1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
|
# Copyright 2007 Matt Chaput. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY MATT CHAPUT ``AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
# EVENT SHALL MATT CHAPUT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# The views and conclusions contained in the software and documentation are
# those of the authors and should not be interpreted as representing official
# policies, either expressed or implied, of Matt Chaput.
import re
from collections import deque
from whoosh.compat import u, text_type
from whoosh.compat import xrange
from whoosh.analysis.filters import Filter
class CompoundWordFilter(Filter):
r"""Given a set of words (or any object with a ``__contains__`` method),
break any tokens in the stream that are composites of words in the word set
into their individual parts.
Given the correct set of words, this filter can break apart run-together
words and trademarks (e.g. "turbosquid", "applescript"). It can also be
useful for agglutinative languages such as German.
The ``keep_compound`` argument lets you decide whether to keep the
compound word in the token stream along with the word segments.
>>> cwf = CompoundWordFilter(wordset, keep_compound=True)
>>> analyzer = RegexTokenizer(r"\S+") | cwf
>>> [t.text for t in analyzer("I do not like greeneggs and ham")
["I", "do", "not", "like", "greeneggs", "green", "eggs", "and", "ham"]
>>> cwf.keep_compound = False
>>> [t.text for t in analyzer("I do not like greeneggs and ham")
["I", "do", "not", "like", "green", "eggs", "and", "ham"]
"""
def __init__(self, wordset, keep_compound=True):
"""
:param wordset: an object with a ``__contains__`` method, such as a
set, containing strings to look for inside the tokens.
:param keep_compound: if True (the default), the original compound
token will be retained in the stream before the subwords.
"""
self.wordset = wordset
self.keep_compound = keep_compound
def subwords(self, s, memo):
if s in self.wordset:
return [s]
if s in memo:
return memo[s]
for i in xrange(1, len(s)):
prefix = s[:i]
if prefix in self.wordset:
suffix = s[i:]
suffix_subs = self.subwords(suffix, memo)
if suffix_subs:
result = [prefix] + suffix_subs
memo[s] = result
return result
return None
def __call__(self, tokens):
keep_compound = self.keep_compound
memo = {}
subwords = self.subwords
for t in tokens:
subs = subwords(t.text, memo)
if subs:
if len(subs) > 1 and keep_compound:
yield t
for subword in subs:
t.text = subword
yield t
else:
yield t
class BiWordFilter(Filter):
"""Merges adjacent tokens into "bi-word" tokens, so that for example::
"the", "sign", "of", "four"
becomes::
"the-sign", "sign-of", "of-four"
This can be used to create fields for pseudo-phrase searching, where if
all the terms match the document probably contains the phrase, but the
searching is faster than actually doing a phrase search on individual word
terms.
The ``BiWordFilter`` is much faster than using the otherwise equivalent
``ShingleFilter(2)``.
"""
def __init__(self, sep="-"):
self.sep = sep
def __call__(self, tokens):
sep = self.sep
prev_text = None
prev_startchar = None
prev_pos = None
atleastone = False
for token in tokens:
# Save the original text of this token
text = token.text
# Save the original position
positions = token.positions
if positions:
ps = token.pos
# Save the original start char
chars = token.chars
if chars:
sc = token.startchar
if prev_text is not None:
# Use the pos and startchar from the previous token
if positions:
token.pos = prev_pos
if chars:
token.startchar = prev_startchar
# Join the previous token text and the current token text to
# form the biword token
token.text = "".join((prev_text, sep, text))
yield token
atleastone = True
# Save the originals and the new "previous" values
prev_text = text
if chars:
prev_startchar = sc
if positions:
prev_pos = ps
# If no bi-words were emitted, that is, the token stream only had
# a single token, then emit that single token.
if not atleastone:
yield token
class ShingleFilter(Filter):
"""Merges a certain number of adjacent tokens into multi-word tokens, so
that for example::
"better", "a", "witty", "fool", "than", "a", "foolish", "wit"
with ``ShingleFilter(3, ' ')`` becomes::
'better a witty', 'a witty fool', 'witty fool than', 'fool than a',
'than a foolish', 'a foolish wit'
This can be used to create fields for pseudo-phrase searching, where if
all the terms match the document probably contains the phrase, but the
searching is faster than actually doing a phrase search on individual word
terms.
If you're using two-word shingles, you should use the functionally
equivalent ``BiWordFilter`` instead because it's faster than
``ShingleFilter``.
