1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
# coding: utf-8
from __future__ import with_statement
import pytest
from whoosh import analysis, highlight, fields, qparser, query
from whoosh.compat import u
from whoosh.filedb.filestore import RamStorage
from whoosh.util.testing import TempIndex
_doc = u("alfa bravo charlie delta echo foxtrot golf hotel india juliet " +
"kilo lima")
def test_null_fragment():
terms = frozenset(("bravo", "india"))
sa = analysis.StandardAnalyzer()
nf = highlight.WholeFragmenter()
uc = highlight.UppercaseFormatter()
htext = highlight.highlight(_doc, terms, sa, nf, uc)
assert htext == "alfa BRAVO charlie delta echo foxtrot golf hotel INDIA juliet kilo lima"
def test_sentence_fragment():
text = u("This is the first sentence. This one doesn't have the word. " +
"This sentence is the second. Third sentence here.")
terms = ("sentence",)
sa = analysis.StandardAnalyzer(stoplist=None)
sf = highlight.SentenceFragmenter()
uc = highlight.UppercaseFormatter()
htext = highlight.highlight(text, terms, sa, sf, uc)
assert htext == "This is the first SENTENCE...This SENTENCE is the second...Third SENTENCE here"
def test_context_fragment():
terms = frozenset(("bravo", "india"))
sa = analysis.StandardAnalyzer()
cf = highlight.ContextFragmenter(surround=6)
uc = highlight.UppercaseFormatter()
htext = highlight.highlight(_doc, terms, sa, cf, uc)
assert htext == "alfa BRAVO charlie...hotel INDIA juliet"
def test_context_at_start():
terms = frozenset(["alfa"])
sa = analysis.StandardAnalyzer()
cf = highlight.ContextFragmenter(surround=15)
uc = highlight.UppercaseFormatter()
htext = highlight.highlight(_doc, terms, sa, cf, uc)
assert htext == "ALFA bravo charlie delta echo foxtrot"
def test_html_format():
terms = frozenset(("bravo", "india"))
sa = analysis.StandardAnalyzer()
cf = highlight.ContextFragmenter(surround=6)
hf = highlight.HtmlFormatter()
htext = highlight.highlight(_doc, terms, sa, cf, hf)
assert htext == 'alfa <strong class="match term0">bravo</strong> charlie...hotel <strong class="match term1">india</strong> juliet'
def test_html_escape():
terms = frozenset(["bravo"])
sa = analysis.StandardAnalyzer()
wf = highlight.WholeFragmenter()
hf = highlight.HtmlFormatter()
htext = highlight.highlight(u('alfa <bravo "charlie"> delta'), terms, sa,
wf, hf)
assert htext == 'alfa <<strong class="match term0">bravo</strong> "charlie"> delta'
def test_maxclasses():
terms = frozenset(("alfa", "bravo", "charlie", "delta", "echo"))
sa = analysis.StandardAnalyzer()
cf = highlight.ContextFragmenter(surround=6)
hf = highlight.HtmlFormatter(tagname="b", termclass="t", maxclasses=2)
htext = highlight.highlight(_doc, terms, sa, cf, hf)
assert htext == '<b class="match t0">alfa</b> <b class="match t1">bravo</b> <b class="match t0">charlie</b>...<b class="match t1">delta</b> <b class="match t0">echo</b> foxtrot'
def test_workflow_easy():
schema = fields.Schema(id=fields.ID(stored=True),
title=fields.TEXT(stored=True))
ix = RamStorage().create_index(schema)
w = ix.writer()
w.add_document(id=u("1"), title=u("The man who wasn't there"))
w.add_document(id=u("2"), title=u("The dog who barked at midnight"))
w.add_document(id=u("3"), title=u("The invisible man"))
w.add_document(id=u("4"), title=u("The girl with the dragon tattoo"))
w.add_document(id=u("5"), title=u("The woman who disappeared"))
w.commit()
with ix.searcher() as s:
# Parse the user query
parser = qparser.QueryParser("title", schema=ix.schema)
q = parser.parse(u("man"))
r = s.search(q, terms=True)
assert len(r) == 2
r.fragmenter = highlight.WholeFragmenter()
r.formatter = highlight.UppercaseFormatter()
outputs = [hit.highlights("title") for hit in r]
assert outputs == ["The invisible MAN", "The MAN who wasn't there"]
def test_workflow_manual():
schema = fields.Schema(id=fields.ID(stored=True),
title=fields.TEXT(stored=True))
ix = RamStorage().create_index(schema)
w = ix.writer()
w.add_document(id=u("1"), title=u("The man who wasn't there"))
w.add_document(id=u("2"), title=u("The dog who barked at midnight"))
w.add_document(id=u("3"), title=u("The invisible man"))
w.add_document(id=u("4"), title=u("The girl with the dragon tattoo"))
w.add_document(id=u("5"), title=u("The woman who disappeared"))
w.commit()
with ix.searcher() as s:
# Parse the user query
parser = qparser.QueryParser("title", schema=ix.schema)
q = parser.parse(u("man"))
# Extract the terms the user used in the field we're interested in
terms = [text for fieldname, text in q.all_terms()
if fieldname == "title"]
# Perform the search
r = s.search(q)
