1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
|
# Copyright (c) 2006 John Gilman
#
# This software is distributed under the MIT Open Source License.
# <http://www.opensource.org/licenses/mit-license.html>
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
""" Transformations of Seqs (alphabetic sequences).
Classes :
- Transform -- Simple transforms of alphabetic strings.
- GeneticCode -- The genetic mapping of DNA to protein.
Functions :
- mask_low_complexity -- Implementation of Seg algorithm to remove low complexity
regions from protein sequences.
Other:
- reduced_protein_alphabets -- A dictionary of transforms that reduce the size of the protein
alphabet, merging various amino acids into classes.
"LiBn" where n is 2 to 19 are from Li et al (2003), table I, 2 to 19 groups.
"LiBn" where n is 2 to 19 are from Li et al (2003), table II (no interlacing),
2 to 19 groups.
Ref: Li et al Reduction of protein sequence complexity by residue grouping,
Prot. Eng. 16 323-330 (2003)
"""
from typing import Dict, List, Optional, Tuple
from numpy import log2
from scipy.stats import entropy
from .data import dna_ambiguity, dna_extended_letters
from .seq import Alphabet, Seq, dna_alphabet, protein_alphabet
from .seq import reduced_protein_alphabet as std_protein_alphabet
__all__ = [
"Transform",
"mask_low_complexity",
"GeneticCode",
"reduced_protein_alphabets",
]
class Transform(object):
"""A translation between alphabetic strings.
(This class is not called 'Translation' to avoid confusion with the
biological translation of RNA to protein.)
Example:
trans = Transform(
Seq("ACGTRYSWKMBDHVN-acgtUuryswkmbdhvnXx?.~", dna_alphabet),
Seq("ACGTRYSWKMNNNNN-acgtUuryswkmbnnnnXx?.~", reduced_nucleic_alphabet)
)
s0 = Seq("AAAAAV", nucleic_alphabet)
s1 = trans(s0)
assert(s1.alphabet == reduced_nucleic_alphabet)
assert(s2 == Seq("AAAAAN", reduced_nucleic_alphabet)
Status : Beta
"""
__slots__ = ["table", "source", "target", "name", "description"]
def __init__(
self,
source: Seq,
target: Seq,
name: Optional[str] = None,
description: Optional[str] = None,
) -> None:
self.table = str.maketrans(source.tostring(), target.tostring())
self.source = source
self.target = target
self.name = name
self.description = description
def __call__(self, seq: Seq) -> Seq:
"""Translate sequence."""
if not self.source.alphabet.alphabetic(seq):
raise ValueError("Incompatible alphabets")
s = str.translate(seq, self.table)
cls = self.target.__class__
return cls(s, self.target.alphabet, seq.name, seq.description)
# End class Translation
# FIXME: Test, document, add to seq.
dna_complement = Transform(
Seq("ACGTRYSWKMBDHVN-acgtUuryswkmbdhvnXx?.~", dna_alphabet),
Seq("TGCAYRSWMKVHDBN-tgcaAayrswmkvhdbnXx?.~", dna_alphabet),
)
def mask_low_complexity(
seq: Seq,
width: int = 12,
trigger: float = 1.8,
extension: float = 2.0,
mask: str = "X",
) -> Seq:
"""Mask low complexity regions in protein sequences.
Uses the method of Seg [1] by Wootton & Federhen [2] to divide a sequence
into regions of high and low complexity. The sequence is divided into
overlapping windows. Low complexity windows either have a sequence entropy
less than the trigger complexity, or have an entropy less than the extension
complexity and neighbor other low-complexity windows. The sequence within
a low complexity region is replaced with the mask character (default 'X'),
and the masked alphabetic sequence is returned.
