
versions: Optional[List[str]] = None,
owner: Optional[str] = None,
name: Optional[str] = None,
description: Optional[str] = None,
base_model_name: Optional[str] = None,
status: Optional[str] = None,
progress: Optional[int] = None,
error: Optional[str] = None,
warnings: Optional[str] = None,
) -> None:
"""
Initialize a LanguageModel object.
:param str customization_id: The customization ID (GUID) of the custom
language model. The [Create a custom language model](#createlanguagemodel)
method returns only this field of the object; it does not return the other
fields.
:param str created: (optional) The date and time in Coordinated Universal
Time (UTC) at which the custom language model was created. The value is
provided in full ISO 8601 format (`YYYY-MM-DDThh:mm:ss.sTZD`).
:param str updated: (optional) The date and time in Coordinated Universal
Time (UTC) at which the custom language model was last modified. The
`created` and `updated` fields are equal when a language model is first
added but has yet to be updated. The value is provided in full ISO 8601
format (YYYY-MM-DDThh:mm:ss.sTZD).
:param str language: (optional) The language identifier of the custom
language model (for example, `en-US`). The value matches the five-character
language identifier from the name of the base model for the custom model.
This value might be different from the value of the `dialect` field.
:param str dialect: (optional) The dialect of the language for the custom
language model. _For custom models that are based on non-Spanish
previous-generation models and on next-generation models,_ the field
matches the language of the base model; for example, `en-US` for one of the
US English models. _For custom models that are based on Spanish
previous-generation models,_ the field indicates the dialect with which the
model was created. The value can match the name of the base model or, if it
was specified by the user, can be one of the following:
* `es-ES` for Castilian Spanish (`es-ES` models)
* `es-LA` for Latin American Spanish (`es-AR`, `es-CL`, `es-CO`, and
`es-PE` models)
* `es-US` for Mexican (North American) Spanish (`es-MX` models)
Dialect values are case-insensitive.
:param List[str] versions: (optional) A list of the available versions of
the custom language model. Each element of the array indicates a version of
the base model with which the custom model can be used. Multiple versions
exist only if the custom model has been upgraded to a new version of its
base model. Otherwise, only a single version is shown.
:param str owner: (optional) The GUID of the credentials for the instance
of the service that owns the custom language model.
:param str name: (optional) The name of the custom language model.
:param str description: (optional) The description of the custom language
model.
:param str base_model_name: (optional) The name of the language model for
which the custom language model was created.
:param str status: (optional) The current status of the custom language
model:
* `pending`: The model was created but is waiting either for valid training
data to be added or for the service to finish analyzing added data.
* `ready`: The model contains valid data and is ready to be trained. If the
model contains a mix of valid and invalid resources, you need to set the
`strict` parameter to `false` for the training to proceed.
* `training`: The model is currently being trained.
* `available`: The model is trained and ready to use.
* `upgrading`: The model is currently being upgraded.
* `failed`: Training of the model failed.
:param int progress: (optional) A percentage that indicates the progress of
the custom language model's current training. A value of `100` means that
the model is fully trained. **Note:** The `progress` field does not
currently reflect the progress of the training. The field changes from `0`
to `100` when training is complete.
:param str error: (optional) If an error occurred while adding a grammar
file to the custom language model, a message that describes an `Internal
Server Error` and includes the string `Cannot compile grammar`. The status
of the custom model is not affected by the error, but the grammar cannot be
used with the model.
:param str warnings: (optional) If the request included unknown parameters,
the following message: `Unexpected query parameter(s) ['parameters']
detected`, where `parameters` is a list that includes a quoted string for
each unknown parameter.
"""
self.customization_id = customization_id
self.created = created
self.updated = updated
self.language = language
self.dialect = dialect
self.versions = versions
self.owner = owner
self.name = name
self.description = description
self.base_model_name = base_model_name
self.status = status
self.progress = progress
self.error = error
self.warnings = warnings
@classmethod
def from_dict(cls, _dict: Dict) -> 'LanguageModel':
"""Initialize a LanguageModel object from a json dictionary."""
args = {}
if (customization_id := _dict.get('customization_id')) is not None:
args['customization_id'] = customization_id
else:
raise ValueError(
'Required property \'customization_id\' not present in LanguageModel JSON'
)
if (created := _dict.get('created')) is not None:
args['created'] = created
if (updated := _dict.get('updated')) is not None:
args['updated'] = updated
if (language := _dict.get('language')) is not None:
args['language'] = language
if (dialect := _dict.get('dialect')) is not None:
args['dialect'] = dialect
if (versions := _dict.get('versions')) is not None:
args['versions'] = versions
if (owner := _dict.get('owner')) is not None:
args['owner'] = owner
if (name := _dict.get('name')) is not None:
args['name'] = name
if (description := _dict.get('description')) is not None:
args['description'] = description
if (base_model_name := _dict.get('base_model_name')) is not None:
args['base_model_name'] = base_model_name
if (status := _dict.get('status')) is not None:
args['status'] = status
if (progress := _dict.get('progress')) is not None:
args['progress'] = progress
if (error := _dict.get('error')) is not None:
args['error'] = error
if (warnings := _dict.get('warnings')) is not None:
args['warnings'] = warnings
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a LanguageModel object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self,
'customization_id') and self.customization_id is not None:
_dict['customization_id'] = self.customization_id
if hasattr(self, 'created') and self.created is not None:
_dict['created'] = self.created
if hasattr(self, 'updated') and self.updated is not None:
_dict['updated'] = self.updated
if hasattr(self, 'language') and self.language is not None:
_dict['language'] = self.language
if hasattr(self, 'dialect') and self.dialect is not None:
_dict['dialect'] = self.dialect
if hasattr(self, 'versions') and self.versions is not None:
_dict['versions'] = self.versions
if hasattr(self, 'owner') and self.owner is not None:
_dict['owner'] = self.owner
if hasattr(self, 'name') and self.name is not None:
_dict['name'] = self.name
if hasattr(self, 'description') and self.description is not None:
_dict['description'] = self.description
if hasattr(self,
'base_model_name') and self.base_model_name is not None:
_dict['base_model_name'] = self.base_model_name
if hasattr(self, 'status') and self.status is not None:
_dict['status'] = self.status
if hasattr(self, 'progress') and self.progress is not None:
_dict['progress'] = self.progress
if hasattr(self, 'error') and self.error is not None:
_dict['error'] = self.error
if hasattr(self, 'warnings') and self.warnings is not None:
_dict['warnings'] = self.warnings
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this LanguageModel object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'LanguageModel') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'LanguageModel') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class StatusEnum(str, Enum):
"""
The current status of the custom language model:
* `pending`: The model was created but is waiting either for valid training data
to be added or for the service to finish analyzing added data.
* `ready`: The model contains valid data and is ready to be trained. If the model
contains a mix of valid and invalid resources, you need to set the `strict`
parameter to `false` for the training to proceed.
* `training`: The model is currently being trained.
* `available`: The model is trained and ready to use.
* `upgrading`: The model is currently being upgraded.
* `failed`: Training of the model failed.
"""
PENDING = 'pending'
READY = 'ready'
TRAINING = 'training'
AVAILABLE = 'available'
UPGRADING = 'upgrading'
FAILED = 'failed'
class LanguageModels:
"""
Information about existing custom language models.
:param List[LanguageModel] customizations: An array of `LanguageModel` objects
that provides information about each available custom language model. The array
is empty if the requesting credentials own no custom language models (if no
language is specified) or own no custom language models for the specified
language.
"""
def __init__(
self,
customizations: List['LanguageModel'],
) -> None:
"""
Initialize a LanguageModels object.
:param List[LanguageModel] customizations: An array of `LanguageModel`
objects that provides information about each available custom language
model. The array is empty if the requesting credentials own no custom
language models (if no language is specified) or own no custom language
models for the specified language.
"""
self.customizations = customizations
@classmethod
def from_dict(cls, _dict: Dict) -> 'LanguageModels':
"""Initialize a LanguageModels object from a json dictionary."""
args = {}
if (customizations := _dict.get('customizations')) is not None:
args['customizations'] = [
LanguageModel.from_dict(v) for v in customizations
]
else:
raise ValueError(
'Required property \'customizations\' not present in LanguageModels JSON'
)
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a LanguageModels object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'customizations') and self.customizations is not None:
customizations_list = []
for v in self.customizations:
if isinstance(v, dict):
customizations_list.append(v)
else:
customizations_list.append(v.to_dict())
_dict['customizations'] = customizations_list
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this LanguageModels object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'LanguageModels') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'LanguageModels') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class ProcessedAudio:
"""
Detailed timing information about the service's processing of the input audio.
:param float received: The seconds of audio that the service has received as of
this response. The value of the field is greater than the values of the
`transcription` and `speaker_labels` fields during speech recognition
processing, since the service first has to receive the audio before it can begin
to process it. The final value can also be greater than the value of the
`transcription` and `speaker_labels` fields by a fractional number of seconds.
