1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
import asyncio
import codecs
import dataclasses
import unittest
import unittest.mock
import warnings
from websockets.exceptions import PayloadTooBig, ProtocolError
from websockets.frames import OP_BINARY, OP_CLOSE, OP_PING, OP_PONG, OP_TEXT, CloseCode
from websockets.legacy.framing import *
from .utils import AsyncioTestCase
class FramingTests(AsyncioTestCase):
def decode(self, message, mask=False, max_size=None, extensions=None):
stream = asyncio.StreamReader(loop=self.loop)
stream.feed_data(message)
stream.feed_eof()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
frame = self.loop.run_until_complete(
Frame.read(
stream.readexactly,
mask=mask,
max_size=max_size,
extensions=extensions,
)
)
# Make sure all the data was consumed.
self.assertTrue(stream.at_eof())
return frame
def encode(self, frame, mask=False, extensions=None):
write = unittest.mock.Mock()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
frame.write(write, mask=mask, extensions=extensions)
# Ensure the entire frame is sent with a single call to write().
# Multiple calls cause TCP fragmentation and degrade performance.
self.assertEqual(write.call_count, 1)
# The frame data is the single positional argument of that call.
self.assertEqual(len(write.call_args[0]), 1)
self.assertEqual(len(write.call_args[1]), 0)
return write.call_args[0][0]
def round_trip(self, message, expected, mask=False, extensions=None):
decoded = self.decode(message, mask, extensions=extensions)
decoded.check()
self.assertEqual(decoded, expected)
encoded = self.encode(decoded, mask, extensions=extensions)
if mask: # non-deterministic encoding
decoded = self.decode(encoded, mask, extensions=extensions)
self.assertEqual(decoded, expected)
else: # deterministic encoding
self.assertEqual(encoded, message)
def test_text(self):
self.round_trip(b"\x81\x04Spam", Frame(True, OP_TEXT, b"Spam"))
def test_text_masked(self):
self.round_trip(
b"\x81\x84\x5b\xfb\xe1\xa8\x08\x8b\x80\xc5",
Frame(True, OP_TEXT, b"Spam"),
mask=True,
)
def test_binary(self):
self.round_trip(b"\x82\x04Eggs", Frame(True, OP_BINARY, b"Eggs"))
def test_binary_masked(self):
self.round_trip(
b"\x82\x84\x53\xcd\xe2\x89\x16\xaa\x85\xfa",
Frame(True, OP_BINARY, b"Eggs"),
mask=True,
)
def test_non_ascii_text(self):
self.round_trip(b"\x81\x05caf\xc3\xa9", Frame(True, OP_TEXT, "café".encode()))
def test_non_ascii_text_masked(self):
self.round_trip(
b"\x81\x85\x64\xbe\xee\x7e\x07\xdf\x88\xbd\xcd",
Frame(True, OP_TEXT, "café".encode()),
mask=True,
)
def test_close(self):
self.round_trip(b"\x88\x00", Frame(True, OP_CLOSE, b""))
def test_ping(self):
self.round_trip(b"\x89\x04ping", Frame(True, OP_PING, b"ping"))
def test_pong(self):
self.round_trip(b"\x8a\x04pong", Frame(True, OP_PONG, b"pong"))
def test_long(self):
self.round_trip(
b"\x82\x7e\x00\x7e" + 126 * b"a", Frame(True, OP_BINARY, 126 * b"a")
)
def test_very_long(self):
self.round_trip(
b"\x82\x7f\x00\x00\x00\x00\x00\x01\x00\x00" + 65536 * b"a",
Frame(True, OP_BINARY, 65536 * b"a"),
)
def test_payload_too_big(self):
with self.assertRaises(PayloadTooBig):
self.decode(b"\x82\x7e\x04\x01" + 1025 * b"a", max_size=1024)
def test_bad_reserved_bits(self):
for encoded in [b"\xc0\x00", b"\xa0\x00", b"\x90\x00"]:
with self.subTest(encoded=encoded):
with self.assertRaises(ProtocolError):
self.decode(encoded)
def test_good_opcode(self):
for opcode in list(range(0x00, 0x03)) + list(range(0x08, 0x0B)):
encoded = bytes([0x80 | opcode, 0])
with self.subTest(encoded=encoded):
self.decode(encoded) # does not raise an exception
def test_bad_opcode(self):
for opcode in list(range(0x03, 0x08)) + list(range(0x0B, 0x10)):
encoded = bytes([0x80 | opcode, 0])
with self.subTest(encoded=encoded):
with self.assertRaises(ProtocolError):
self.decode(encoded)
def test_mask_flag(self):