The default parameters, width=12, trigger=1.8, extension=2.0, mask='X' are
suitable for masking protein sequences before a database search. The
standard default seg parameters are width=12, trigger=2.2, extension=2.5
Arguments:
Seq seq -- An alphabetic sequence
int width -- Window width
float trigger -- Entropy in bits between 0 and 4.3.. ( =log_2(20) )
float extension -- Entropy in bits between 0 and 4.3.. ( =log_2(20) )
char mask -- The mask character (default: 'X')
Returns :
Seq -- A masked alphabetic sequence
Raises :
ValueError -- On invalid arguments
Refs:
[1] seg man page:
http://bioportal.weizmann.ac.il/education/materials/gcg/seg.html
[2] Wootton & Federhen (Computers and Chemistry 17; 149-163, (1993))
Authors:
GEC 2005
Future :
- Optional mask character.
- Option to lower case masked symbols.
- Remove arbitary restriction to protein.
"""
lg20 = log2(20)
if trigger < 0 or trigger > lg20:
raise ValueError("Invalid trigger complexity: %f" % trigger)
if extension < 0 or extension > lg20 or extension < trigger:
raise ValueError("Invalid extension complexity: %f" % extension)
if width < 0:
raise ValueError("Invalid width: %d" % width)
if width > len(seq):
return seq
s = seq.ords()
X = seq.alphabet.ord(mask)
nwindows = len(seq) - width + 1
ent = [0 for x in range(0, nwindows)]
count = [0 for x in range(0, len(seq.alphabet))]
for c in s[0:width]:
count[c] += 1
ent[0] = entropy(count, base=2)
for i in range(1, nwindows):
count[s[i - 1]] -= 1
count[s[i + width - 1]] += 1
ent[i] = entropy(count, base=2)
prev_segged = False
for i in range(0, nwindows):
if (prev_segged and ent[i] < extension) or ent[i] < trigger:
for j in range(0, width):
s[i + j] = X
prev_segged = True
else:
prev_segged = False
# Redo, only backwards
prev_segged = False
for i in range(nwindows - 1, -1, -1):
if (prev_segged and ent[i] < extension) or ent[i] < trigger:
for j in range(0, width):
s[i + j] = X
prev_segged = True
else:
prev_segged = False
segged = seq.alphabet.chrs(s)
segged.name = seq.name
segged.description = seq.description
return segged
# end mask_low_complexity()
class GeneticCode(object):
"""An encoding of amino acids by DNA triplets.
Example :
Genetic Code [1]: Standard
T C A G
+---------+---------+---------+---------+
T | TTT F | TCT S | TAT Y | TGT C | T
T | TTC F | TCC S | TAC Y | TGC C | C
T | TTA L | TCA S | TAA Stop| TGA Stop| A
T | TTG L(s)| TCG S | TAG Stop| TGG W | G
+---------+---------+---------+---------+
C | CTT L | CCT P | CAT H | CGT R | T
C | CTC L | CCC P | CAC H | CGC R | C
C | CTA L | CCA P | CAA Q | CGA R | A
C | CTG L(s)| CCG P | CAG Q | CGG R | G
+---------+---------+---------+---------+
A | ATT I | ACT T | AAT N | AGT S | T
A | ATC I | ACC T | AAC N | AGC S | C
A | ATA I | ACA T | AAA K | AGA R | A
A | ATG M(s)| ACG T | AAG K | AGG R | G
+---------+---------+---------+---------+
G | GTT V | GCT A | GAT D | GGT G | T
G | GTC V | GCC A | GAC D | GGC G | C
G | GTA V | GCA A | GAA E | GGA G | A
G | GTG V | GCG A | GAG E | GGG G | G
+---------+---------+---------+---------+
See Also :
-- http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c
-- http://www.ncbi.nlm.nih.gov/projects/collab/FT/index.html#7.5
Authors:
JXG, GEC
"""
# TODO: Explain use of '?' in translated sequence.
# TODO: Does translate fails with aproriate execption when fed gaps?
# TODO: Can back_translate handle gaps?
def __init__(
self,
ident: int,
description: str,
amino_acid: str,
start: str,
base1: str,
base2: str,
base3: str,
) -> None:
"""Create a new GeneticCode.
Args:
-- ident - Standard identifier (or zero). An integer
-- description
-- amino acid - A sequence of amino acids and stop codons. e.g.
"FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG"
-- start - A sequence indicating start codons, e.g.,
"---M---------------M---------------M----------------------------"
-- base1 - The first base of each codon. e.g.,
"TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG"
-- base2 - The second base of each codon. e.g.,
"TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG"
-- base3 - The last base of each codon. e.g.,
"TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG"
"""
self.ident = ident
self.description = description
self.amino_acid = amino_acid
self.start = start
self.base1 = base1
self.base2 = base2
self.base3 = base3
stop_codons = []
start_codons = []
for i, a in enumerate(amino_acid):
codon = base1[i] + base2[i] + base3[i]
if a == "*":
stop_codons.append(codon)
if start[i] == "M":
start_codons.append(codon)
self.stop_codons = tuple(stop_codons)
self.start_codons = tuple(start_codons)
# Building the full translation table is expensive,
# so we avoid doing so until necessary.
self._table: Optional[Dict[str, str]] = None
self._back_table: Optional[Dict[str, str]] = None
@staticmethod
def std_list() -> Tuple[
"GeneticCode",
"GeneticCode",
"GeneticCode",
"GeneticCode",
"GeneticCode",
"GeneticCode",
"GeneticCode",
"GeneticCode",
"GeneticCode",
"GeneticCode",
"GeneticCode",
"GeneticCode",
"GeneticCode",
"GeneticCode",
"GeneticCode",
"GeneticCode",
"GeneticCode",
]:
"Return a list of standard genetic codes."
return _codon_tables
@staticmethod
def std() -> "GeneticCode":
"The standard 'universal' genetic code."
return _codon_tables[0]
@staticmethod
def by_name(name: str) -> "GeneticCode":
"""Find a genetic code in the code list by name or identifier."""
for t in _codon_tables:
if t.ident == name or t.description == name:
return t
raise ValueError("No such translation table: %s" % str(name))
@property
def table(self) -> Optional[Dict[str, str]]:
"""A map between codons and amino acids"""
if self._table is None:
self._create_table() # pragma: no cover
return self._table
@property
def back_table(self) -> Optional[Dict[str, str]]:
"""A map between amino acids and codons"""
if self._back_table is None:
self._create_table() # pragma: no cover
return self._back_table
def _create_table(self) -> None:
aa = self.amino_acid
base1 = self.base1
base2 = self.base2
base3 = self.base3
# Construct a table of unambiguous codon translations
table = {}
for i, a in enumerate(aa):
codon = base1[i] + base2[i] + base3[i]
table[codon] = a
# Build the back table.
back_table = {}
items = list(table.items())
items.sort()
for codon, aa in items[::-1]:
back_table[aa] = codon # Use first codon, alphabetically.
back_table["X"] = "NNN"
back_table["B"] = "NNN"
back_table["Z"] = "NNN"
back_table["J"] = "NNN"
self._back_table = back_table
ltable = {}
letters = dna_extended_letters + "U" # include RNA in table
# Create a list of all possible codons
codons = []
for c1 in letters:
for c2 in letters:
for c3 in letters:
codons.append(c1 + c2 + c3)
# For each ambiguous codon, construct all compatible unambiguous codons.
# Translate and collect a set of all possible translated amino acids.
# If more than one translation look for possible amino acid ambiguity
# codes.
for C in codons:
pre_translate = dict() # Use dict, because no set in py2.3
c = C.replace("U", "T") # Convert RNA codon to DNA
for c1 in dna_ambiguity[c[0]]:
for c2 in dna_ambiguity[c[1]]:
for c3 in dna_ambiguity[c[2]]:
aa = table[c1 + c2 + c3]
pre_translate[aa] = ""
translated = list(pre_translate.keys())
translated.sort()
if len(translated) == 1:
trans = list(translated)[0]
elif translated == ["D", "N"]:
trans = "B"
elif translated == ["E", "Q"]:
trans = "Z"
elif translated == ["I", "L"]:
trans = "J"
elif "*" in translated:
trans = "?"
else:
trans = "X"
ltable[C] = trans
self._table = ltable
# End create tables
def translate(self, seq: Seq, frame: int = 0) -> Seq:
"""Translate a DNA sequence to a polypeptide using full
IUPAC ambiguities in DNA/RNA and amino acid codes.