:param float seen_by_engine: The seconds of audio that the service has passed to
its speech-processing engine as of this response. The value of the field is
greater than the values of the `transcription` and `speaker_labels` fields
during speech recognition processing. The `received` and `seen_by_engine` fields
have identical values when the service has finished processing all audio. This
final value can be greater than the value of the `transcription` and
`speaker_labels` fields by a fractional number of seconds.
:param float transcription: The seconds of audio that the service has processed
for speech recognition as of this response.
:param float speaker_labels: (optional) If speaker labels are requested, the
seconds of audio that the service has processed to determine speaker labels as
of this response. This value often trails the value of the `transcription` field
during speech recognition processing. The `transcription` and `speaker_labels`
fields have identical values when the service has finished processing all audio.
"""
def __init__(
self,
received: float,
seen_by_engine: float,
transcription: float,
*,
speaker_labels: Optional[float] = None,
) -> None:
"""
Initialize a ProcessedAudio object.
:param float received: The seconds of audio that the service has received
as of this response. The value of the field is greater than the values of
the `transcription` and `speaker_labels` fields during speech recognition
processing, since the service first has to receive the audio before it can
begin to process it. The final value can also be greater than the value of
the `transcription` and `speaker_labels` fields by a fractional number of
seconds.
:param float seen_by_engine: The seconds of audio that the service has
passed to its speech-processing engine as of this response. The value of
the field is greater than the values of the `transcription` and
`speaker_labels` fields during speech recognition processing. The
`received` and `seen_by_engine` fields have identical values when the
service has finished processing all audio. This final value can be greater
than the value of the `transcription` and `speaker_labels` fields by a
fractional number of seconds.
:param float transcription: The seconds of audio that the service has
processed for speech recognition as of this response.
:param float speaker_labels: (optional) If speaker labels are requested,
the seconds of audio that the service has processed to determine speaker
labels as of this response. This value often trails the value of the
`transcription` field during speech recognition processing. The
`transcription` and `speaker_labels` fields have identical values when the
service has finished processing all audio.
"""
self.received = received
self.seen_by_engine = seen_by_engine
self.transcription = transcription
self.speaker_labels = speaker_labels
@classmethod
def from_dict(cls, _dict: Dict) -> 'ProcessedAudio':
"""Initialize a ProcessedAudio object from a json dictionary."""
args = {}
if (received := _dict.get('received')) is not None:
args['received'] = received
else:
raise ValueError(
'Required property \'received\' not present in ProcessedAudio JSON'
)
if (seen_by_engine := _dict.get('seen_by_engine')) is not None:
args['seen_by_engine'] = seen_by_engine
else:
raise ValueError(
'Required property \'seen_by_engine\' not present in ProcessedAudio JSON'
)
if (transcription := _dict.get('transcription')) is not None:
args['transcription'] = transcription
else:
raise ValueError(
'Required property \'transcription\' not present in ProcessedAudio JSON'
)
if (speaker_labels := _dict.get('speaker_labels')) is not None:
args['speaker_labels'] = speaker_labels
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a ProcessedAudio object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'received') and self.received is not None:
_dict['received'] = self.received
if hasattr(self, 'seen_by_engine') and self.seen_by_engine is not None:
_dict['seen_by_engine'] = self.seen_by_engine
if hasattr(self, 'transcription') and self.transcription is not None:
_dict['transcription'] = self.transcription
if hasattr(self, 'speaker_labels') and self.speaker_labels is not None:
_dict['speaker_labels'] = self.speaker_labels
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this ProcessedAudio object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'ProcessedAudio') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'ProcessedAudio') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class ProcessingMetrics:
"""
If processing metrics are requested, information about the service's processing of the
input audio. Processing metrics are not available with the synchronous [Recognize
audio](#recognize) method.
:param ProcessedAudio processed_audio: Detailed timing information about the
service's processing of the input audio.
:param float wall_clock_since_first_byte_received: The amount of real time in
seconds that has passed since the service received the first byte of input
audio. Values in this field are generally multiples of the specified metrics
interval, with two differences:
* Values might not reflect exact intervals (for instance, 0.25, 0.5, and so on).
Actual values might be 0.27, 0.52, and so on, depending on when the service
receives and processes audio.
* The service also returns values for transcription events if you set the
`interim_results` parameter to `true`. The service returns both processing
metrics and transcription results when such events occur.
:param bool periodic: An indication of whether the metrics apply to a periodic
interval or a transcription event:
* `true` means that the response was triggered by a specified processing
interval. The information contains processing metrics only.
* `false` means that the response was triggered by a transcription event. The
information contains processing metrics plus transcription results.
Use the field to identify why the service generated the response and to filter
different results if necessary.
"""
def __init__(
self,
processed_audio: 'ProcessedAudio',
wall_clock_since_first_byte_received: float,
periodic: bool,
) -> None:
"""
Initialize a ProcessingMetrics object.
:param ProcessedAudio processed_audio: Detailed timing information about
the service's processing of the input audio.
:param float wall_clock_since_first_byte_received: The amount of real time
in seconds that has passed since the service received the first byte of
input audio. Values in this field are generally multiples of the specified
metrics interval, with two differences:
* Values might not reflect exact intervals (for instance, 0.25, 0.5, and so
on). Actual values might be 0.27, 0.52, and so on, depending on when the
service receives and processes audio.
* The service also returns values for transcription events if you set the
`interim_results` parameter to `true`. The service returns both processing
metrics and transcription results when such events occur.
:param bool periodic: An indication of whether the metrics apply to a
periodic interval or a transcription event:
* `true` means that the response was triggered by a specified processing
interval. The information contains processing metrics only.
* `false` means that the response was triggered by a transcription event.
The information contains processing metrics plus transcription results.
Use the field to identify why the service generated the response and to
filter different results if necessary.
"""
self.processed_audio = processed_audio
self.wall_clock_since_first_byte_received = wall_clock_since_first_byte_received
self.periodic = periodic
@classmethod
def from_dict(cls, _dict: Dict) -> 'ProcessingMetrics':
"""Initialize a ProcessingMetrics object from a json dictionary."""
args = {}
if (processed_audio := _dict.get('processed_audio')) is not None:
args['processed_audio'] = ProcessedAudio.from_dict(processed_audio)
else:
raise ValueError(
'Required property \'processed_audio\' not present in ProcessingMetrics JSON'
)
if (wall_clock_since_first_byte_received :=
_dict.get('wall_clock_since_first_byte_received')) is not None:
args[
'wall_clock_since_first_byte_received'] = wall_clock_since_first_byte_received
else:
raise ValueError(
'Required property \'wall_clock_since_first_byte_received\' not present in ProcessingMetrics JSON'
)
if (periodic := _dict.get('periodic')) is not None:
args['periodic'] = periodic
else:
raise ValueError(
'Required property \'periodic\' not present in ProcessingMetrics JSON'
)
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a ProcessingMetrics object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self,
'processed_audio') and self.processed_audio is not None:
if isinstance(self.processed_audio, dict):
_dict['processed_audio'] = self.processed_audio
else:
_dict['processed_audio'] = self.processed_audio.to_dict()
if hasattr(self, 'wall_clock_since_first_byte_received'
) and self.wall_clock_since_first_byte_received is not None:
_dict[
'wall_clock_since_first_byte_received'] = self.wall_clock_since_first_byte_received
if hasattr(self, 'periodic') and self.periodic is not None:
_dict['periodic'] = self.periodic
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this ProcessingMetrics object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'ProcessingMetrics') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'ProcessingMetrics') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class RecognitionJob:
"""
Information about a current asynchronous speech recognition job.
:param str id: The ID of the asynchronous job.
:param str status: The current status of the job:
* `waiting`: The service is preparing the job for processing. The service
returns this status when the job is initially created or when it is waiting for
capacity to process the job. The job remains in this state until the service has
the capacity to begin processing it.
* `processing`: The service is actively processing the job.
* `completed`: The service has finished processing the job. If the job specified
a callback URL and the event `recognitions.completed_with_results`, the service
sent the results with the callback notification. Otherwise, you must retrieve
the results by checking the individual job.
* `failed`: The job failed.
:param str created: The date and time in Coordinated Universal Time (UTC) at
which the job was created. The value is provided in full ISO 8601 format
(`YYYY-MM-DDThh:mm:ss.sTZD`).
:param str updated: (optional) The date and time in Coordinated Universal Time
(UTC) at which the job was last updated by the service. The value is provided in
full ISO 8601 format (`YYYY-MM-DDThh:mm:ss.sTZD`). This field is returned only
by the [Check jobs](#checkjobs) and [Check a job[(#checkjob) methods.
:param str url: (optional) The URL to use to request information about the job
with the [Check a job](#checkjob) method. This field is returned only by the
[Create a job](#createjob) method.
:param str user_token: (optional) The user token associated with a job that was
created with a callback URL and a user token. This field can be returned only by
the [Check jobs](#checkjobs) method.
:param List[SpeechRecognitionResults] results: (optional) If the status is
`completed`, the results of the recognition request as an array that includes a
single instance of a `SpeechRecognitionResults` object. This field is returned
only by the [Check a job](#checkjob) method.