"""
def __init__(self, size=2, sep="-"):
self.size = size
self.sep = sep
def __call__(self, tokens):
size = self.size
sep = self.sep
buf = deque()
atleastone = False
def make_token():
tk = buf[0]
tk.text = sep.join([t.text for t in buf])
if tk.chars:
tk.endchar = buf[-1].endchar
return tk
for token in tokens:
if not token.stopped:
buf.append(token.copy())
if len(buf) == size:
atleastone = True
yield make_token()
buf.popleft()
# If no shingles were emitted, that is, the token stream had fewer than
# 'size' tokens, then emit a single token with whatever tokens there
# were
if not atleastone and buf:
yield make_token()
class IntraWordFilter(Filter):
"""Splits words into subwords and performs optional transformations on
subword groups. This filter is funtionally based on yonik's
WordDelimiterFilter in Solr, but shares no code with it.
* Split on intra-word delimiters, e.g. `Wi-Fi` -> `Wi`, `Fi`.
* When splitwords=True, split on case transitions,
e.g. `PowerShot` -> `Power`, `Shot`.
* When splitnums=True, split on letter-number transitions,
e.g. `SD500` -> `SD`, `500`.
* Leading and trailing delimiter characters are ignored.
* Trailing possesive "'s" removed from subwords,
e.g. `O'Neil's` -> `O`, `Neil`.
The mergewords and mergenums arguments turn on merging of subwords.
When the merge arguments are false, subwords are not merged.
* `PowerShot` -> `0`:`Power`, `1`:`Shot` (where `0` and `1` are token
positions).
When one or both of the merge arguments are true, consecutive runs of
alphabetic and/or numeric subwords are merged into an additional token with
the same position as the last sub-word.
* `PowerShot` -> `0`:`Power`, `1`:`Shot`, `1`:`PowerShot`
* `A's+B's&C's` -> `0`:`A`, `1`:`B`, `2`:`C`, `2`:`ABC`
* `Super-Duper-XL500-42-AutoCoder!` -> `0`:`Super`, `1`:`Duper`, `2`:`XL`,
`2`:`SuperDuperXL`,
`3`:`500`, `4`:`42`, `4`:`50042`, `5`:`Auto`, `6`:`Coder`,
`6`:`AutoCoder`
When using this filter you should use a tokenizer that only splits on
whitespace, so the tokenizer does not remove intra-word delimiters before
this filter can see them, and put this filter before any use of
LowercaseFilter.
>>> rt = RegexTokenizer(r"\\S+")
>>> iwf = IntraWordFilter()
>>> lcf = LowercaseFilter()
>>> analyzer = rt | iwf | lcf
One use for this filter is to help match different written representations
of a concept. For example, if the source text contained `wi-fi`, you
probably want `wifi`, `WiFi`, `wi-fi`, etc. to match. One way of doing this
is to specify mergewords=True and/or mergenums=True in the analyzer used
for indexing, and mergewords=False / mergenums=False in the analyzer used
for querying.
>>> iwf_i = IntraWordFilter(mergewords=True, mergenums=True)
>>> iwf_q = IntraWordFilter(mergewords=False, mergenums=False)
>>> iwf = MultiFilter(index=iwf_i, query=iwf_q)
>>> analyzer = RegexTokenizer(r"\\S+") | iwf | LowercaseFilter()
(See :class:`MultiFilter`.)
"""
is_morph = True
__inittypes__ = dict(delims=text_type, splitwords=bool, splitnums=bool,
mergewords=bool, mergenums=bool)
def __init__(self, delims=u("-_'\"()!@#$%^&*[]{}<>\\|;:,./?`~=+"),
splitwords=True, splitnums=True,
mergewords=False, mergenums=False):
"""
:param delims: a string of delimiter characters.
:param splitwords: if True, split at case transitions,
e.g. `PowerShot` -> `Power`, `Shot`
:param splitnums: if True, split at letter-number transitions,
e.g. `SD500` -> `SD`, `500`
:param mergewords: merge consecutive runs of alphabetic subwords into
an additional token with the same position as the last subword.
:param mergenums: merge consecutive runs of numeric subwords into an
additional token with the same position as the last subword.
"""
from whoosh.support.unicode import digits, lowercase, uppercase
self.delims = re.escape(delims)
# Expression for text between delimiter characters
self.between = re.compile(u("[^%s]+") % (self.delims,), re.UNICODE)
# Expression for removing "'s" from the end of sub-words
dispat = u("(?<=[%s%s])'[Ss](?=$|[%s])") % (lowercase, uppercase,
self.delims)
self.possessive = re.compile(dispat, re.UNICODE)
# Expression for finding case and letter-number transitions
lower2upper = u("[%s][%s]") % (lowercase, uppercase)
letter2digit = u("[%s%s][%s]") % (lowercase, uppercase, digits)
digit2letter = u("[%s][%s%s]") % (digits, lowercase, uppercase)
if splitwords and splitnums:
splitpat = u("(%s|%s|%s)") % (lower2upper, letter2digit,
digit2letter)
self.boundary = re.compile(splitpat, re.UNICODE)
elif splitwords:
self.boundary = re.compile(text_type(lower2upper), re.UNICODE)
elif splitnums:
numpat = u("(%s|%s)") % (letter2digit, digit2letter)
self.boundary = re.compile(numpat, re.UNICODE)
self.splitting = splitwords or splitnums
self.mergewords = mergewords
self.mergenums = mergenums
def __eq__(self, other):
return other and self.__class__ is other.__class__\
and self.__dict__ == other.__dict__
def _split(self, string):