Returns :
-- Seq - A polypeptide sequence
"""
# TODO: Optimize.
# TODO: Insanity check alphabet.
seqs = seq
table = self.table
assert table is not None
trans = []
L = len(seq)
for i in range(frame, L - 2, 3):
codon = str(seqs[i : i + 3]).upper()
trans.append(table[codon])
return Seq("".join(trans), protein_alphabet)
def back_translate(self, seq: Seq) -> Seq:
"""Convert protein back into coding DNA.
Args:
-- seq - A polypeptide sequence.
Returns :
-- Seq - A DNA sequence
"""
# TODO: Optimize
# TODO: Insanity check alphabet.
table = self.back_table
assert table is not None
seqs = seq
trans = [table[a] for a in seqs]
return Seq("".join(trans), dna_alphabet)
# TODO: translate_orf(self, seq, start) ?
# TODO: translate_to_stop(self, seq, frame) ?
# TODO: translate_all_frames(self,seq) -> 6 translations.
def __repr__(self) -> str:
string: List[str] = []
string += 'GeneticCode( %d, "' % self.ident
string += self.description
string += '", \n'
string += ' amino_acid = "'
string += self.amino_acid
string += '",\n'
string += ' start = "'
string += self.start
string += '",\n'
string += ' base1 = "'
string += self.base1
string += '",\n'
string += ' base2 = "'
string += self.base2
string += '",\n'
string += ' base3 = "'
string += self.base3
string += '" )'
return "".join(string)
def __str__(self) -> str:
"""Returns a text representation of this genetic code."""
# Inspired by http://bugzilla.open-bio.org/show_bug.cgi?id=1963
letters = "TCAG" # Conventional ordering for codon tables.
string: List[str] = []
if self.ident:
string += "Genetic Code [%d]: " % self.ident
else:
string += "Genetic Code: " # pragma: no cover
string += self.description or ""
string += "\n "
string += " ".join([" %s " % c2 for c2 in letters])
string += "\n +"
string += "+".join(["---------" for c2 in letters]) + "+ "
table = self.table
assert table is not None
for c1 in letters:
for c3 in letters:
string += "\n "
string += c1
string += " |"
for c2 in letters:
codon = c1 + c2 + c3
string += " " + codon
if codon in self.stop_codons:
string += " Stop|"
else:
amino = table.get(codon, "?")
if codon in self.start_codons:
string += " %s(s)|" % amino
else:
string += " %s |" % amino
string += " " + c3
string += "\n +"
string += "+".join(["---------" for c2 in letters])
string += "+ "
string += "\n"
return "".join(string)
# end class GeneticCode
# Data from http://www.ncbi.nlm.nih.gov/projects/collab/FT/index.html#7.5
# Aug. 2006
# Genetic Code Tables
#
# Authority International Sequence Databank Collaboration
# Contact NCBI
# Scope /transl_table qualifier
# URL http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c
_codon_tables = (
GeneticCode(
1,
"Standard",
"FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",
"---M---------------M---------------M----------------------------",
"TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG",
"TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG",
"TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG",
),
GeneticCode(
2,
"Vertebrate Mitochondrial",
"FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIMMTTTTNNKKSS**VVVVAAAADDEEGGGG",
"--------------------------------MMMM---------------M------------",
"TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG",
"TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG",
"TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG",
),
GeneticCode(
3,
"Yeast Mitochondrial",
"FFLLSSSSYY**CCWWTTTTPPPPHHQQRRRRIIMMTTTTNNKKSSRRVVVVAAAADDEEGGGG",
"----------------------------------MM----------------------------",
"TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG",
"TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG",
"TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG",
),
GeneticCode(
4,
"Mold, Protozoan, Coelenterate Mitochondrial & Mycoplasma/Spiroplasma",
"FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",
"--MM---------------M------------MMMM---------------M------------",
"TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG",
"TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG",
"TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG",
),
GeneticCode(
5,
"Invertebrate Mitochondrial",
"FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIMMTTTTNNKKSSSSVVVVAAAADDEEGGGG",
"---M----------------------------MMMM---------------M------------",
"TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG",
"TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG",
"TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG",
),
GeneticCode(
6,
"Ciliate, Dasycladacean and Hexamita Nuclear",
"FFLLSSSSYYQQCC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",
"-----------------------------------M----------------------------",
"TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG",
"TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG",
"TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG",
),
GeneticCode(
9,
"Echinoderm and Flatworm Mitochondrial",
"FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIIMTTTTNNNKSSSSVVVVAAAADDEEGGGG",
"-----------------------------------M---------------M------------",
"TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG",
"TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG",
"TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG",
),
GeneticCode(
10,
"Euplotid Nuclear",
"FFLLSSSSYY**CCCWLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",
"-----------------------------------M----------------------------",
"TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG",
"TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG",
"TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG",
),
GeneticCode(
11,
"Bacterial and Plant Plastid",
"FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",
"---M---------------M------------MMMM---------------M------------",
"TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG",
"TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG",
"TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG",
),
GeneticCode(
12,
"Alternative Yeast Nuclear",
"FFLLSSSSYY**CC*WLLLSPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",
"-------------------M---------------M----------------------------",
"TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG",
"TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG",
"TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG",
),
GeneticCode(
13,
"Ascidian Mitochondrial",
"FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIMMTTTTNNKKSSGGVVVVAAAADDEEGGGG",
"-----------------------------------M----------------------------",
"TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG",
"TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG",
"TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG",
),
GeneticCode(
14,
"Alternative Flatworm Mitochondrial",
"FFLLSSSSYYY*CCWWLLLLPPPPHHQQRRRRIIIMTTTTNNNKSSSSVVVVAAAADDEEGGGG",
"-----------------------------------M----------------------------",
"TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG",
"TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG",
"TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG",
),
GeneticCode(
15,
"Blepharisma Nuclear",
"FFLLSSSSYY*QCC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",
"-----------------------------------M----------------------------",
"TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG",
"TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG",
"TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG",
),
GeneticCode(
16,
"Chlorophycean Mitochondrial",
"FFLLSSSSYY*LCC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",
"-----------------------------------M----------------------------",
"TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG",
"TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG",
"TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG",
),
GeneticCode(
21,
"Trematode Mitochondrial",
"FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIMMTTTTNNNKSSSSVVVVAAAADDEEGGGG",
"-----------------------------------M---------------M------------",
"TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG",
"TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG",
"TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG",
),
GeneticCode(
22,
"Scenedesmus obliquus Mitochondrial",
"FFLLSS*SYY*LCC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",
"-----------------------------------M----------------------------",
"TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG",
"TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG",
"TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG",
),
GeneticCode(
23,
"Thraustochytrium Mitochondrial",
"FF*LSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",
"--------------------------------M--M---------------M------------",
"TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG",
"TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG",
"TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG",
),
)
reduced_protein_alphabets = {
#
"LiB2": Transform(
Seq("CFYWMLIV-GPATSNHQEDRKX*-", std_protein_alphabet),
Seq("IIIIIIII-SSSSSSSSSSSSX*-", Alphabet("ISX*-")),
"Li et al (2003), table II, group 2",
),
#
"LiB3": Transform(
Seq("CFYWMLIV-GPATS-NHQEDRKX*-", std_protein_alphabet),
Seq("IIIIIIII-SSSSS-EEEEEEEX*-", Alphabet("ISEX*-")),
"Li et al (2003), table II, group 3",
),
#
"LiB4": Transform(
Seq("CFYW-MLIV-GPATS-NHQEDRKX*-", std_protein_alphabet),
Seq("YYYY-IIII-SSSSS-EEEEEEEX*-", Alphabet("YISEX*-")),
"Li et al (2003), table II, group 4",
),
#
"LiB5": Transform(
Seq("CFYW-MLIV-G-PATS-NHQEDRKX*-", std_protein_alphabet),
Seq("YYYY-IIII-G-SSSS-EEEEEEEX*-", Alphabet("YIGSEX*-")),
"Li et al (2003), table II, group 5",
),
#
"LiB6": Transform(
Seq("CFYW-MLIV-G-P-ATS-NHQEDRKX*-", std_protein_alphabet),
Seq("YYYY-IIII-G-P-SSS-EEEEEEEX*-", Alphabet("YIGPSEX*-")),
"Li et al (2003), table II, group 6",
),
#
"LiB7": Transform(