:param List[str] warnings: (optional) An array of warning messages about invalid
parameters included with the request. Each warning includes a descriptive
message and a list of invalid argument strings, for example, `"unexpected query
parameter 'user_token', query parameter 'callback_url' was not specified"`. The
request succeeds despite the warnings. This field can be returned only by the
[Create a job](#createjob) method. (If you use the `character_insertion_bias`
parameter with a previous-generation model, the warning message refers to the
parameter as `lambdaBias`.).
"""
def __init__(
self,
id: str,
status: str,
created: str,
*,
updated: Optional[str] = None,
url: Optional[str] = None,
user_token: Optional[str] = None,
results: Optional[List['SpeechRecognitionResults']] = None,
warnings: Optional[List[str]] = None,
) -> None:
"""
Initialize a RecognitionJob object.
:param str id: The ID of the asynchronous job.
:param str status: The current status of the job:
* `waiting`: The service is preparing the job for processing. The service
returns this status when the job is initially created or when it is waiting
for capacity to process the job. The job remains in this state until the
service has the capacity to begin processing it.
* `processing`: The service is actively processing the job.
* `completed`: The service has finished processing the job. If the job
specified a callback URL and the event
`recognitions.completed_with_results`, the service sent the results with
the callback notification. Otherwise, you must retrieve the results by
checking the individual job.
* `failed`: The job failed.
:param str created: The date and time in Coordinated Universal Time (UTC)
at which the job was created. The value is provided in full ISO 8601 format
(`YYYY-MM-DDThh:mm:ss.sTZD`).
:param str updated: (optional) The date and time in Coordinated Universal
Time (UTC) at which the job was last updated by the service. The value is
provided in full ISO 8601 format (`YYYY-MM-DDThh:mm:ss.sTZD`). This field
is returned only by the [Check jobs](#checkjobs) and [Check a
job[(#checkjob) methods.
:param str url: (optional) The URL to use to request information about the
job with the [Check a job](#checkjob) method. This field is returned only
by the [Create a job](#createjob) method.
:param str user_token: (optional) The user token associated with a job that
was created with a callback URL and a user token. This field can be
returned only by the [Check jobs](#checkjobs) method.
:param List[SpeechRecognitionResults] results: (optional) If the status is
`completed`, the results of the recognition request as an array that
includes a single instance of a `SpeechRecognitionResults` object. This
field is returned only by the [Check a job](#checkjob) method.
:param List[str] warnings: (optional) An array of warning messages about
invalid parameters included with the request. Each warning includes a
descriptive message and a list of invalid argument strings, for example,
`"unexpected query parameter 'user_token', query parameter 'callback_url'
was not specified"`. The request succeeds despite the warnings. This field
can be returned only by the [Create a job](#createjob) method. (If you use
the `character_insertion_bias` parameter with a previous-generation model,
the warning message refers to the parameter as `lambdaBias`.).
"""
self.id = id
self.status = status
self.created = created
self.updated = updated
self.url = url
self.user_token = user_token
self.results = results
self.warnings = warnings
@classmethod
def from_dict(cls, _dict: Dict) -> 'RecognitionJob':
"""Initialize a RecognitionJob object from a json dictionary."""
args = {}
if (id := _dict.get('id')) is not None:
args['id'] = id
else:
raise ValueError(
'Required property \'id\' not present in RecognitionJob JSON')
if (status := _dict.get('status')) is not None:
args['status'] = status
else:
raise ValueError(
'Required property \'status\' not present in RecognitionJob JSON'
)
if (created := _dict.get('created')) is not None:
args['created'] = created
else:
raise ValueError(
'Required property \'created\' not present in RecognitionJob JSON'
)
if (updated := _dict.get('updated')) is not None:
args['updated'] = updated
if (url := _dict.get('url')) is not None:
args['url'] = url
if (user_token := _dict.get('user_token')) is not None:
args['user_token'] = user_token
if (results := _dict.get('results')) is not None:
args['results'] = [
SpeechRecognitionResults.from_dict(v) for v in results
]
if (warnings := _dict.get('warnings')) is not None:
args['warnings'] = warnings
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a RecognitionJob object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'id') and self.id is not None:
_dict['id'] = self.id
if hasattr(self, 'status') and self.status is not None:
_dict['status'] = self.status
if hasattr(self, 'created') and self.created is not None:
_dict['created'] = self.created
if hasattr(self, 'updated') and self.updated is not None:
_dict['updated'] = self.updated
if hasattr(self, 'url') and self.url is not None:
_dict['url'] = self.url
if hasattr(self, 'user_token') and self.user_token is not None:
_dict['user_token'] = self.user_token
if hasattr(self, 'results') and self.results is not None:
results_list = []
for v in self.results:
if isinstance(v, dict):
results_list.append(v)
else:
results_list.append(v.to_dict())
_dict['results'] = results_list
if hasattr(self, 'warnings') and self.warnings is not None:
_dict['warnings'] = self.warnings
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this RecognitionJob object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'RecognitionJob') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'RecognitionJob') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class StatusEnum(str, Enum):
"""
The current status of the job:
* `waiting`: The service is preparing the job for processing. The service returns
this status when the job is initially created or when it is waiting for capacity
to process the job. The job remains in this state until the service has the
capacity to begin processing it.
* `processing`: The service is actively processing the job.
* `completed`: The service has finished processing the job. If the job specified a
callback URL and the event `recognitions.completed_with_results`, the service sent
the results with the callback notification. Otherwise, you must retrieve the
results by checking the individual job.
* `failed`: The job failed.
"""
WAITING = 'waiting'
PROCESSING = 'processing'
COMPLETED = 'completed'
FAILED = 'failed'
class RecognitionJobs:
"""
Information about current asynchronous speech recognition jobs.
:param List[RecognitionJob] recognitions: An array of `RecognitionJob` objects
that provides the status for each of the user's current jobs. The array is empty
if the user has no current jobs.
"""
def __init__(
self,
recognitions: List['RecognitionJob'],
) -> None:
"""
Initialize a RecognitionJobs object.
:param List[RecognitionJob] recognitions: An array of `RecognitionJob`
objects that provides the status for each of the user's current jobs. The
array is empty if the user has no current jobs.
"""
self.recognitions = recognitions
@classmethod
def from_dict(cls, _dict: Dict) -> 'RecognitionJobs':
"""Initialize a RecognitionJobs object from a json dictionary."""
args = {}
if (recognitions := _dict.get('recognitions')) is not None:
args['recognitions'] = [
RecognitionJob.from_dict(v) for v in recognitions
]
else:
raise ValueError(
'Required property \'recognitions\' not present in RecognitionJobs JSON'
)
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a RecognitionJobs object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'recognitions') and self.recognitions is not None:
recognitions_list = []
for v in self.recognitions:
if isinstance(v, dict):
recognitions_list.append(v)
else:
recognitions_list.append(v.to_dict())
_dict['recognitions'] = recognitions_list
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this RecognitionJobs object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'RecognitionJobs') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'RecognitionJobs') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class RegisterStatus:
"""
Information about a request to register a callback for asynchronous speech
recognition.
:param str status: The current status of the job:
* `created`: The service successfully allowlisted the callback URL as a result
of the call.
* `already created`: The URL was already allowlisted.
:param str url: The callback URL that is successfully registered.
"""
def __init__(
self,
status: str,
url: str,
) -> None:
"""
Initialize a RegisterStatus object.
:param str status: The current status of the job:
* `created`: The service successfully allowlisted the callback URL as a
result of the call.
* `already created`: The URL was already allowlisted.
:param str url: The callback URL that is successfully registered.
"""
self.status = status
self.url = url
@classmethod
def from_dict(cls, _dict: Dict) -> 'RegisterStatus':
"""Initialize a RegisterStatus object from a json dictionary."""
args = {}
if (status := _dict.get('status')) is not None:
args['status'] = status
else:
raise ValueError(
'Required property \'status\' not present in RegisterStatus JSON'
)
if (url := _dict.get('url')) is not None:
args['url'] = url
else:
raise ValueError(
'Required property \'url\' not present in RegisterStatus JSON')
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a RegisterStatus object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'status') and self.status is not None:
_dict['status'] = self.status
if hasattr(self, 'url') and self.url is not None:
_dict['url'] = self.url
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this RegisterStatus object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'RegisterStatus') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'RegisterStatus') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class StatusEnum(str, Enum):
"""
The current status of the job:
* `created`: The service successfully allowlisted the callback URL as a result of
the call.
* `already created`: The URL was already allowlisted.
"""
CREATED = 'created'
ALREADY_CREATED = 'already created'
class SpeakerLabelsResult:
"""
Information about the speakers from speech recognition results.
:param float from_: The start time of a word from the transcript. The value
matches the start time of a word from the `timestamps` array.
:param float to: The end time of a word from the transcript. The value matches
the end time of a word from the `timestamps` array.
:param int speaker: The numeric identifier that the service assigns to a speaker
from the audio. Speaker IDs begin at `0` initially but can evolve and change
across interim results (if supported by the method) and between interim and
final results as the service processes the audio. They are not guaranteed to be
sequential, contiguous, or ordered.
:param float confidence: A score that indicates the service's confidence in its
identification of the speaker in the range of 0.0 to 1.0.
