1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
|
# Copyright (c) 2005 Gavin E. Crooks
# Copyright (c) 2006 John Gilman
# This software is distributed under the MIT Open Source License.
# <http://www.opensource.org/licenses/mit-license.html>
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
"""
Arrays indexed by alphabetic strings.
"""
from array import array
from typing import Any, List, Optional, TextIO, Tuple, Union
import numpy as np
from numpy.typing import ArrayLike, DTypeLike
from .seq import (
Alphabet,
Seq,
unambiguous_dna_alphabet,
unambiguous_protein_alphabet,
unambiguous_rna_alphabet,
)
from .utils import ischar, isint
__all__ = "AlphabeticArray", "Motif"
class AlphabeticArray(object):
"""An alphabetic array. Wraps a numpy array so that each dimension
can be associated with an alphabet and indexed with characters or strings.
Attributes :
- alphabets -- A sequence of alphabets used to index the array
- array -- The underlying array object that is indexed.
Examples :
>>> from weblogo.seq import *
>>> from weblogo.matrix import AlphabeticArray
>>>
>>> str(protein_alphabet)
'ACDEFGHIKLMNOPQRSTUVWYBJZX*-'
>>> matrix = AlphabeticArray( (protein_alphabet, protein_alphabet) )
>>>
>>> # Index by character or integer:
>>> matrix['A', 'C'] = 10
>>> matrix[0,1]
10
>>>
>>> # Different alphabets on each dimension:
>>> import numpy as na
>>> a234 = zeros( shape = (2,3,4) )
>>> alpha = ( "AB", "ABC", "ABCD")
>>> aa = AlphabeticArray(alpha,a234)
>>> aa['A', 'B', 'C'] = 22
>>>
>>> # String indices are converted to integer index arrays:
...
>>> aa['A', 'B', 'ABCD']
array([ 0, 0, 22, 0])
Authors:
o GEC 2005, JXG 2006
"""
# Design note: Subclassing numpy arrays is hard, so instead we
# build this proxy wrapper.
__slots__ = ["alphabets", "array"]
def __init__(
self,
alphabets: Union[Alphabet, Tuple[Union[Alphabet, None], ...], str],
values: Optional["ArrayLike"] = None,
dtype: Optional["DTypeLike"] = None,
):
"""
Args:
- alphabets -- a list of alphabets (as string or Alphabet objects) to
be used to convert strings into indices. The lengths of
the alphabets match the shape of the indexed array.
Alternatively, an integer or None in the list indicate a
non-alphabetic dimension. If None the dimension length is
taken from values argument.
- values -- An array of values to be indexed. If None a new
array is created. If this argument is not a numpy array
then the alphabet list must be explicit (cannot contain
None.)
- dtype -- An optional numpy type code.
"""
# A dummy object to be used in place of None in the alphabets list
# so that we get meaningful error messages if we try to index a
# nonalphabetic dimension with a string.
class NullAlphabet(Alphabet):
def ord(self, key: str) -> int:
raise IndexError(
"This dimension does not have an alphabet"
) # pragma: no cover
def ords(self, string: Union["Seq", str]) -> array:
raise IndexError(
"This dimension does not have an alphabet"
) # pragma: no cover
alpha: List[Union[Alphabet, None]] = []
shape: List[Union[int, None]] = []
for a in alphabets:
if isinstance(a, str):
a = Alphabet(a)
if a is None:
shape.append(None)
alpha.append(NullAlphabet(letters=""))
elif isinstance(a, Alphabet):
shape.append(len(a))
alpha.append(a)
else:
shape.append(int(a)) # pragma: no cover
alpha.append(None) # pragma: no cover
# shape = tuple(shape) # CHECKME, line not needed?
if values is None:
values = np.zeros(shape=shape, dtype=dtype)
else:
values = np.asarray(values, dtype=dtype)
vshape = values.shape
if len(shape) != len(vshape):
raise ValueError(
"The values array is the wrong shape."
) # pragma: no cover
for s1, s2 in zip(shape, vshape):
if s1 is not None and s1 != s2:
raise ValueError(
"The values array is the wrong shape."