Seq("CFYW-MLIV-G-P-ATS-NHQED-RKX*-", std_protein_alphabet),
Seq("YYYY-IIII-G-P-SSS-EEEEE-KKX*-", Alphabet("YIGPSEKX*-")),
"Li et al (2003), table II, group 7",
),
#
"LiB8": Transform(
Seq("CFYW-MLIV-G-P-ATS-NH-QED-RKX*-", std_protein_alphabet),
Seq("YYYY-IIII-G-P-SSS-NN-EEE-KKX*-", Alphabet("YIGPSNEKX*-")),
"Li et al (2003), table II, group 8",
),
#
"LiB9": Transform(
Seq("CFYW-ML-IV-G-P-ATS-NH-QED-RKX*-", std_protein_alphabet),
Seq("YYYY-LL-II-G-P-SSS-NN-EEE-KKX*-", Alphabet("YLIGPSNEKX*-")),
"Li et al (2003), table II, group 9",
),
#
"LiB10": Transform(
Seq("C-FYW-ML-IV-G-P-ATS-NH-QED-RKX*-", std_protein_alphabet),
Seq("C-YYY-LL-II-G-P-SSS-NN-EEE-KKX*-", Alphabet("CYLIGPSNEKX*-")),
"Li et al (2003), table II, group 10",
),
#
"LiB11": Transform(
Seq("C-FYW-ML-IV-G-P-A-TS-NH-QED-RKX*-", std_protein_alphabet),
Seq("C-YYY-LL-II-G-P-A-SS-NN-EEE-KKX*-", Alphabet("CYLIGPASNEKX*-")),
"Li et al (2003), table II, group 11",
),
#
"LiB12": Transform(
Seq("C-FYW-ML-IV-G-P-A-TS-NH-QE-D-RKX*-", std_protein_alphabet),
Seq("C-YYY-LL-II-G-P-A-SS-NN-EE-D-KKX*-", Alphabet("CYLIGPASNEDKX*-")),
"Li et al (2003), table II, group 12",
),
#
"LiB13": Transform(
Seq("C-FYW-ML-IV-G-P-A-T-S-NH-QE-D-RKX*-", std_protein_alphabet),
Seq("C-YYY-LL-II-G-P-A-T-S-NN-EE-D-KKX*-", Alphabet("CYLIGPATSNEDKX*-")),
"Li et al (2003), table II, group 13",
),
#
"LiB14": Transform(
Seq("C-FYW-ML-IV-G-P-A-T-S-N-H-QE-D-RKX*-", std_protein_alphabet),
Seq("C-YYY-LL-II-G-P-A-T-S-N-H-EE-D-KKX*-", Alphabet("CYLIGPATSNHEDKX*-")),
"Li et al (2003), table II, group 14",
),
#
"LiB15": Transform(
Seq("C-FYW-ML-IV-G-P-A-T-S-N-H-QE-D-R-KX*-", std_protein_alphabet),
Seq("C-YYY-LL-II-G-P-A-T-S-N-H-EE-D-R-KX*-", Alphabet("CYLIGPATSNHEDRKX*-")),
"Li et al (2003), table II, group 15",
),
#
"LiB16": Transform(
Seq("C-FY-W-ML-IV-G-P-A-T-S-N-H-QE-D-R-KX*-", std_protein_alphabet),
Seq("C-YY-W-LL-II-G-P-A-T-S-N-H-EE-D-R-KX*-", Alphabet("CYWLIGPATSNHEDRKX*-")),
"Li et al (2003), table II, group 16",
),
#
"LiB17": Transform(
Seq("C-FY-W-ML-IV-G-P-A-T-S-N-H-Q-E-D-R-KX*-", std_protein_alphabet),
Seq(
"C-YY-W-LL-II-G-P-A-T-S-N-H-Q-E-D-R-KX*-", Alphabet("CYWLIGPATSNHQEDRKX*-")
),
"Li et al (2003), table II, group 17",
),
#
"LiB18": Transform(
Seq("C-FY-W-M-L-IV-G-P-A-T-S-N-H-Q-E-D-R-KX*-", std_protein_alphabet),
Seq(
"C-YY-W-M-L-II-G-P-A-T-S-N-H-Q-E-D-R-KX*-",
Alphabet("CYWMLIGPATSNHQEDRKX*-"),
),
"Li et al (2003), table II, group 18",
),
#
"LiB19": Transform(
Seq("C-F-Y-W-M-L-IV-G-P-A-T-S-N-H-Q-E-D-R-KX*-", std_protein_alphabet),
Seq(
"C-F-Y-W-M-L-II-G-P-A-T-S-N-H-Q-E-D-R-KX*-",
Alphabet("CFYWMLIGPATSNHQEDRKX*-"),
),
"Li et al (2003), table II, group 19",
),
#
"LiB20": Transform(
Seq("C-F-Y-W-M-L-I-V-G-P-A-T-S-N-H-Q-E-D-R-KX*-", std_protein_alphabet),
Seq(
"C-F-Y-W-M-L-I-V-G-P-A-T-S-N-H-Q-E-D-R-KX*-",
Alphabet("CFYWMLIVGPATSNHQEDRKX*-"),
),
"Li et al (2003), table II, group 20",
),
#
"LiA2": Transform(
Seq("CMFILVWY-AGTSNQDEHRKPX*-", std_protein_alphabet),
Seq("IIIIIIII-SSSSSSSSSSSSX*-", Alphabet("ISX*-")),
"Li et al (2003), table I, group 2",
),
#
"LiA3": Transform(
Seq("CMFILVWY-AGTSP-NQDEHRKX*-", std_protein_alphabet),
Seq("IIIIIIII-SSSSS-EEEEEEEX*-", Alphabet("ISEX*-")),
"Li et al (2003), table I, group 3",
),
#
"LiA4": Transform(
Seq("CMFWY-ILV-AGTS-NQDEHRKPX*-", std_protein_alphabet),
Seq("YYYYY-III-SSSS-EEEEEEEEX*-", Alphabet("YISEX*-")),