:param bool final: An indication of whether the service might further change
word and speaker-label results. A value of `true` means that the service
guarantees not to send any further updates for the current or any preceding
results; `false` means that the service might send further updates to the
results.
"""
def __init__(
self,
from_: float,
to: float,
speaker: int,
confidence: float,
final: bool,
) -> None:
"""
Initialize a SpeakerLabelsResult object.
:param float from_: The start time of a word from the transcript. The value
matches the start time of a word from the `timestamps` array.
:param float to: The end time of a word from the transcript. The value
matches the end time of a word from the `timestamps` array.
:param int speaker: The numeric identifier that the service assigns to a
speaker from the audio. Speaker IDs begin at `0` initially but can evolve
and change across interim results (if supported by the method) and between
interim and final results as the service processes the audio. They are not
guaranteed to be sequential, contiguous, or ordered.
:param float confidence: A score that indicates the service's confidence in
its identification of the speaker in the range of 0.0 to 1.0.
:param bool final: An indication of whether the service might further
change word and speaker-label results. A value of `true` means that the
service guarantees not to send any further updates for the current or any
preceding results; `false` means that the service might send further
updates to the results.
"""
self.from_ = from_
self.to = to
self.speaker = speaker
self.confidence = confidence
self.final = final
@classmethod
def from_dict(cls, _dict: Dict) -> 'SpeakerLabelsResult':
"""Initialize a SpeakerLabelsResult object from a json dictionary."""
args = {}
if (from_ := _dict.get('from')) is not None:
args['from_'] = from_
else:
raise ValueError(
'Required property \'from\' not present in SpeakerLabelsResult JSON'
)
if (to := _dict.get('to')) is not None:
args['to'] = to
else:
raise ValueError(
'Required property \'to\' not present in SpeakerLabelsResult JSON'
)
if (speaker := _dict.get('speaker')) is not None:
args['speaker'] = speaker
else:
raise ValueError(
'Required property \'speaker\' not present in SpeakerLabelsResult JSON'
)
if (confidence := _dict.get('confidence')) is not None:
args['confidence'] = confidence
else:
raise ValueError(
'Required property \'confidence\' not present in SpeakerLabelsResult JSON'
)
if (final := _dict.get('final')) is not None:
args['final'] = final
else:
raise ValueError(
'Required property \'final\' not present in SpeakerLabelsResult JSON'
)
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a SpeakerLabelsResult object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'from_') and self.from_ is not None:
_dict['from'] = self.from_
if hasattr(self, 'to') and self.to is not None:
_dict['to'] = self.to
if hasattr(self, 'speaker') and self.speaker is not None:
_dict['speaker'] = self.speaker
if hasattr(self, 'confidence') and self.confidence is not None:
_dict['confidence'] = self.confidence
if hasattr(self, 'final') and self.final is not None:
_dict['final'] = self.final
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this SpeakerLabelsResult object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'SpeakerLabelsResult') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'SpeakerLabelsResult') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class SpeechModel:
"""
Information about an available language model.
:param str name: The name of the model for use as an identifier in calls to the
service (for example, `en-US_BroadbandModel`).
:param str language: The language identifier of the model (for example,
`en-US`).
:param int rate: The sampling rate (minimum acceptable rate for audio) used by
the model in Hertz.
:param str url: The URI for the model.
:param SupportedFeatures supported_features: Indicates whether select service
features are supported with the model.
:param str description: A brief description of the model.
"""
def __init__(
self,
name: str,
language: str,
rate: int,
url: str,
supported_features: 'SupportedFeatures',
description: str,
) -> None:
"""
Initialize a SpeechModel object.
:param str name: The name of the model for use as an identifier in calls to
the service (for example, `en-US_BroadbandModel`).
:param str language: The language identifier of the model (for example,
`en-US`).
:param int rate: The sampling rate (minimum acceptable rate for audio) used
by the model in Hertz.
:param str url: The URI for the model.
:param SupportedFeatures supported_features: Indicates whether select
service features are supported with the model.
:param str description: A brief description of the model.
"""
self.name = name
self.language = language
self.rate = rate
self.url = url
self.supported_features = supported_features
self.description = description
@classmethod
def from_dict(cls, _dict: Dict) -> 'SpeechModel':
"""Initialize a SpeechModel object from a json dictionary."""
args = {}
if (name := _dict.get('name')) is not None:
args['name'] = name
else:
raise ValueError(
'Required property \'name\' not present in SpeechModel JSON')
if (language := _dict.get('language')) is not None:
args['language'] = language
else:
raise ValueError(
'Required property \'language\' not present in SpeechModel JSON'
)
if (rate := _dict.get('rate')) is not None:
args['rate'] = rate
else:
raise ValueError(
'Required property \'rate\' not present in SpeechModel JSON')
if (url := _dict.get('url')) is not None:
args['url'] = url
else:
raise ValueError(
'Required property \'url\' not present in SpeechModel JSON')
if (supported_features := _dict.get('supported_features')) is not None:
args['supported_features'] = SupportedFeatures.from_dict(
supported_features)
else:
raise ValueError(
'Required property \'supported_features\' not present in SpeechModel JSON'
)
if (description := _dict.get('description')) is not None:
args['description'] = description
else:
raise ValueError(
'Required property \'description\' not present in SpeechModel JSON'
)
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a SpeechModel object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'name') and self.name is not None:
_dict['name'] = self.name
if hasattr(self, 'language') and self.language is not None:
_dict['language'] = self.language
if hasattr(self, 'rate') and self.rate is not None:
_dict['rate'] = self.rate
if hasattr(self, 'url') and self.url is not None:
_dict['url'] = self.url
if hasattr(
self,
'supported_features') and self.supported_features is not None:
if isinstance(self.supported_features, dict):
_dict['supported_features'] = self.supported_features
else:
_dict['supported_features'] = self.supported_features.to_dict()
if hasattr(self, 'description') and self.description is not None:
_dict['description'] = self.description
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this SpeechModel object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'SpeechModel') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'SpeechModel') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class SpeechModels:
"""
Information about the available language models.
:param List[SpeechModel] models: An array of `SpeechModel` objects that provides
information about each available model.
"""
def __init__(
self,
models: List['SpeechModel'],
) -> None:
"""
Initialize a SpeechModels object.
:param List[SpeechModel] models: An array of `SpeechModel` objects that
provides information about each available model.
"""
self.models = models
@classmethod
def from_dict(cls, _dict: Dict) -> 'SpeechModels':
"""Initialize a SpeechModels object from a json dictionary."""
args = {}
if (models := _dict.get('models')) is not None:
args['models'] = [SpeechModel.from_dict(v) for v in models]
else:
raise ValueError(
'Required property \'models\' not present in SpeechModels JSON')
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a SpeechModels object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'models') and self.models is not None:
models_list = []
for v in self.models:
if isinstance(v, dict):
models_list.append(v)
else:
models_list.append(v.to_dict())
_dict['models'] = models_list
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this SpeechModels object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'SpeechModels') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'SpeechModels') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class SpeechRecognitionAlternative:
"""
An alternative transcript from speech recognition results.
:param str transcript: A transcription of the audio.
:param float confidence: (optional) A score that indicates the service's
confidence in the transcript in the range of 0.0 to 1.0. The service returns a
confidence score only for the best alternative and only with results marked as
final.
:param List[str] timestamps: (optional) Time alignments for each word from the
transcript as a list of lists. Each inner list consists of three elements: the
word followed by its start and end time in seconds, for example:
`[["hello",0.0,1.2],["world",1.2,2.5]]`. Timestamps are returned only for the
best alternative.
:param List[str] word_confidence: (optional) A confidence score for each word of
the transcript as a list of lists. Each inner list consists of two elements: the
word and its confidence score in the range of 0.0 to 1.0, for example:
`[["hello",0.95],["world",0.86]]`. Confidence scores are returned only for the
best alternative and only with results marked as final.
"""
def __init__(
self,
transcript: str,
*,
confidence: Optional[float] = None,
timestamps: Optional[List[str]] = None,
word_confidence: Optional[List[str]] = None,
) -> None:
"""
Initialize a SpeechRecognitionAlternative object.
:param str transcript: A transcription of the audio.
:param float confidence: (optional) A score that indicates the service's
confidence in the transcript in the range of 0.0 to 1.0. The service
returns a confidence score only for the best alternative and only with
results marked as final.
:param List[str] timestamps: (optional) Time alignments for each word from
the transcript as a list of lists. Each inner list consists of three
elements: the word followed by its start and end time in seconds, for
example: `[["hello",0.0,1.2],["world",1.2,2.5]]`. Timestamps are returned
only for the best alternative.
:param List[str] word_confidence: (optional) A confidence score for each
word of the transcript as a list of lists. Each inner list consists of two
elements: the word and its confidence score in the range of 0.0 to 1.0, for
example: `[["hello",0.95],["world",0.86]]`. Confidence scores are returned
only for the best alternative and only with results marked as final.
