1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
from __future__ import with_statement
import gzip
from whoosh import analysis, fields, highlight, query, spelling
from whoosh.compat import b, u, permutations
from whoosh.qparser import QueryParser
from whoosh.support.levenshtein import levenshtein
from whoosh.util.testing import TempIndex
_wordlist = sorted(u("render animation animate shader shading zebra koala"
"ready kismet reaction page delete quick fox jumped"
"over lazy dog wicked erase red team yellow under interest"
"open print acrid sear deaf feed grow heal jolly kilt"
"low zone xylophone crown vale brown neat meat reduction"
"blunder preaction lamppost").split())
def test_list_corrector():
corr = spelling.ListCorrector(_wordlist)
typo = "reoction"
sugs = list(corr.suggest(typo, maxdist=2))
target = [w for w in _wordlist if levenshtein(typo, w) <= 2]
# _wordlist is sorted
assert sorted(sugs) == target
def test_automaton():
schema = fields.Schema(text=fields.TEXT)
with TempIndex(schema, "automatonspell") as ix:
with ix.writer() as w:
w.add_document(text=u" ".join(_wordlist))
with ix.reader() as r:
bterms = list(r.lexicon("text"))
words = [bterm.decode("utf8") for bterm in bterms]
assert words == _wordlist
typo = "reoction"
sugs = list(r.terms_within("text", typo, maxdist=2))
target = [w for w in _wordlist if levenshtein(typo, w) <= 2]
assert sugs == target
def test_reader_corrector():
schema = fields.Schema(text=fields.TEXT())
with TempIndex(schema) as ix:
with ix.writer() as w:
w.add_document(text=u"render zorro kaori postal")
w.add_document(text=u"reader zebra koala pastry")
w.add_document(text=u"leader libra oola paster")
w.add_document(text=u"feeder lorry zoala baster")
with ix.reader() as r:
sp = spelling.ReaderCorrector(r, "text", schema["text"])
assert sp.suggest(u"koala", maxdist=1) == [u'koala', u"zoala"]
target = [u'kaori', u'koala', u'oola']
sugs = sp.suggest(u"kaola", maxdist=2)
assert sugs == target
def test_unicode_spelling():
schema = fields.Schema(text=fields.ID())
domain = [u"\u0924\u092a\u093e\u0907\u0939\u0930\u0941",
u"\u65e5\u672c",
u"\uc774\uc124\ud76c",
]
with TempIndex(schema) as ix:
with ix.writer() as w:
for word in domain:
w.add_document(text=word)
with ix.reader() as r:
rc = spelling.ReaderCorrector(r, "text", schema["text"])
assert rc.suggest(u"\u65e5\u672e\u672c") == [u"\u65e5\u672c"]
def test_wordfile():
import os.path
path = os.path.join(os.path.dirname(__file__), "english-words.10.gz")
wordfile = gzip.open(path, "rb")
words = sorted(line.decode("latin1").strip().lower() for line in wordfile)
cor = spelling.ListCorrector(words)
assert cor.suggest("specail") == ["special"]
def test_query_highlight():
qp = QueryParser("a", None)
hf = highlight.HtmlFormatter()
def do(text, terms):
q = qp.parse(text)
tks = [tk for tk in q.all_tokens() if tk.text in terms]
for tk in tks:
if tk.startchar is None or tk.endchar is None:
assert False, tk
fragment = highlight.Fragment(text, tks)
return hf.format_fragment(fragment)
assert do("a b c d", ["b"]) == 'a <strong class="match term0">b</strong> c d'
assert do('a (x:b OR y:"c d") e', ("b", "c")) == 'a (x:<strong class="match term0">b</strong> OR y:"<strong class="match term1">c</strong> d") e'
def test_query_terms():
qp = QueryParser("a", None)
q = qp.parse("alfa b:(bravo OR c:charlie) delta")
assert sorted(q.iter_all_terms()) == [("a", "alfa"), ("a", "delta"),
("b", "bravo"), ("c", "charlie")]
q = qp.parse("alfa brav*")
assert sorted(q.iter_all_terms()) == [("a", "alfa")]
q = qp.parse('a b:("b c" d)^2 e')