"Li et al (2003), table I, group 4",
),
#
"LiA5": Transform(
Seq("FWYH-MILV-CATSP-G-NQDERKX*-", std_protein_alphabet),
Seq("YYYY-IIII-SSSSS-G-EEEEEEX*-", Alphabet("YISGEX*-")),
"Li et al (2003), table I, group 5",
),
#
"LiA6": Transform(
Seq("FWYH-MILV-CATS-P-G-NQDERKX*-", std_protein_alphabet),
Seq("YYYY-IIII-SSSS-P-G-EEEEEEX*-", Alphabet("YISPGEX*-")),
"Li et al (2003), table I, group 6",
),
#
"LiA7": Transform(
Seq("FWYH-MILV-CATS-P-G-NQDE-RKX*-", std_protein_alphabet),
Seq("YYYY-IIII-SSSS-P-G-EEEE-KKX*-", Alphabet("YISPGEKX*-")),
"Li et al (2003), table I, group 7",
),
#
"LiA8": Transform(
Seq("FWYH-MILV-CA-NTS-P-G-DE-QRKX*-", std_protein_alphabet),
Seq("YYYY-IIII-AA-SSS-P-G-NN-KKKX*-", Alphabet("YIASPGNKX*-")),
"Li et al (2003), table I, group 8",
),
#
"LiA9": Transform(
Seq("FWYH-ML-IV-CA-NTS-P-G-DE-QRKX*-", std_protein_alphabet),
Seq("YYYY-LL-VV-AA-SSS-P-G-NN-KKKX*-", Alphabet("YLVASPGNKX*-")),
"Li et al (2003), table I, group 9",
),
#
"LiA10": Transform(
Seq("FWY-ML-IV-CA-TS-NH-P-G-DE-QRKX*-", std_protein_alphabet),
Seq("YYY-LL-VV-AA-TT-NN-P-G-DD-KKKX*-", Alphabet("YLVATNPGDKX*-")),
"Li et al (2003), table I, group 10",
),
#
"LiA11": Transform(
Seq("FWY-ML-IV-CA-TS-NH-P-G-D-QE-RKX*-", std_protein_alphabet),
Seq("YYY-LL-VV-AA-TT-NN-P-G-D-EE-KKX*-", Alphabet("YLVATNPGDEKX*-")),
"Li et al (2003), table I, group 11",
),
#
"LiA12": Transform(
Seq("FWY-ML-IV-C-A-TS-NH-P-G-D-QE-RKX*-", std_protein_alphabet),
Seq("YYY-LL-VV-C-A-TT-NN-P-G-D-EE-KKX*-", Alphabet("YLVCATNPGDEKX*-")),
"Li et al (2003), table I, group 12",
),
#
"LiA13": Transform(
Seq("FWY-ML-IV-C-A-T-S-NH-P-G-D-QE-RKX*-", std_protein_alphabet),
Seq("YYY-LL-VV-C-A-T-S-NN-P-G-D-EE-KKX*-", Alphabet("YLVCATSNPGDEKX*-")),
"Li et al (2003), table I, group 13",
),
#
"LiA14": Transform(
Seq("FWY-ML-IV-C-A-T-S-NH-P-G-D-QE-R-KX*-", std_protein_alphabet),
Seq("YYY-LL-VV-C-A-T-S-NN-P-G-D-EE-R-KX*-", Alphabet("YLVCATSNPGDERKX*-")),
"Li et al (2003), table I, group 14",
),
#
"LiA15": Transform(
Seq("FWY-ML-IV-C-A-T-S-N-H-P-G-D-QE-R-KX*-", std_protein_alphabet),
Seq("YYY-LL-VV-C-A-T-S-N-H-P-G-D-EE-R-KX*-", Alphabet("YLVCATSNHPGDERKX*-")),
"Li et al (2003), table I, group 15",
),
#
"LiA16": Transform(
Seq("W-FY-ML-IV-C-A-T-S-N-H-P-G-D-QE-R-KX*-", std_protein_alphabet),
Seq("W-YY-LL-VV-C-A-T-S-N-H-P-G-D-EE-R-KX*-", Alphabet("WYLVCATSNHPGDERKX*-")),
"Li et al (2003), table I, group 16",
),
#
"LiA17": Transform(
Seq("W-FY-ML-IV-C-A-T-S-N-H-P-G-D-Q-E-R-KX*-", std_protein_alphabet),
Seq(
"W-YY-LL-VV-C-A-T-S-N-H-P-G-D-Q-E-R-KX*-", Alphabet("WYLVCATSNHPGDQERKX*-")
),
"Li et al (2003), table I, group 17",
),
#
"LiA18": Transform(
Seq("W-FY-M-L-IV-C-A-T-S-N-H-P-G-D-Q-E-R-KX*-", std_protein_alphabet),
Seq(
"W-YY-M-L-VV-C-A-T-S-N-H-P-G-D-Q-E-R-KX*-",
Alphabet("WYMLVCATSNHPGDQERKX*-"),
),
"Li et al (2003), table I, group 18",
),
#
"LiA19": Transform(
Seq("W-F-Y-M-L-IV-C-A-T-S-N-H-P-G-D-Q-E-R-KX*-", std_protein_alphabet),
Seq(
"W-F-Y-M-L-VV-C-A-T-S-N-H-P-G-D-Q-E-R-KX*-",
Alphabet("WFYMLVCATSNHPGDQERKX*-"),
),
"Li et al (2003), table I, group 19",
),
#
"LiA20": Transform(
Seq("W-F-Y-M-L-I-V-C-A-T-S-N-H-P-G-D-Q-E-R-KX*-", std_protein_alphabet),
Seq(
"W-F-Y-M-L-I-V-C-A-T-S-N-H-P-G-D-Q-E-R-KX*-",
Alphabet("WFYMLIVCATSNHPGDQERKX*-"),
),
"Li et al (2003), table I, group 20",
),
}
|