bound = self.boundary
# Yields (startchar, endchar) pairs for each indexable substring in
# the given string, e.g. "WikiWord" -> (0, 4), (4, 8)
# Whether we're splitting on transitions (case changes, letter -> num,
# num -> letter, etc.)
splitting = self.splitting
# Make a list (dispos, for "dispossessed") of (startchar, endchar)
# pairs for runs of text between "'s"
if "'" in string:
# Split on possessive 's
dispos = []
prev = 0
for match in self.possessive.finditer(string):
dispos.append((prev, match.start()))
prev = match.end()
if prev < len(string):
dispos.append((prev, len(string)))
else:
# Shortcut if there's no apostrophe in the string
dispos = ((0, len(string)),)
# For each run between 's
for sc, ec in dispos:
# Split on boundary characters
for part_match in self.between.finditer(string, sc, ec):
part_start = part_match.start()
part_end = part_match.end()
if splitting:
# The point to start splitting at
prev = part_start
# Find transitions (e.g. "iW" or "a0")
for bmatch in bound.finditer(string, part_start, part_end):
# The point in the middle of the transition
pivot = bmatch.start() + 1
# Yield from the previous match to the transition
yield (prev, pivot)
# Make the transition the new starting point
prev = pivot
# If there's leftover text at the end, yield it too
if prev < part_end:
yield (prev, part_end)
else:
# Not splitting on transitions, just yield the part
yield (part_start, part_end)
def _merge(self, parts):
mergewords = self.mergewords
mergenums = self.mergenums
# Current type (1=alpah, 2=digit)
last = 0
# Where to insert a merged term in the original list
insertat = 0
# Buffer for parts to merge
buf = []
# Iterate on a copy of the parts list so we can modify the original as
# we go
def insert_item(buf, at, newpos):
newtext = "".join(item[0] for item in buf)
newsc = buf[0][2] # start char of first item in buffer
newec = buf[-1][3] # end char of last item in buffer
parts.insert(insertat, (newtext, newpos, newsc, newec))
for item in list(parts):
# item = (text, pos, startchar, endchar)
text = item[0]
pos = item[1]
# Set the type of this part
if text.isalpha():
this = 1
elif text.isdigit():
this = 2
else:
this = None
# Is this the same type as the previous part?
if (buf and (this == last == 1 and mergewords)
or (this == last == 2 and mergenums)):
# This part is the same type as the previous. Add it to the
# buffer of parts to merge.
buf.append(item)
else:
# This part is different than the previous.
if len(buf) > 1:
# If the buffer has at least two parts in it, merge them
# and add them to the original list of parts.
insert_item(buf, insertat, pos - 1)
insertat += 1
# Reset the buffer
buf = [item]
last = this
insertat += 1
# If there are parts left in the buffer at the end, merge them and add
# them to the original list.
if len(buf) > 1:
insert_item(buf, len(parts), pos)
def __call__(self, tokens):
mergewords = self.mergewords
mergenums = self.mergenums
# This filter renumbers tokens as it expands them. New position
# counter.
newpos = None
for t in tokens:
text = t.text
# If this is the first token we've seen, use it to set the new
# position counter
if newpos is None:
if t.positions:
newpos = t.pos
else:
# Token doesn't have positions, just use 0
newpos = 0
if ((text.isalpha() and (text.islower() or text.isupper()))
or text.isdigit()):
# Short-circuit the common cases of no delimiters, no case
# transitions, only digits, etc.
t.pos = newpos
yield t
newpos += 1
else:
# Split the token text on delimiters, word and/or number
# boundaries into a list of (text, pos, startchar, endchar)
# tuples
ranges = self._split(text)
parts = [(text[sc:ec], i + newpos, sc, ec)
for i, (sc, ec) in enumerate(ranges)]
# Did the split yield more than one part?
if len(parts) > 1:
# If the options are set, merge consecutive runs of all-
# letters and/or all-numbers.
if mergewords or mergenums:
self._merge(parts)
# Yield tokens for the parts
chars = t.chars
if chars:
base = t.startchar
for text, pos, startchar, endchar in parts:
t.text = text
t.pos = pos
if t.chars:
t.startchar = base + startchar
t.endchar = base + endchar
yield t
if parts:
# Set the new position counter based on the last part
newpos = parts[-1][1] + 1
|