assert len(r) == 2
# Use the same analyzer as the field uses. To be sure, you can
# do schema[fieldname].analyzer. Be careful not to do this
# on non-text field types such as DATETIME.
analyzer = schema["title"].analyzer
# Since we want to highlight the full title, not extract fragments,
# we'll use WholeFragmenter.
nf = highlight.WholeFragmenter()
# In this example we'll simply uppercase the matched terms
fmt = highlight.UppercaseFormatter()
outputs = []
for d in r:
text = d["title"]
outputs.append(highlight.highlight(text, terms, analyzer, nf, fmt))
assert outputs == ["The invisible MAN", "The MAN who wasn't there"]
def test_unstored():
schema = fields.Schema(text=fields.TEXT, tags=fields.KEYWORD)
ix = RamStorage().create_index(schema)
w = ix.writer()
w.add_document(text=u("alfa bravo charlie"), tags=u("delta echo"))
w.commit()
hit = ix.searcher().search(query.Term("text", "bravo"))[0]
with pytest.raises(KeyError):
hit.highlights("tags")
def test_multifilter():
iwf_for_index = analysis.IntraWordFilter(mergewords=True, mergenums=False)
iwf_for_query = analysis.IntraWordFilter(mergewords=False, mergenums=False)
mf = analysis.MultiFilter(index=iwf_for_index, query=iwf_for_query)
ana = analysis.RegexTokenizer() | mf | analysis.LowercaseFilter()
schema = fields.Schema(text=fields.TEXT(analyzer=ana, stored=True))
with TempIndex(schema) as ix:
w = ix.writer()
w.add_document(text=u("Our BabbleTron5000 is great"))
w.commit()
with ix.searcher() as s:
assert ("text", "5000") in s.reader()
hit = s.search(query.Term("text", "5000"))[0]
assert (hit.highlights("text")
== 'Our BabbleTron<b class="match term0">5000</b> is great')
def test_pinpoint():
domain = u("alfa bravo charlie delta echo foxtrot golf hotel india juliet "
"kilo lima mike november oskar papa quebec romeo sierra tango")
schema = fields.Schema(text=fields.TEXT(stored=True, chars=True))
ix = RamStorage().create_index(schema)
w = ix.writer()
w.add_document(text=domain)
w.commit()
assert ix.schema["text"].supports("characters")
with ix.searcher() as s:
r = s.search(query.Term("text", "juliet"), terms=True)
hit = r[0]
hi = highlight.Highlighter()
hi.formatter = highlight.UppercaseFormatter()
assert not hi.can_load_chars(r, "text")
assert (hi.highlight_hit(hit, "text")
== "golf hotel india JULIET kilo lima mike november")
hi.fragmenter = highlight.PinpointFragmenter()
assert hi.can_load_chars(r, "text")
assert (hi.highlight_hit(hit, "text")
== "ot golf hotel india JULIET kilo lima mike nove")
hi.fragmenter.autotrim = True
assert (hi.highlight_hit(hit, "text")
== "golf hotel india JULIET kilo lima mike")
def test_highlight_wildcards():
schema = fields.Schema(text=fields.TEXT(stored=True))
ix = RamStorage().create_index(schema)
with ix.writer() as w:
w.add_document(text=u("alfa bravo charlie delta cookie echo"))
with ix.searcher() as s:
qp = qparser.QueryParser("text", ix.schema)
q = qp.parse(u("c*"))
r = s.search(q)
assert r.scored_length() == 1
r.formatter = highlight.UppercaseFormatter()
hit = r[0]
assert hit.highlights("text") == "alfa bravo CHARLIE delta COOKIE echo"
def test_highlight_ngrams():
schema = fields.Schema(text=fields.NGRAMWORDS(stored=True))
ix = RamStorage().create_index(schema)
with ix.writer() as w:
w.add_document(text=u("Multiplication and subtraction are good"))
with ix.searcher() as s:
qp = qparser.QueryParser("text", ix.schema)
q = qp.parse(u("multiplication"))
r = s.search(q)
assert r.scored_length() == 1
r.fragmenter = highlight.SentenceFragmenter()
r.formatter = highlight.UppercaseFormatter()
snippet = r[0].highlights("text")
assert snippet == "MULTIPLICATIon and subtracTION are good"
def test_issue324():
sa = analysis.StemmingAnalyzer()
result = highlight.highlight(u("Indexed!\n1"), [u("index")], sa,
fragmenter=highlight.ContextFragmenter(),
formatter=highlight.UppercaseFormatter())
assert result == "INDEXED!\n1"
def test_whole_noterms():
schema = fields.Schema(text=fields.TEXT(stored=True), tag=fields.KEYWORD)
ix = RamStorage().create_index(schema)
with ix.writer() as w:
w.add_document(text=u("alfa bravo charlie delta echo foxtrot golf"),
tag=u("foo"))
with ix.searcher() as s:
r = s.search(query.Term("text", u("delta")))
assert len(r) == 1
r.fragmenter = highlight.WholeFragmenter()
r.formatter = highlight.UppercaseFormatter()
hi = r[0].highlights("text")
assert hi == u("alfa bravo charlie DELTA echo foxtrot golf")
r = s.search(query.Term("tag", u("foo")))
assert len(r) == 1
r.fragmenter = highlight.WholeFragmenter()
r.formatter = highlight.UppercaseFormatter()
hi = r[0].highlights("text")
assert hi == u("")
hi = r[0].highlights("text", minscore=0)
assert hi == u("alfa bravo charlie delta echo foxtrot golf")
|