tokens = [(t.fieldname, t.text, t.boost) for t in q.all_tokens()]
assert tokens == [('a', 'a', 1.0), ('b', 'b', 2.0), ('b', 'c', 2.0),
('b', 'd', 2.0), ('a', 'e', 1.0)]
def test_correct_query():
schema = fields.Schema(a=fields.TEXT(), b=fields.TEXT)
with TempIndex(schema) as ix:
with ix.writer() as w:
w.add_document(a=u"alfa bravo charlie delta")
w.add_document(a=u"delta echo foxtrot golf")
w.add_document(a=u"golf hotel india juliet")
w.add_document(a=u"juliet kilo lima mike")
with ix.searcher() as s:
qp = QueryParser("a", ix.schema)
qtext = u'alpha ("brovo november" OR b:dolta) detail'
q = qp.parse(qtext, ix.schema)
c = s.correct_query(q, qtext)
cq = c.query
assert isinstance(cq, query.And)
assert cq[0].text == "alfa"
assert isinstance(cq[1], query.Or)
assert isinstance(cq[1][0], query.Phrase)
assert cq[1][0].words == ["bravo", "november"]
qtext = u'alpha b:("brovo november" a:delta) detail'
q = qp.parse(qtext, ix.schema)
c = s.correct_query(q, qtext)
assert c.query.__unicode__() == '(a:alfa AND b:"brovo november" AND a:delta AND a:detail)'
assert c.string == 'alfa b:("brovo november" a:delta) detail'
hf = highlight.HtmlFormatter(classname="c")
assert c.format_string(hf) == '<strong class="c term0">alfa</strong> b:("brovo november" a:delta) detail'
def test_spelling_field():
text = u"rendering shading modeling reactions"
ana = analysis.StemmingAnalyzer()
schema = fields.Schema(text=fields.TEXT(analyzer=ana, spelling=True))
assert schema["text"].spelling
assert schema["text"].separate_spelling()
with TempIndex(schema) as ix:
with ix.writer() as w:
w.add_document(text=text)
with ix.searcher() as s:
r = s.reader()
fieldobj = schema["text"]
words = [fieldobj.from_bytes(t) for t in r.lexicon("text")]
assert words == ["model", "reaction", "render", "shade"]
words = [fieldobj.from_bytes(t) for t in r.lexicon("spell_text")]
assert words == ["modeling", "reactions", "rendering", "shading"]
# suggest() automatically looks in the spell_text field because
# it calls fieldobj.spelling_fieldname() first
assert s.suggest("text", "renderink") == ["rendering"]
with ix.writer() as w:
w.delete_document(0)
def test_correct_spell_field():
ana = analysis.StemmingAnalyzer()
schema = fields.Schema(text=fields.TEXT(analyzer=ana, spelling=True))
with TempIndex(schema) as ix:
with ix.writer() as w:
w.add_document(text=u"rendering shading modeling reactions")
with ix.searcher() as s:
text = s.schema["text"]
spell_text = s.schema["spell_text"]
r = s.reader()
words = [text.from_bytes(t) for t in r.lexicon("text")]
assert words == ["model", "reaction", "render", "shade"]
words = [spell_text.from_bytes(t) for t in r.lexicon("spell_text")]
assert words == ["modeling", "reactions", "rendering", "shading"]
qp = QueryParser("text", s.schema)
qtext = u"renderink"
q = qp.parse(qtext, s.schema)
r = s.search(q)
assert len(r) == 0
c = s.correct_query(q, qtext)
assert c.string == "rendering"
assert c.query == query.Term("text", "rendering")
hf = highlight.HtmlFormatter(classname="c")
assert c.format_string(hf) == '<strong class="c term0">rendering</strong>'
def test_suggest_prefix():
domain = ("Shoot To Kill",
"Bloom, Split and Deviate",
"Rankle the Seas and the Skies",
"Lightning Flash Flame Shell",
"Flower Wind Rage and Flower God Roar, Heavenly Wind Rage and "
"Heavenly Demon Sneer",
"All Waves, Rise now and Become my Shield, Lightning, Strike "
"now and Become my Blade",
"Cry, Raise Your Head, Rain Without end",
"Sting All Enemies To Death",
"Reduce All Creation to Ash",
"Sit Upon the Frozen Heavens",
"Call forth the Twilight")
