1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
# -------------------------------- WebLogo --------------------------------
# Copyright (c) 2003-2004 The Regents of the University of California.
# Copyright (c) 2005 Gavin E. Crooks
# Copyright (c) 2006-2011, The Regents of the University of California, through
# Lawrence Berkeley National Laboratory (subject to receipt of any required
# approvals from the U.S. Dept. of Energy). All rights reserved.
# This software is distributed under the new BSD Open Source License.
# <http://www.opensource.org/licenses/bsd-license.html>
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# (1) Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# (2) Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and or other materials provided with the distribution.
#
# (3) Neither the name of the University of California, Lawrence Berkeley
# National Laboratory, U.S. Dept. of Energy nor the names of its contributors
# may be used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
import random
from math import exp, log, sqrt
from typing import Tuple
import numpy as np
import scipy.optimize
from numpy import asarray, float64, shape, zeros
from numpy.typing import ArrayLike # pragma: no cover
from scipy.special import digamma, gamma, gammaincc, polygamma
class Dirichlet(object):
"""The Dirichlet probability distribution. The Dirichlet is a continuous
multivariate probability distribution across non-negative unit length
vectors. In other words, the Dirichlet is a probability distribution of
probability distributions. It is conjugate to the multinomial
distribution and is widely used in Bayesian statistics.
The Dirichlet probability distribution of order K-1 is
p(theta_1,...,theta_K) d theta_1 ... d theta_K =
(1/Z) prod_i=1,K theta_i^{alpha_i - 1} delta(1 -sum_i=1,K theta_i)
The normalization factor Z can be expressed in terms of gamma functions:
Z = {prod_i=1,K Gamma(alpha_i)} / {Gamma( sum_i=1,K alpha_i)}
The K constants, alpha_1,...,alpha_K, must be positive. The K parameters,
theta_1,...,theta_K are nonnegative and sum to 1.
Status:
Alpha
"""
__slots__ = (
"alpha",
"_total",
"_mean",
)
def __init__(self, alpha: "ArrayLike") -> None:
"""
Args:
- alpha -- The parameters of the Dirichlet prior distribution.
A vector of non-negative real numbers.
"""
# TODO: Check that alphas are positive
# TODO: what if alpha's not one dimensional?
self.alpha = asarray(alpha, float64)
self._total = sum(alpha)
self._mean: np.ndarray = self.alpha / self._total
def sample(self) -> np.ndarray:
"""Return a randomly generated probability vector.
Random samples are generated by sampling K values from gamma
distributions with parameters a=\alpha_i, b=1, and renormalizing.
Ref:
A.M. Law, W.D. Kelton, Simulation Modeling and Analysis (1991).
Authors:
Gavin E. Crooks <gec@compbio.berkeley.edu> (2002)
"""
alpha = self.alpha
K = len(alpha)
theta = zeros((K,), float64)
for k in range(K):
theta[k] = random.gammavariate(alpha[k], 1.0)
theta /= sum(theta)
return theta
def mean(self) -> np.ndarray:
return self._mean
def covariance(self) -> np.ndarray:
alpha = self.alpha
A = sum(alpha)
# A2 = A * A
K = len(alpha)
cv = zeros((K, K), float64)
for i in range(K):
cv[i, i] = alpha[i] * (1.0 - alpha[i] / A) / (A * (A + 1.0))
for i in range(K):
for j in range(i + 1, K):
v = -alpha[i] * alpha[j] / (A * A * (A + 1.0))
cv[i, j] = v
cv[j, i] = v
return cv
def mean_x(self, x: "ArrayLike") -> float:
x = asarray(x, float64)
if shape(x) != shape(self.alpha):
raise ValueError("Argument must be same dimension as Dirichlet")
return sum(x * self.mean())
def variance_x(self, x: "ArrayLike") -> float:
x = asarray(x, float64)
if shape(x) != shape(self.alpha):
raise ValueError("Argument must be same dimension as Dirichlet")
cv = self.covariance()
var = np.dot(np.dot(np.transpose(x), cv), x)
return var
def mean_entropy(self) -> float:
"""Calculate the average entropy of probabilities sampled
from this Dirichlet distribution.
Returns:
The average entropy.
Ref:
Wolpert & Wolf, PRE 53:6841-6854 (1996) Theorem 7
(Warning: this paper contains typos.)
