1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Mean, weighted mean, median, and weighted median.
WeightedStats includes four functions (mean, weighted_mean, median,
weighted_median) which accept lists as arguments, and two functions
(numpy_weighted_mean, numpy weighted_median) which accept either lists
or numpy arrays.
Example:
import weightedstats as ws
my_data = [1, 2, 3, 4, 5]
my_weights = [10, 1, 1, 1, 9]
# Ordinary (unweighted) mean and median
ws.mean(my_data) # equivalent to ws.weighted_mean(my_data)
ws.median(my_data) # equivalent to ws.weighted_median(my_data)
# Weighted mean and median
ws.weighted_mean(my_data, weights=my_weights)
ws.weighted_median(my_data, weights=my_weights)
# Special weighted mean and median functions for use with numpy arrays
ws.numpy_weighted_mean(my_data, weights=my_weights)
ws.numpy_weighted_median(my_data, weights=my_weights)
"""
from __future__ import division
import sys
__title__ = "WeightedStats"
__version__ = "0.4.1"
__author__ = "Jack Peterson"
__email__ = "jack@tinybike.net"
__license__ = "MIT"
def mean(data):
"""Calculate the mean of a list."""
return sum(data) / float(len(data))
def weighted_mean(data, weights=None):
"""Calculate the weighted mean of a list."""
if weights is None:
return mean(data)
total_weight = float(sum(weights))
weights = [weight / total_weight for weight in weights]
w_mean = 0
for i, weight in enumerate(weights):
w_mean += weight * data[i]
return w_mean
def numpy_weighted_mean(data, weights=None):
"""Calculate the weighted mean of an array/list using numpy."""
import numpy as np
weights = np.array(weights).flatten() / float(sum(weights))
return np.dot(np.array(data), weights)
def median(data):
"""Calculate the median of a list."""
data.sort()
num_values = len(data)
half = num_values // 2
if num_values % 2:
return data[half]
return 0.5 * (data[half-1] + data[half])
def weighted_median(data, weights=None):
"""Calculate the weighted median of a list."""
if weights is None:
return median(data)
midpoint = 0.5 * sum(weights)
if any([j > midpoint for j in weights]):
return data[weights.index(max(weights))]
if any([j > 0 for j in weights]):
sorted_data, sorted_weights = zip(*sorted(zip(data, weights)))
cumulative_weight = 0
below_midpoint_index = 0
while cumulative_weight <= midpoint:
below_midpoint_index += 1
cumulative_weight += sorted_weights[below_midpoint_index-1]
cumulative_weight -= sorted_weights[below_midpoint_index-1]
if abs(cumulative_weight - midpoint) < sys.float_info.epsilon:
bounds = sorted_data[below_midpoint_index-2:below_midpoint_index]
return sum(bounds) / float(len(bounds))
return sorted_data[below_midpoint_index-1]
def numpy_weighted_median(data, weights=None):
"""Calculate the weighted median of an array/list using numpy."""
import numpy as np
if weights is None:
return np.median(np.array(data).flatten())
data, weights = np.array(data).flatten(), np.array(weights).flatten()
if any(weights > 0):
sorted_data, sorted_weights = map(np.array, zip(*sorted(zip(data, weights))))
midpoint = 0.5 * sum(sorted_weights)
if any(weights > midpoint):
return (data[weights == np.max(weights)])[0]
cumulative_weight = np.cumsum(sorted_weights)
below_midpoint_index = np.where(cumulative_weight <= midpoint)[0][-1]
if np.abs(cumulative_weight[below_midpoint_index] - midpoint) < sys.float_info.epsilon:
return np.mean(sorted_data[below_midpoint_index:below_midpoint_index+2])
return sorted_data[below_midpoint_index+1]
|