schema = fields.Schema(content=fields.TEXT(stored=True, ),
quick=fields.NGRAM(maxsize=10, stored=True))
with TempIndex(schema, "sugprefix") as ix:
with ix.writer() as w:
for item in domain:
content = u(item)
w.add_document(content=content, quick=content)
with ix.searcher() as s:
sugs = s.suggest("content", u"ra", maxdist=2, prefix=2)
assert sugs == ['rage', 'rain']
sugs = s.suggest("content", "ra", maxdist=2, prefix=1)
assert sugs == ["rage", "rain", "roar"]
def test_prefix_address():
fieldtype = fields.TEXT()
schema = fields.Schema(f1=fieldtype, f2=fieldtype)
with TempIndex(schema, "prefixaddr") as ix:
with ix.writer() as w:
w.add_document(f1=u"aabc aawx aaqr aade",
f2=u"aa12 aa34 aa56 aa78")
with ix.searcher() as s:
sugs = s.suggest("f1", u"aa", maxdist=2, prefix=2)
assert sorted(sugs) == ["aabc", "aade", "aaqr", "aawx"]
sugs = s.suggest("f2", u"aa", maxdist=2, prefix=2)
assert sorted(sugs) == ["aa12", "aa34", "aa56", "aa78"]
def test_correct_correct():
from whoosh import qparser
schema = fields.Schema(a=fields.TEXT())
with TempIndex(schema) as ix:
with ix.writer() as w:
w.add_document(a=u'dworska')
w.add_document(a=u'swojska')
with ix.searcher() as s:
s = ix.searcher()
qtext = u'dworska'
qp = qparser.QueryParser('a', ix.schema)
q = qp.parse(qtext, ix.schema)
c = s.correct_query(q, qtext)
assert c.string == "dworska"
string = c.format_string(highlight.UppercaseFormatter())
assert string == "dworska"
def test_very_long_words():
import sys
length = int(sys.getrecursionlimit() * 1.5)
strings1 = [u(chr(i) * length) for i in range(65, 70)]
strings2 = [u(chr(i) * length) for i in range(71, 75)]
ana = analysis.StemmingAnalyzer()
schema = fields.Schema(text=fields.TEXT(analyzer=ana, ))
with TempIndex(schema) as ix:
with ix.writer() as w:
for string in strings1:
w.add_document(text=string)
with ix.writer() as w:
for string in strings2:
w.add_document(text=string)
w.optimize = True
# def test_add_spelling():
# schema = fields.Schema(text1=fields.TEXT, text2=fields.TEXT)
# ix = RamStorage().create_index(schema)
# w = ix.writer()
# w.add_document(text1=u"render zorro kaori postal", text2=u"alfa")
# w.add_document(text1=u"reader zebra koala pastry", text2=u"alpa")
# w.add_document(text1=u"leader libra ooala paster", text2=u"alpha")
# w.add_document(text1=u"feeder lorry zoala baster", text2=u"olfo")
# w.commit()
#
# with ix.reader() as r:
# assert not r.has_word_graph("text1")
# assert not r.has_word_graph("text2")
#
# from whoosh.writing import add_spelling
# add_spelling(ix, ["text1", "text2"])
#
# with ix.reader() as r:
# assert r.has_word_graph("text1")
# assert r.has_word_graph("text2")
#
# sp = spelling.ReaderCorrector(r, "text1")
# assert sp.suggest(u"kaola", maxdist=1) == [u'koala']
# assert sp.suggest(u"kaola", maxdist=2) == [u'koala', u'kaori', u'ooala', u'zoala']
#
# sp = spelling.ReaderCorrector(r, "text2")
# assert sp.suggest(u"alfo", maxdist=1) == [u"alfa", u"olfo"]
# def test_multicorrector():
# schema = fields.Schema(text=fields.TEXT())
# ix = RamStorage().create_index(schema)
# domain = u"special specious spectacular spongy spring specials".split()
# for word in domain:
# w = ix.writer()
# w.add_document(text=word)
# w.commit(merge=False)
#
# c1 = ix.reader().corrector("text")
#
# wordlist = sorted(u"bear bare beer sprung".split())
# c2 = words_to_corrector(wordlist)
#
# mc = spelling.MultiCorrector([c1, c2])
# assert mc.suggest("specail") == ["special", "specials"]
# assert mc.suggest("beur") == ["bear", "beer"]
# assert mc.suggest("sprang") == ["sprung", "spring"]
|