Status:
Alpha
Authors:
GEC 2005
"""
# TODO: Optimize
alpha = self.alpha
A = float(sum(alpha))
ent = 0.0
for a in alpha:
if a > 0:
ent += -1.0 * a * digamma(1.0 + a) # FIXME: Check
ent /= A
ent += digamma(A + 1.0)
return ent
def variance_entropy(self) -> float:
"""Calculate the variance of the Dirichlet entropy.
Ref:
Wolpert & Wolf, PRE 53:6841-6854 (1996) Theorem 8
(Warning: this paper contains typos.)
"""
alpha = self.alpha
A = float(sum(alpha))
A2 = A * (A + 1)
L = len(alpha)
dg1 = zeros((L), float64)
dg2 = zeros((L), float64)
tg2 = zeros((L), float64)
for i in range(L):
dg1[i] = digamma(alpha[i] + 1.0)
dg2[i] = digamma(alpha[i] + 2.0)
tg2[i] = polygamma(1, alpha[i] + 2.0)
dg_Ap2 = digamma(A + 2.0)
tg_Ap2 = polygamma(1, A + 2.0)
mean = self.mean_entropy()
var = 0.0
for i in range(L):
for j in range(L):
if i != j:
var += (
((dg1[i] - dg_Ap2) * (dg1[j] - dg_Ap2) - tg_Ap2)
* (alpha[i] * alpha[j])
/ A2
)
else:
var += (
((dg2[i] - dg_Ap2) ** 2 + (tg2[i] - tg_Ap2))
* (alpha[i] * (alpha[i] + 1.0))
/ A2
)
var -= mean**2
return var
def mean_relative_entropy(self, pvec: "ArrayLike") -> float:
pvec = asarray(pvec)
ln_p = np.log(pvec)
return -self.mean_x(ln_p) - self.mean_entropy()
def variance_relative_entropy(self, pvec: "ArrayLike") -> float:
pvec = asarray(pvec)
ln_p = np.log(pvec)
return self.variance_x(ln_p) + self.variance_entropy()
def interval_relative_entropy(
self, pvec: "ArrayLike", frac: float
) -> Tuple[float, float]:
pvec = asarray(pvec)
mean = self.mean_relative_entropy(pvec)
variance = self.variance_relative_entropy(pvec)
sd = sqrt(variance)
# If the variance is small, use the standard 95%
# confidence interval: mean +/- 1.96 * sd
if mean / sd > 3.0:
return max(0.0, mean - sd * 1.96), mean + sd * 1.96
g = Gamma.from_mean_variance(mean, variance)
low_limit = g.inverse_cdf((1.0 - frac) / 2.0)
high_limit = g.inverse_cdf(1.0 - (1.0 - frac) / 2.0)
return low_limit, high_limit
class Gamma(object):
"""The gamma probability distribution. (Not to be confused with the
gamma function.)
"""
__slots__ = "alpha", "beta"
def __init__(self, alpha: float, beta: float) -> None:
if alpha <= 0.0:
raise ValueError("alpha must be positive")
if beta <= 0.0:
raise ValueError("beta must be positive")
self.alpha = alpha
self.beta = beta
@classmethod
def from_shape_scale(cls, shape: float, scale: float) -> "Gamma":
return cls(shape, 1.0 / scale)
@classmethod
def from_mean_variance(cls, mean: float, variance: float) -> "Gamma":
alpha = mean**2 / variance
beta = alpha / mean
return cls(alpha, beta)
def mean(self) -> float:
return self.alpha / self.beta
def variance(self) -> float:
return self.alpha / (self.beta**2)
def sample(self) -> float:
return random.gammavariate(self.alpha, 1.0 / self.beta)
def pdf(self, x: float) -> float:
if x == 0.0:
return 0.0
a = self.alpha
b = self.beta
return (x ** (a - 1.0)) * exp(-b * x) * (b**a) / gamma(a)
def cdf(self, x: float) -> float:
return 1.0 - gammaincc(self.alpha, self.beta * x)
def inverse_cdf(self, p: float) -> float:
def rootof(x: float) -> float:
return self.cdf(exp(x)) - p
root = scipy.optimize.newton(rootof, log(self.mean()))
return exp(root)
|