) # pragma: no cover
self.array = values
self.alphabets = tuple(alpha)
def __getitem__(self, key: Any) -> Any:
return self.array.__getitem__(self._ordkey(key))
def __setitem__(self, key: Any, value: Any) -> None:
self.array.__setitem__(self._ordkey(key), value)
def _ordkey(self, key: Any) -> Union[int, np.ndarray, slice, Tuple, Alphabet]:
"""Convert string indices into integers. Handles characters, strings
slices with strings, and tuples of the same. Anything else is
unchanged.
"""
def norm(
key: Any, alpha: Alphabet
) -> Union[int, np.ndarray, slice, Tuple, Alphabet, None]:
if key is None:
return None
elif isinstance(key, str) or isinstance(key, Alphabet):
assert alpha is not None
key = str(key)
if len(key) == 1:
return alpha.ord(key)
if len(key) == 0:
return None # pragma: no cover
return np.asarray(alpha.ords(key))
elif isinstance(key, slice):
start = norm(key.start, alpha) # pragma: no cover
stop = norm(key.stop, alpha) # pragma: no cover
step = key.step # pragma: no cover
return slice(start, stop, step) # pragma: no cover
else:
return key
if isinstance(key, tuple):
return tuple([norm(k, a) for k, a in zip(key, self.alphabets)]) # type: ignore
else:
return norm(key, self.alphabets[0]) # type: ignore # FIXME
def index(self, keys: Any) -> np.ndarray:
"""Return an array of shape (len(key1), len(key2), ...) whose values
are indexed by keys.
a.outerindex( (I,J,K) )[i,j,k] == a.array[I[i],J[j],K[k]]
"""
# TODO: Above docstring is not very clear.
# Deep voodoo using numpy indexing
keys = self._ordkey(keys)
outerkeys = []
for i, k in enumerate(keys):
if k is None:
k = range(0, self.array.shape[i])
k = np.asarray(k)
for j in range(len(keys) - i - 1):
k = k[..., np.newaxis]
outerkeys.append(k)
return self.array.__getitem__(tuple(outerkeys))
def reindex(self, new_alphabet: Alphabet) -> "AlphabeticArray":
"""Create a new AlphabeticArray with the given alphabet. The new
alphabet must be a subset of the current alphabet. Useful for
extracting a submatrix or for permuting the alphabet.
"""
new_array = self.index(new_alphabet)
return AlphabeticArray(new_alphabet, new_array)
# The following code is designed to proxy all attributes
# of the wrapped array. But I'm not entirely sure that this will work as
# intended.
def __getattr__(self, name: str) -> str:
try:
return self.array.__getattr__(self, name)
except AttributeError:
return getattr(self.array, name)
def __setattr__(self, name: str, value: str) -> None:
try:
return object.__setattr__(self, name, value)
except AttributeError: # pragma: no cover
return setattr(self.array, name, value) # pragma: no cover
# End class AlphabeticArray
class Motif(AlphabeticArray):
"""A two dimensional array where the second dimension is indexed by an
Alphabet. Used to represent sequence motifs and similar information.
Attr:
- alphabet -- An Alphabet
- array -- A numpy array
- name -- The name of this motif (if any) as a string.
- description -- The description, if any.
"""
_TRANSFAC_DELIM_LINES = ["XX", "//"]
def __init__(
self,
alphabet: Alphabet,
array: Optional["ArrayLike"] = None,
dtype: Optional["DTypeLike"] = None,
name: Optional[str] = None,
description: Optional[str] = None,
scale: Optional[float] = None,
):
AlphabeticArray.__init__(self, (None, alphabet), array, dtype)
self.name = name
self.description = description
self.scale = scale
@property
def alphabet(self) -> Alphabet:
assert self.alphabets[1] is not None
return self.alphabets[1]
def reindex(self, alphabet: Union[Alphabet, Tuple[Alphabet, ...], str]) -> "Motif":
return Motif(alphabet, AlphabeticArray.reindex(self, (None, alphabet))) # type: ignore
# These methods alter self, and therefore do not return a value.
# (Compare to Seq objects, where the data is immutable and
# therefore methods return a new Seq.)
# TODO: Should reindex (above) also act on self?
# Deprecate?
def reverse(self) -> None:
"""Reverse sequence data"""
self.array = self.array[::-1] # view into the original numpy array
# Deprecate?
def complement(self) -> None:
"""Complement nucleic acid sequence."""