"""
self.transcript = transcript
self.confidence = confidence
self.timestamps = timestamps
self.word_confidence = word_confidence
@classmethod
def from_dict(cls, _dict: Dict) -> 'SpeechRecognitionAlternative':
"""Initialize a SpeechRecognitionAlternative object from a json dictionary."""
args = {}
if (transcript := _dict.get('transcript')) is not None:
args['transcript'] = transcript
else:
raise ValueError(
'Required property \'transcript\' not present in SpeechRecognitionAlternative JSON'
)
if (confidence := _dict.get('confidence')) is not None:
args['confidence'] = confidence
if (timestamps := _dict.get('timestamps')) is not None:
args['timestamps'] = timestamps
if (word_confidence := _dict.get('word_confidence')) is not None:
args['word_confidence'] = word_confidence
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a SpeechRecognitionAlternative object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'transcript') and self.transcript is not None:
_dict['transcript'] = self.transcript
if hasattr(self, 'confidence') and self.confidence is not None:
_dict['confidence'] = self.confidence
if hasattr(self, 'timestamps') and self.timestamps is not None:
_dict['timestamps'] = self.timestamps
if hasattr(self,
'word_confidence') and self.word_confidence is not None:
_dict['word_confidence'] = self.word_confidence
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this SpeechRecognitionAlternative object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'SpeechRecognitionAlternative') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'SpeechRecognitionAlternative') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class SpeechRecognitionResult:
"""
Component results for a speech recognition request.
:param bool final: An indication of whether the transcription results are final:
* If `true`, the results for this utterance are final. They are guaranteed not
to be updated further.
* If `false`, the results are interim. They can be updated with further interim
results until final results are eventually sent.
**Note:** Because `final` is a reserved word in Java and Swift, the field is
renamed `xFinal` in Java and is escaped with back quotes in Swift.
:param List[SpeechRecognitionAlternative] alternatives: An array of alternative
transcripts. The `alternatives` array can include additional requested output
such as word confidence or timestamps.
:param dict keywords_result: (optional) A dictionary (or associative array)
whose keys are the strings specified for `keywords` if both that parameter and
`keywords_threshold` are specified. The value for each key is an array of
matches spotted in the audio for that keyword. Each match is described by a
`KeywordResult` object. A keyword for which no matches are found is omitted from
the dictionary. The dictionary is omitted entirely if no matches are found for
any keywords.
:param List[WordAlternativeResults] word_alternatives: (optional) An array of
alternative hypotheses found for words of the input audio if a
`word_alternatives_threshold` is specified.
:param str end_of_utterance: (optional) If the `split_transcript_at_phrase_end`
parameter is `true`, describes the reason for the split:
* `end_of_data` - The end of the input audio stream.
* `full_stop` - A full semantic stop, such as for the conclusion of a
grammatical sentence. The insertion of splits is influenced by the base language
model and biased by custom language models and grammars.
* `reset` - The amount of audio that is currently being processed exceeds the
two-minute maximum. The service splits the transcript to avoid excessive memory
use.
* `silence` - A pause or silence that is at least as long as the pause interval.
"""
def __init__(
self,
final: bool,
alternatives: List['SpeechRecognitionAlternative'],
*,
keywords_result: Optional[dict] = None,
word_alternatives: Optional[List['WordAlternativeResults']] = None,
end_of_utterance: Optional[str] = None,
) -> None:
"""
Initialize a SpeechRecognitionResult object.
:param bool final: An indication of whether the transcription results are
final:
* If `true`, the results for this utterance are final. They are guaranteed
not to be updated further.
* If `false`, the results are interim. They can be updated with further
interim results until final results are eventually sent.
**Note:** Because `final` is a reserved word in Java and Swift, the field
is renamed `xFinal` in Java and is escaped with back quotes in Swift.
:param List[SpeechRecognitionAlternative] alternatives: An array of
alternative transcripts. The `alternatives` array can include additional
requested output such as word confidence or timestamps.
:param dict keywords_result: (optional) A dictionary (or associative array)
whose keys are the strings specified for `keywords` if both that parameter
and `keywords_threshold` are specified. The value for each key is an array
of matches spotted in the audio for that keyword. Each match is described
by a `KeywordResult` object. A keyword for which no matches are found is
omitted from the dictionary. The dictionary is omitted entirely if no
matches are found for any keywords.
:param List[WordAlternativeResults] word_alternatives: (optional) An array
of alternative hypotheses found for words of the input audio if a
`word_alternatives_threshold` is specified.
:param str end_of_utterance: (optional) If the
`split_transcript_at_phrase_end` parameter is `true`, describes the reason
for the split:
* `end_of_data` - The end of the input audio stream.
* `full_stop` - A full semantic stop, such as for the conclusion of a
grammatical sentence. The insertion of splits is influenced by the base
language model and biased by custom language models and grammars.
* `reset` - The amount of audio that is currently being processed exceeds
the two-minute maximum. The service splits the transcript to avoid
excessive memory use.
* `silence` - A pause or silence that is at least as long as the pause
interval.
"""
self.final = final
self.alternatives = alternatives
self.keywords_result = keywords_result
self.word_alternatives = word_alternatives
self.end_of_utterance = end_of_utterance
@classmethod
def from_dict(cls, _dict: Dict) -> 'SpeechRecognitionResult':
"""Initialize a SpeechRecognitionResult object from a json dictionary."""
args = {}
if (final := _dict.get('final')) is not None:
args['final'] = final
else:
raise ValueError(
'Required property \'final\' not present in SpeechRecognitionResult JSON'
)
if (alternatives := _dict.get('alternatives')) is not None:
args['alternatives'] = [
SpeechRecognitionAlternative.from_dict(v) for v in alternatives
]
else:
raise ValueError(
'Required property \'alternatives\' not present in SpeechRecognitionResult JSON'
)
if (keywords_result := _dict.get('keywords_result')) is not None:
args['keywords_result'] = keywords_result
if (word_alternatives := _dict.get('word_alternatives')) is not None:
args['word_alternatives'] = [
WordAlternativeResults.from_dict(v) for v in word_alternatives
]
if (end_of_utterance := _dict.get('end_of_utterance')) is not None:
args['end_of_utterance'] = end_of_utterance
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a SpeechRecognitionResult object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'final') and self.final is not None:
_dict['final'] = self.final
if hasattr(self, 'alternatives') and self.alternatives is not None:
alternatives_list = []
for v in self.alternatives:
if isinstance(v, dict):
alternatives_list.append(v)
else:
alternatives_list.append(v.to_dict())
_dict['alternatives'] = alternatives_list
if hasattr(self,
'keywords_result') and self.keywords_result is not None:
_dict['keywords_result'] = self.keywords_result
if hasattr(self,
'word_alternatives') and self.word_alternatives is not None:
word_alternatives_list = []
for v in self.word_alternatives:
if isinstance(v, dict):
word_alternatives_list.append(v)
else:
word_alternatives_list.append(v.to_dict())
_dict['word_alternatives'] = word_alternatives_list
if hasattr(self,
'end_of_utterance') and self.end_of_utterance is not None:
_dict['end_of_utterance'] = self.end_of_utterance
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this SpeechRecognitionResult object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'SpeechRecognitionResult') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'SpeechRecognitionResult') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class EndOfUtteranceEnum(str, Enum):
"""
If the `split_transcript_at_phrase_end` parameter is `true`, describes the reason
for the split:
* `end_of_data` - The end of the input audio stream.
* `full_stop` - A full semantic stop, such as for the conclusion of a grammatical
sentence. The insertion of splits is influenced by the base language model and
biased by custom language models and grammars.
* `reset` - The amount of audio that is currently being processed exceeds the
two-minute maximum. The service splits the transcript to avoid excessive memory
use.
* `silence` - A pause or silence that is at least as long as the pause interval.
"""
END_OF_DATA = 'end_of_data'
FULL_STOP = 'full_stop'
RESET = 'reset'
SILENCE = 'silence'
class SpeechRecognitionResults:
"""
The complete results for a speech recognition request.
:param List[SpeechRecognitionResult] results: (optional) An array of
`SpeechRecognitionResult` objects that can include interim and final results
(interim results are returned only if supported by the method). Final results
are guaranteed not to change; interim results might be replaced by further
interim results and eventually final results.
For the HTTP interfaces, all results arrive at the same time. For the WebSocket
interface, results can be sent as multiple separate responses. The service
periodically sends updates to the results list. The `result_index` is
incremented to the lowest index in the array that has changed for new results.
For more information, see [Understanding speech recognition
results](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-basic-response).
:param int result_index: (optional) An index that indicates a change point in
the `results` array. The service increments the index for additional results
that it sends for new audio for the same request. All results with the same
index are delivered at the same time. The same index can include multiple final
results that are delivered with the same response.
:param List[SpeakerLabelsResult] speaker_labels: (optional) An array of
`SpeakerLabelsResult` objects that identifies which words were spoken by which
speakers in a multi-person exchange. The array is returned only if the
`speaker_labels` parameter is `true`. When interim results are also requested
for methods that support them, it is possible for a `SpeechRecognitionResults`
object to include only the `speaker_labels` field.
:param ProcessingMetrics processing_metrics: (optional) If processing metrics
are requested, information about the service's processing of the input audio.
Processing metrics are not available with the synchronous [Recognize
audio](#recognize) method.
:param AudioMetrics audio_metrics: (optional) If audio metrics are requested,
information about the signal characteristics of the input audio.