# Mask flag correctly set.
self.decode(b"\x80\x80\x00\x00\x00\x00", mask=True)
# Mask flag incorrectly unset.
with self.assertRaises(ProtocolError):
self.decode(b"\x80\x80\x00\x00\x00\x00")
# Mask flag correctly unset.
self.decode(b"\x80\x00")
# Mask flag incorrectly set.
with self.assertRaises(ProtocolError):
self.decode(b"\x80\x00", mask=True)
def test_control_frame_max_length(self):
# At maximum allowed length.
self.decode(b"\x88\x7e\x00\x7d" + 125 * b"a")
# Above maximum allowed length.
with self.assertRaises(ProtocolError):
self.decode(b"\x88\x7e\x00\x7e" + 126 * b"a")
def test_fragmented_control_frame(self):
# Fin bit correctly set.
self.decode(b"\x88\x00")
# Fin bit incorrectly unset.
with self.assertRaises(ProtocolError):
self.decode(b"\x08\x00")
def test_extensions(self):
class Rot13:
@staticmethod
def encode(frame):
assert frame.opcode == OP_TEXT
text = frame.data.decode()
data = codecs.encode(text, "rot13").encode()
return dataclasses.replace(frame, data=data)
# This extensions is symmetrical.
@staticmethod
def decode(frame, *, max_size=None):
return Rot13.encode(frame)
self.round_trip(
b"\x81\x05uryyb", Frame(True, OP_TEXT, b"hello"), extensions=[Rot13()]
)
class PrepareDataTests(unittest.TestCase):
def test_prepare_data_str(self):
self.assertEqual(
prepare_data("café"),
(OP_TEXT, b"caf\xc3\xa9"),
)
def test_prepare_data_bytes(self):
self.assertEqual(
prepare_data(b"tea"),
(OP_BINARY, b"tea"),
)
def test_prepare_data_bytearray(self):
self.assertEqual(
prepare_data(bytearray(b"tea")),
(OP_BINARY, bytearray(b"tea")),
)
def test_prepare_data_memoryview(self):
self.assertEqual(
prepare_data(memoryview(b"tea")),
(OP_BINARY, memoryview(b"tea")),
)
def test_prepare_data_list(self):
with self.assertRaises(TypeError):
prepare_data([])
def test_prepare_data_none(self):
with self.assertRaises(TypeError):
prepare_data(None)
class PrepareCtrlTests(unittest.TestCase):
def test_prepare_ctrl_str(self):
self.assertEqual(prepare_ctrl("café"), b"caf\xc3\xa9")
def test_prepare_ctrl_bytes(self):
self.assertEqual(prepare_ctrl(b"tea"), b"tea")
def test_prepare_ctrl_bytearray(self):
self.assertEqual(prepare_ctrl(bytearray(b"tea")), b"tea")
def test_prepare_ctrl_memoryview(self):
self.assertEqual(prepare_ctrl(memoryview(b"tea")), b"tea")
def test_prepare_ctrl_list(self):
with self.assertRaises(TypeError):
prepare_ctrl([])
def test_prepare_ctrl_none(self):
with self.assertRaises(TypeError):
prepare_ctrl(None)
class ParseAndSerializeCloseTests(unittest.TestCase):
def assertCloseData(self, code, reason, data):
"""
Serializing code / reason yields data. Parsing data yields code / reason.
"""
serialized = serialize_close(code, reason)
self.assertEqual(serialized, data)
parsed = parse_close(data)
self.assertEqual(parsed, (code, reason))
def test_parse_close_and_serialize_close(self):
self.assertCloseData(CloseCode.NORMAL_CLOSURE, "", b"\x03\xe8")
self.assertCloseData(CloseCode.NORMAL_CLOSURE, "OK", b"\x03\xe8OK")
def test_parse_close_empty(self):
self.assertEqual(parse_close(b""), (CloseCode.NO_STATUS_RCVD, ""))
def test_parse_close_errors(self):
with self.assertRaises(ProtocolError):
parse_close(b"\x03")
with self.assertRaises(ProtocolError):
parse_close(b"\x03\xe7")
with self.assertRaises(UnicodeDecodeError):
parse_close(b"\x03\xe8\xff\xff")
def test_serialize_close_errors(self):
with self.assertRaises(ProtocolError):
serialize_close(999, "")
|