from weblogo.seq import Alphabet, Seq
alphabet = self.alphabet
complement_alphabet = Alphabet(Seq(str(alphabet), alphabet).complement())
self.alphabets = (None, complement_alphabet)
assert alphabet is not None
m = self.reindex(alphabet)
self.alphabets = (None, alphabet)
self.array = m.array
# Deprecate?
def reverse_complement(self) -> None:
"""Complements and reverses nucleic acid
sequence (i.e. the other strand of a DNA sequence.)
"""
self.reverse()
self.complement()
@classmethod
def read_transfac(
cls, fin: TextIO, alphabet: Optional[Union[Alphabet, str]] = None
) -> "Motif":
"""Parse a TRANSFAC-format PWM from a file.
Returns a Motif object, representing the provided
PWM along with an inferred or provided alphabet.
"""
items = []
start = False
for line in fin:
if line.isspace() or line[0] == "#":
continue # pragma: no cover
stuff = line.split()
if stuff[0] == "PO" or stuff[0] == "P0":
start = True
# 'XX' delimiters may precede the first motif
if start:
if stuff[0] in cls._TRANSFAC_DELIM_LINES:
break
else:
items.append(stuff)
if len(items) < 2:
raise ValueError("Vacuous file.")
# Is the first line a header line?
header = items.pop(0)
hcols = len(header)
rows = len(items)
cols = len(items[0])
if not (
header[0] == "PO"
or header[0] == "P0"
or hcols == cols - 1
or hcols == cols - 2
):
raise ValueError("Missing header line!") # pragma: no cover
# Do all lines (except the first) contain the same number of items?
cols = len(items[0])
for i in range(1, len(items)):
if cols != len(items[i]):
raise ValueError(
"Inconsistant length, row: {}".format(i)
) # pragma: no cover
# Vertical or horizontal arrangement?
if header[0] == "PO" or header[0] == "P0":
header.pop(0)
position_header = True
for h in header:
if not ischar(h):
raise ValueError(
"Expected a single character per header "
'item, but got "{}" as one item'.format(h)
) # pragma: no cover
if not isint(h):
position_header = False
alphabet_header = False if position_header else True
# Check row headers
if alphabet_header:
for i, r in enumerate(items):
if not isint(r[0]) and r[0][0] != "P":
raise ValueError(
"Expected position " "as first item on line {}".format(i)
) # pragma: no cover
r.pop(0)
defacto_alphabet_str = "".join(header)
else:
a = [] # pragma: no cover
for i, r in enumerate(items): # pragma: no cover
if not ischar(r[0]) and r[0][0] != "P": # pragma: no cover
raise ValueError(
"Expected position " # pragma: no cover
"as first item on line {}".format(i)
) # pragma: no cover
a.append(r.pop(0)) # pragma: no cover
defacto_alphabet_str = "".join(a) # pragma: no cover
# Check defacto_alphabet
defacto_alphabet = Alphabet(defacto_alphabet_str)
if alphabet:
alphabet = Alphabet(str(alphabet))
if not defacto_alphabet.alphabetic(str(alphabet)):
# Allow alphabet to be a superset of defacto_alphabet
alphabet = defacto_alphabet
else:
alphabets = (
unambiguous_rna_alphabet,
unambiguous_dna_alphabet,
unambiguous_protein_alphabet,
)
for aa in alphabets:
if defacto_alphabet.alphabetic(str(aa)):
alphabet = aa
break
if not alphabet:
alphabet = defacto_alphabet # pragma: no cover
# The last item of each row may be extra cruft. Remove
if len(items[0]) == len(header) + 1:
for r in items:
r.pop()
# items should now be a list of lists of numbers (as strings)
rows = len(items)
cols = len(items[0])
matrix = np.zeros((rows, cols), dtype=np.float64)
for rr in range(rows):
for cc in range(cols):
matrix[rr, cc] = float(items[rr][cc])
if position_header:
matrix.transpose() # pragma: no cover
return Motif(defacto_alphabet, matrix).reindex(alphabet)
|