:param List[str] warnings: (optional) An array of warning messages associated
with the request:
* Warnings for invalid parameters or fields can include a descriptive message
and a list of invalid argument strings, for example, `"Unknown arguments:"` or
`"Unknown url query arguments:"` followed by a list of the form
`"{invalid_arg_1}, {invalid_arg_2}."` (If you use the `character_insertion_bias`
parameter with a previous-generation model, the warning message refers to the
parameter as `lambdaBias`.)
* The following warning is returned if the request passes a custom model that is
based on an older version of a base model for which an updated version is
available: `"Using previous version of base model, because your custom model has
been built with it. Please note that this version will be supported only for a
limited time. Consider updating your custom model to the new base model. If you
do not do that you will be automatically switched to base model when you used
the non-updated custom model."`
In both cases, the request succeeds despite the warnings.
"""
def __init__(
self,
*,
results: Optional[List['SpeechRecognitionResult']] = None,
result_index: Optional[int] = None,
speaker_labels: Optional[List['SpeakerLabelsResult']] = None,
processing_metrics: Optional['ProcessingMetrics'] = None,
audio_metrics: Optional['AudioMetrics'] = None,
warnings: Optional[List[str]] = None,
) -> None:
"""
Initialize a SpeechRecognitionResults object.
:param List[SpeechRecognitionResult] results: (optional) An array of
`SpeechRecognitionResult` objects that can include interim and final
results (interim results are returned only if supported by the method).
Final results are guaranteed not to change; interim results might be
replaced by further interim results and eventually final results.
For the HTTP interfaces, all results arrive at the same time. For the
WebSocket interface, results can be sent as multiple separate responses.
The service periodically sends updates to the results list. The
`result_index` is incremented to the lowest index in the array that has
changed for new results.
For more information, see [Understanding speech recognition
results](https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-basic-response).
:param int result_index: (optional) An index that indicates a change point
in the `results` array. The service increments the index for additional
results that it sends for new audio for the same request. All results with
the same index are delivered at the same time. The same index can include
multiple final results that are delivered with the same response.
:param List[SpeakerLabelsResult] speaker_labels: (optional) An array of
`SpeakerLabelsResult` objects that identifies which words were spoken by
which speakers in a multi-person exchange. The array is returned only if
the `speaker_labels` parameter is `true`. When interim results are also
requested for methods that support them, it is possible for a
`SpeechRecognitionResults` object to include only the `speaker_labels`
field.
:param ProcessingMetrics processing_metrics: (optional) If processing
metrics are requested, information about the service's processing of the
input audio. Processing metrics are not available with the synchronous
[Recognize audio](#recognize) method.
:param AudioMetrics audio_metrics: (optional) If audio metrics are
requested, information about the signal characteristics of the input audio.
:param List[str] warnings: (optional) An array of warning messages
associated with the request:
* Warnings for invalid parameters or fields can include a descriptive
message and a list of invalid argument strings, for example, `"Unknown
arguments:"` or `"Unknown url query arguments:"` followed by a list of the
form `"{invalid_arg_1}, {invalid_arg_2}."` (If you use the
`character_insertion_bias` parameter with a previous-generation model, the
warning message refers to the parameter as `lambdaBias`.)
* The following warning is returned if the request passes a custom model
that is based on an older version of a base model for which an updated
version is available: `"Using previous version of base model, because your
custom model has been built with it. Please note that this version will be
supported only for a limited time. Consider updating your custom model to
the new base model. If you do not do that you will be automatically
switched to base model when you used the non-updated custom model."`
In both cases, the request succeeds despite the warnings.
"""
self.results = results
self.result_index = result_index
self.speaker_labels = speaker_labels
self.processing_metrics = processing_metrics
self.audio_metrics = audio_metrics
self.warnings = warnings
@classmethod
def from_dict(cls, _dict: Dict) -> 'SpeechRecognitionResults':
"""Initialize a SpeechRecognitionResults object from a json dictionary."""
args = {}
if (results := _dict.get('results')) is not None:
args['results'] = [
SpeechRecognitionResult.from_dict(v) for v in results
]
if (result_index := _dict.get('result_index')) is not None:
args['result_index'] = result_index
if (speaker_labels := _dict.get('speaker_labels')) is not None:
args['speaker_labels'] = [
SpeakerLabelsResult.from_dict(v) for v in speaker_labels
]
if (processing_metrics := _dict.get('processing_metrics')) is not None:
args['processing_metrics'] = ProcessingMetrics.from_dict(
processing_metrics)
if (audio_metrics := _dict.get('audio_metrics')) is not None:
args['audio_metrics'] = AudioMetrics.from_dict(audio_metrics)
if (warnings := _dict.get('warnings')) is not None:
args['warnings'] = warnings
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a SpeechRecognitionResults object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'results') and self.results is not None:
results_list = []
for v in self.results:
if isinstance(v, dict):
results_list.append(v)
else:
results_list.append(v.to_dict())
_dict['results'] = results_list
if hasattr(self, 'result_index') and self.result_index is not None:
_dict['result_index'] = self.result_index
if hasattr(self, 'speaker_labels') and self.speaker_labels is not None:
speaker_labels_list = []
for v in self.speaker_labels:
if isinstance(v, dict):
speaker_labels_list.append(v)
else:
speaker_labels_list.append(v.to_dict())
_dict['speaker_labels'] = speaker_labels_list
if hasattr(
self,
'processing_metrics') and self.processing_metrics is not None:
if isinstance(self.processing_metrics, dict):
_dict['processing_metrics'] = self.processing_metrics
else:
_dict['processing_metrics'] = self.processing_metrics.to_dict()
if hasattr(self, 'audio_metrics') and self.audio_metrics is not None:
if isinstance(self.audio_metrics, dict):
_dict['audio_metrics'] = self.audio_metrics
else:
_dict['audio_metrics'] = self.audio_metrics.to_dict()
if hasattr(self, 'warnings') and self.warnings is not None:
_dict['warnings'] = self.warnings
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this SpeechRecognitionResults object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'SpeechRecognitionResults') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'SpeechRecognitionResults') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class SupportedFeatures:
"""
Indicates whether select service features are supported with the model.
:param bool custom_language_model: Indicates whether the customization interface
can be used to create a custom language model based on the language model.
:param bool custom_acoustic_model: Indicates whether the customization interface
can be used to create a custom acoustic model based on the language model.
:param bool speaker_labels: Indicates whether the `speaker_labels` parameter can
be used with the language model.
**Note:** The field returns `true` for all models. However, speaker labels are
supported for use only with the following languages and models:
* _For previous-generation models,_ the parameter can be used with Australian
English, US English, German, Japanese, Korean, and Spanish (both broadband and
narrowband models) and UK English (narrowband model) transcription only.
* _For next-generation models,_ the parameter can be used with Czech, English
(Australian, Indian, UK, and US), German, Japanese, Korean, and Spanish
transcription only.
Speaker labels are not supported for use with any other languages or models.
:param bool low_latency: (optional) Indicates whether the `low_latency`
parameter can be used with a next-generation language model. The field is
returned only for next-generation models. Previous-generation models do not
support the `low_latency` parameter.
"""
def __init__(
self,
custom_language_model: bool,
custom_acoustic_model: bool,
speaker_labels: bool,
*,
low_latency: Optional[bool] = None,
) -> None:
"""
Initialize a SupportedFeatures object.
:param bool custom_language_model: Indicates whether the customization
interface can be used to create a custom language model based on the
language model.
:param bool custom_acoustic_model: Indicates whether the customization
interface can be used to create a custom acoustic model based on the
language model.
:param bool speaker_labels: Indicates whether the `speaker_labels`
parameter can be used with the language model.
**Note:** The field returns `true` for all models. However, speaker labels
are supported for use only with the following languages and models:
* _For previous-generation models,_ the parameter can be used with
Australian English, US English, German, Japanese, Korean, and Spanish (both
broadband and narrowband models) and UK English (narrowband model)
transcription only.
* _For next-generation models,_ the parameter can be used with Czech,
English (Australian, Indian, UK, and US), German, Japanese, Korean, and
Spanish transcription only.
Speaker labels are not supported for use with any other languages or
models.
:param bool low_latency: (optional) Indicates whether the `low_latency`
parameter can be used with a next-generation language model. The field is
returned only for next-generation models. Previous-generation models do not
support the `low_latency` parameter.
"""
self.custom_language_model = custom_language_model
self.custom_acoustic_model = custom_acoustic_model
self.speaker_labels = speaker_labels
self.low_latency = low_latency
@classmethod
def from_dict(cls, _dict: Dict) -> 'SupportedFeatures':
"""Initialize a SupportedFeatures object from a json dictionary."""
args = {}
if (custom_language_model :=
_dict.get('custom_language_model')) is not None:
args['custom_language_model'] = custom_language_model
else:
raise ValueError(
'Required property \'custom_language_model\' not present in SupportedFeatures JSON'
)
if (custom_acoustic_model :=
_dict.get('custom_acoustic_model')) is not None:
args['custom_acoustic_model'] = custom_acoustic_model
else:
raise ValueError(
'Required property \'custom_acoustic_model\' not present in SupportedFeatures JSON'
)
if (speaker_labels := _dict.get('speaker_labels')) is not None:
args['speaker_labels'] = speaker_labels
else:
raise ValueError(
'Required property \'speaker_labels\' not present in SupportedFeatures JSON'
)
if (low_latency := _dict.get('low_latency')) is not None:
args['low_latency'] = low_latency
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a SupportedFeatures object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'custom_language_model'
) and self.custom_language_model is not None:
_dict['custom_language_model'] = self.custom_language_model
if hasattr(self, 'custom_acoustic_model'
) and self.custom_acoustic_model is not None:
_dict['custom_acoustic_model'] = self.custom_acoustic_model
if hasattr(self, 'speaker_labels') and self.speaker_labels is not None:
_dict['speaker_labels'] = self.speaker_labels
if hasattr(self, 'low_latency') and self.low_latency is not None:
_dict['low_latency'] = self.low_latency
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this SupportedFeatures object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'SupportedFeatures') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'SupportedFeatures') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class TrainingResponse:
"""
The response from training of a custom language or custom acoustic model.
:param List[TrainingWarning] warnings: (optional) An array of `TrainingWarning`
objects that lists any invalid resources contained in the custom model. For
custom language models, invalid resources are grouped and identified by type of
resource. The method can return warnings only if the `strict` parameter is set
to `false`.
"""
def __init__(
self,
*,
warnings: Optional[List['TrainingWarning']] = None,
) -> None:
"""
Initialize a TrainingResponse object.
:param List[TrainingWarning] warnings: (optional) An array of
`TrainingWarning` objects that lists any invalid resources contained in the
custom model. For custom language models, invalid resources are grouped and
identified by type of resource. The method can return warnings only if the
`strict` parameter is set to `false`.
"""
self.warnings = warnings
@classmethod
def from_dict(cls, _dict: Dict) -> 'TrainingResponse':
"""Initialize a TrainingResponse object from a json dictionary."""
args = {}
if (warnings := _dict.get('warnings')) is not None:
args['warnings'] = [TrainingWarning.from_dict(v) for v in warnings]
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a TrainingResponse object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'warnings') and self.warnings is not None:
warnings_list = []
for v in self.warnings:
if isinstance(v, dict):
warnings_list.append(v)
else:
warnings_list.append(v.to_dict())
_dict['warnings'] = warnings_list
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this TrainingResponse object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'TrainingResponse') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'TrainingResponse') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class TrainingWarning:
"""
A warning from training of a custom language or custom acoustic model.
:param str code: An identifier for the type of invalid resources listed in the
`description` field.
:param str message: A warning message that lists the invalid resources that are
excluded from the custom model's training. The message has the following format:
`Analysis of the following {resource_type} has not completed successfully:
[{resource_names}]. They will be excluded from custom {model_type} model
training.`.
"""
def __init__(
self,
code: str,
message: str,
) -> None:
"""
Initialize a TrainingWarning object.
:param str code: An identifier for the type of invalid resources listed in
the `description` field.
:param str message: A warning message that lists the invalid resources that
are excluded from the custom model's training. The message has the
following format: `Analysis of the following {resource_type} has not
completed successfully: [{resource_names}]. They will be excluded from
custom {model_type} model training.`.
"""
self.code = code
self.message = message
@classmethod
def from_dict(cls, _dict: Dict) -> 'TrainingWarning':
"""Initialize a TrainingWarning object from a json dictionary."""
args = {}
if (code := _dict.get('code')) is not None:
args['code'] = code
else:
raise ValueError(
'Required property \'code\' not present in TrainingWarning JSON'
)
if (message := _dict.get('message')) is not None:
args['message'] = message
else:
raise ValueError(
'Required property \'message\' not present in TrainingWarning JSON'
)
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a TrainingWarning object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'code') and self.code is not None:
_dict['code'] = self.code
if hasattr(self, 'message') and self.message is not None:
_dict['message'] = self.message
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this TrainingWarning object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'TrainingWarning') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'TrainingWarning') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class CodeEnum(str, Enum):
"""
An identifier for the type of invalid resources listed in the `description` field.
"""
INVALID_AUDIO_FILES = 'invalid_audio_files'
INVALID_CORPUS_FILES = 'invalid_corpus_files'
INVALID_GRAMMAR_FILES = 'invalid_grammar_files'
INVALID_WORDS = 'invalid_words'
class Word:
"""
Information about a word from a custom language model.
:param str word: A word from the custom model's words resource. The spelling of
the word is used to train the model.
:param List[str] mapping_only: (optional) (Optional) Parameter for custom words.
You can use the 'mapping_only' key in custom words as a form of post processing.
A boolean value that indicates whether the added word should be used to
fine-tune the mode for selected next-gen models. This field appears in the
response body only when it's 'For a custom model that is based on a
previous-generation model', the mapping_only field is populated with the value
set by the user, but would not be used.
:param List[str] sounds_like: An array of as many as five pronunciations for the
word.
* _For a custom model that is based on a previous-generation model_, in addition
to sounds-like pronunciations that were added by a user, the array can include a
sounds-like pronunciation that is automatically generated by the service if none
is provided when the word is added to the custom model.
* _For a custom model that is based on a next-generation model_, the array can
include only sounds-like pronunciations that were added by a user.
:param str display_as: The spelling of the word that the service uses to display
the word in a transcript.
* _For a custom model that is based on a previous-generation model_, the field
can contain an empty string if no display-as value is provided for a word that
exists in the service's base vocabulary. In this case, the word is displayed as
it is spelled.
* _For a custom model that is based on a next-generation model_, the service
uses the spelling of the word as the value of the display-as field when the word
is added to the model.
:param int count: _For a custom model that is based on a previous-generation
model_, a sum of the number of times the word is found across all corpora and
grammars. For example, if the word occurs five times in one corpus and seven
times in another, its count is `12`. If you add a custom word to a model before
it is added by any corpora or grammars, the count begins at `1`; if the word is
added from a corpus or grammar first and later modified, the count reflects only
the number of times it is found in corpora and grammars.
_For a custom model that is based on a next-generation model_, the `count` field
for any word is always `1`.
:param List[str] source: An array of sources that describes how the word was
added to the custom model's words resource.
* _For a custom model that is based on previous-generation model,_ the field
includes the name of each corpus and grammar from which the service extracted
the word. For OOV that are added by multiple corpora or grammars, the names of
all corpora and grammars are listed. If you modified or added the word directly,
the field includes the string `user`.
* _For a custom model that is based on a next-generation model,_ this field
shows only `user` for custom words that were added directly to the custom model.
Words from corpora and grammars are not added to the words resource for custom
models that are based on next-generation models.
:param List[WordError] error: (optional) If the service discovered one or more
problems that you need to correct for the word's definition, an array that
describes each of the errors.
"""
def __init__(
self,
word: str,
sounds_like: List[str],
display_as: str,
count: int,
source: List[str],
*,
mapping_only: Optional[List[str]] = None,
error: Optional[List['WordError']] = None,
) -> None:
"""
Initialize a Word object.
:param str word: A word from the custom model's words resource. The
spelling of the word is used to train the model.
:param List[str] sounds_like: An array of as many as five pronunciations
for the word.
* _For a custom model that is based on a previous-generation model_, in
addition to sounds-like pronunciations that were added by a user, the array
can include a sounds-like pronunciation that is automatically generated by
the service if none is provided when the word is added to the custom model.
* _For a custom model that is based on a next-generation model_, the array
can include only sounds-like pronunciations that were added by a user.
:param str display_as: The spelling of the word that the service uses to
display the word in a transcript.
* _For a custom model that is based on a previous-generation model_, the
field can contain an empty string if no display-as value is provided for a
word that exists in the service's base vocabulary. In this case, the word
is displayed as it is spelled.
* _For a custom model that is based on a next-generation model_, the
service uses the spelling of the word as the value of the display-as field
when the word is added to the model.
:param int count: _For a custom model that is based on a
previous-generation model_, a sum of the number of times the word is found
across all corpora and grammars. For example, if the word occurs five times
in one corpus and seven times in another, its count is `12`. If you add a
custom word to a model before it is added by any corpora or grammars, the
count begins at `1`; if the word is added from a corpus or grammar first
and later modified, the count reflects only the number of times it is found
in corpora and grammars.
_For a custom model that is based on a next-generation model_, the `count`
field for any word is always `1`.
:param List[str] source: An array of sources that describes how the word
was added to the custom model's words resource.
* _For a custom model that is based on previous-generation model,_ the
field includes the name of each corpus and grammar from which the service
extracted the word. For OOV that are added by multiple corpora or grammars,
the names of all corpora and grammars are listed. If you modified or added
the word directly, the field includes the string `user`.
* _For a custom model that is based on a next-generation model,_ this field
shows only `user` for custom words that were added directly to the custom
model. Words from corpora and grammars are not added to the words resource
for custom models that are based on next-generation models.
:param List[str] mapping_only: (optional) (Optional) Parameter for custom
words. You can use the 'mapping_only' key in custom words as a form of post
processing. A boolean value that indicates whether the added word should be
used to fine-tune the mode for selected next-gen models. This field appears
in the response body only when it's 'For a custom model that is based on a
previous-generation model', the mapping_only field is populated with the
value set by the user, but would not be used.
:param List[WordError] error: (optional) If the service discovered one or
more problems that you need to correct for the word's definition, an array
that describes each of the errors.
"""
self.word = word
self.mapping_only = mapping_only
self.sounds_like = sounds_like
self.display_as = display_as
self.count = count
self.source = source
self.error = error
@classmethod
def from_dict(cls, _dict: Dict) -> 'Word':
"""Initialize a Word object from a json dictionary."""
args = {}
if (word := _dict.get('word')) is not None:
args['word'] = word
else:
raise ValueError(
'Required property \'word\' not present in Word JSON')
if (mapping_only := _dict.get('mapping_only')) is not None:
args['mapping_only'] = mapping_only
if (sounds_like := _dict.get('sounds_like')) is not None:
args['sounds_like'] = sounds_like
else:
raise ValueError(
'Required property \'sounds_like\' not present in Word JSON')
if (display_as := _dict.get('display_as')) is not None:
args['display_as'] = display_as
else:
raise ValueError(
'Required property \'display_as\' not present in Word JSON')
if (count := _dict.get('count')) is not None:
args['count'] = count
else:
raise ValueError(
'Required property \'count\' not present in Word JSON')
if (source := _dict.get('source')) is not None:
args['source'] = source
else:
raise ValueError(
'Required property \'source\' not present in Word JSON')
if (error := _dict.get('error')) is not None:
args['error'] = [WordError.from_dict(v) for v in error]
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a Word object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'word') and self.word is not None:
_dict['word'] = self.word
if hasattr(self, 'mapping_only') and self.mapping_only is not None:
_dict['mapping_only'] = self.mapping_only
if hasattr(self, 'sounds_like') and self.sounds_like is not None:
_dict['sounds_like'] = self.sounds_like
if hasattr(self, 'display_as') and self.display_as is not None:
_dict['display_as'] = self.display_as
if hasattr(self, 'count') and self.count is not None:
_dict['count'] = self.count
if hasattr(self, 'source') and self.source is not None:
_dict['source'] = self.source
if hasattr(self, 'error') and self.error is not None:
error_list = []
for v in self.error:
if isinstance(v, dict):
error_list.append(v)
else:
error_list.append(v.to_dict())
_dict['error'] = error_list
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this Word object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'Word') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'Word') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class WordAlternativeResult:
"""
An alternative hypothesis for a word from speech recognition results.
:param float confidence: A confidence score for the word alternative hypothesis
in the range of 0.0 to 1.0.
:param str word: An alternative hypothesis for a word from the input audio.
"""
def __init__(
self,
confidence: float,
word: str,
) -> None:
"""
Initialize a WordAlternativeResult object.
:param float confidence: A confidence score for the word alternative
hypothesis in the range of 0.0 to 1.0.
:param str word: An alternative hypothesis for a word from the input audio.
"""
self.confidence = confidence
self.word = word
@classmethod
def from_dict(cls, _dict: Dict) -> 'WordAlternativeResult':
"""Initialize a WordAlternativeResult object from a json dictionary."""
args = {}
if (confidence := _dict.get('confidence')) is not None:
args['confidence'] = confidence
else:
raise ValueError(
'Required property \'confidence\' not present in WordAlternativeResult JSON'
)
if (word := _dict.get('word')) is not None:
args['word'] = word
else:
raise ValueError(
'Required property \'word\' not present in WordAlternativeResult JSON'
)
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a WordAlternativeResult object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'confidence') and self.confidence is not None:
_dict['confidence'] = self.confidence
if hasattr(self, 'word') and self.word is not None:
_dict['word'] = self.word
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this WordAlternativeResult object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'WordAlternativeResult') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'WordAlternativeResult') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class WordAlternativeResults:
"""
Information about alternative hypotheses for words from speech recognition results.
:param float start_time: The start time in seconds of the word from the input
audio that corresponds to the word alternatives.
:param float end_time: The end time in seconds of the word from the input audio
that corresponds to the word alternatives.
:param List[WordAlternativeResult] alternatives: An array of alternative
hypotheses for a word from the input audio.
"""
def __init__(
self,
start_time: float,
end_time: float,
alternatives: List['WordAlternativeResult'],
) -> None:
"""
Initialize a WordAlternativeResults object.
:param float start_time: The start time in seconds of the word from the
input audio that corresponds to the word alternatives.
:param float end_time: The end time in seconds of the word from the input
audio that corresponds to the word alternatives.
:param List[WordAlternativeResult] alternatives: An array of alternative
hypotheses for a word from the input audio.
"""
self.start_time = start_time
self.end_time = end_time
self.alternatives = alternatives
@classmethod
def from_dict(cls, _dict: Dict) -> 'WordAlternativeResults':
"""Initialize a WordAlternativeResults object from a json dictionary."""
args = {}
if (start_time := _dict.get('start_time')) is not None:
args['start_time'] = start_time
else:
raise ValueError(
'Required property \'start_time\' not present in WordAlternativeResults JSON'
)
if (end_time := _dict.get('end_time')) is not None:
args['end_time'] = end_time
else:
raise ValueError(
'Required property \'end_time\' not present in WordAlternativeResults JSON'
)
if (alternatives := _dict.get('alternatives')) is not None:
args['alternatives'] = [
WordAlternativeResult.from_dict(v) for v in alternatives
]
else:
raise ValueError(
'Required property \'alternatives\' not present in WordAlternativeResults JSON'
)
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a WordAlternativeResults object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'start_time') and self.start_time is not None:
_dict['start_time'] = self.start_time
if hasattr(self, 'end_time') and self.end_time is not None:
_dict['end_time'] = self.end_time
if hasattr(self, 'alternatives') and self.alternatives is not None:
alternatives_list = []
for v in self.alternatives:
if isinstance(v, dict):
alternatives_list.append(v)
else:
alternatives_list.append(v.to_dict())
_dict['alternatives'] = alternatives_list
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this WordAlternativeResults object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'WordAlternativeResults') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'WordAlternativeResults') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class WordError:
"""
An error associated with a word from a custom language model.
:param str element: A key-value pair that describes an error associated with the
definition of a word in the words resource. The pair has the format `"element":
"message"`, where `element` is the aspect of the definition that caused the
problem and `message` describes the problem. The following example describes a
problem with one of the word's sounds-like definitions: `"{sounds_like_string}":
"Numbers are not allowed in sounds-like. You can try for example
'{suggested_string}'."`.
"""
def __init__(
self,
element: str,
) -> None:
"""
Initialize a WordError object.
:param str element: A key-value pair that describes an error associated
with the definition of a word in the words resource. The pair has the
format `"element": "message"`, where `element` is the aspect of the
definition that caused the problem and `message` describes the problem. The
following example describes a problem with one of the word's sounds-like
definitions: `"{sounds_like_string}": "Numbers are not allowed in
sounds-like. You can try for example '{suggested_string}'."`.
"""
self.element = element
@classmethod
def from_dict(cls, _dict: Dict) -> 'WordError':
"""Initialize a WordError object from a json dictionary."""
args = {}
if (element := _dict.get('element')) is not None:
args['element'] = element
else:
raise ValueError(
'Required property \'element\' not present in WordError JSON')
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a WordError object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'element') and self.element is not None:
_dict['element'] = self.element
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this WordError object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'WordError') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'WordError') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
class Words:
"""
Information about the words from a custom language model.
:param List[Word] words: An array of `Word` objects that provides information
about each word in the custom model's words resource. The array is empty if the
custom model has no words.
"""
def __init__(
self,
words: List['Word'],
) -> None:
"""
Initialize a Words object.
:param List[Word] words: An array of `Word` objects that provides
information about each word in the custom model's words resource. The array
is empty if the custom model has no words.
"""
self.words = words
@classmethod
def from_dict(cls, _dict: Dict) -> 'Words':
"""Initialize a Words object from a json dictionary."""
args = {}
if (words := _dict.get('words')) is not None:
args['words'] = [Word.from_dict(v) for v in words]
else:
raise ValueError(
'Required property \'words\' not present in Words JSON')
return cls(**args)
@classmethod
def _from_dict(cls, _dict):
"""Initialize a Words object from a json dictionary."""
return cls.from_dict(_dict)
def to_dict(self) -> Dict:
"""Return a json dictionary representing this model."""
_dict = {}
if hasattr(self, 'words') and self.words is not None:
words_list = []
for v in self.words:
if isinstance(v, dict):
words_list.append(v)
else:
words_list.append(v.to_dict())
_dict['words'] = words_list
return _dict
def _to_dict(self):
"""Return a json dictionary representing this model."""
return self.to_dict()
def __str__(self) -> str:
"""Return a `str` version of this Words object."""
return json.dumps(self.to_dict(), indent=2)
def __eq__(self, other: 'Words') -> bool:
"""Return `true` when self and other are equal, false otherwise."""
if not isinstance(other, self.__class__):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other: 'Words') -> bool:
"""Return `true` when self and other are not equal, false otherwise."""
return not self == other
|