File: test_spelling.py

package info (click to toggle)
python-whoosh 2.7.4%2Bgit6-g9134ad92-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 3,656 kB
  • sloc: python: 38,517; makefile: 118
file content (354 lines) | stat: -rw-r--r-- 12,950 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
from __future__ import with_statement
import gzip

from whoosh import analysis, fields, highlight, query, spelling
from whoosh.compat import b, u, permutations
from whoosh.qparser import QueryParser
from whoosh.support.levenshtein import levenshtein
from whoosh.util.testing import TempIndex


_wordlist = sorted(u("render animation animate shader shading zebra koala"
                     "ready kismet reaction page delete quick fox jumped"
                     "over lazy dog wicked erase red team yellow under interest"
                     "open print acrid sear deaf feed grow heal jolly kilt"
                     "low zone xylophone crown vale brown neat meat reduction"
                     "blunder preaction lamppost").split())


def test_list_corrector():
    corr = spelling.ListCorrector(_wordlist)
    typo = "reoction"
    sugs = list(corr.suggest(typo, maxdist=2))
    target = [w for w in _wordlist if levenshtein(typo, w) <= 2]
    # _wordlist is sorted
    assert sorted(sugs) == target


def test_automaton():
    schema = fields.Schema(text=fields.TEXT)
    with TempIndex(schema, "automatonspell") as ix:
        with ix.writer() as w:
            w.add_document(text=u" ".join(_wordlist))

        with ix.reader() as r:
            bterms = list(r.lexicon("text"))
            words = [bterm.decode("utf8") for bterm in bterms]
            assert words == _wordlist

            typo = "reoction"
            sugs = list(r.terms_within("text", typo, maxdist=2))
            target = [w for w in _wordlist if levenshtein(typo, w) <= 2]
            assert sugs == target


def test_reader_corrector():
    schema = fields.Schema(text=fields.TEXT())
    with TempIndex(schema) as ix:
        with ix.writer() as w:
            w.add_document(text=u"render zorro kaori postal")
            w.add_document(text=u"reader zebra koala pastry")
            w.add_document(text=u"leader libra oola paster")
            w.add_document(text=u"feeder lorry zoala baster")

        with ix.reader() as r:
            sp = spelling.ReaderCorrector(r, "text", schema["text"])
            assert sp.suggest(u"koala", maxdist=1) == [u'koala', u"zoala"]

            target = [u'kaori', u'koala', u'oola']
            sugs = sp.suggest(u"kaola", maxdist=2)
            assert sugs == target


def test_unicode_spelling():
    schema = fields.Schema(text=fields.ID())

    domain = [u"\u0924\u092a\u093e\u0907\u0939\u0930\u0941",
              u"\u65e5\u672c",
              u"\uc774\uc124\ud76c",
              ]

    with TempIndex(schema) as ix:
        with ix.writer() as w:
            for word in domain:
                w.add_document(text=word)

        with ix.reader() as r:
            rc = spelling.ReaderCorrector(r, "text", schema["text"])
            assert rc.suggest(u"\u65e5\u672e\u672c") == [u"\u65e5\u672c"]


def test_wordfile():
    import os.path

    path = os.path.join(os.path.dirname(__file__), "english-words.10.gz")
    wordfile = gzip.open(path, "rb")
    words = sorted(line.decode("latin1").strip().lower() for line in wordfile)

    cor = spelling.ListCorrector(words)
    assert cor.suggest("specail") == ["special"]


def test_query_highlight():
    qp = QueryParser("a", None)
    hf = highlight.HtmlFormatter()

    def do(text, terms):
        q = qp.parse(text)
        tks = [tk for tk in q.all_tokens() if tk.text in terms]
        for tk in tks:
            if tk.startchar is None or tk.endchar is None:
                assert False, tk
        fragment = highlight.Fragment(text, tks)
        return hf.format_fragment(fragment)

    assert do("a b c d", ["b"]) == 'a <strong class="match term0">b</strong> c d'
    assert do('a (x:b OR y:"c d") e', ("b", "c")) == 'a (x:<strong class="match term0">b</strong> OR y:"<strong class="match term1">c</strong> d") e'


def test_query_terms():
    qp = QueryParser("a", None)

    q = qp.parse("alfa b:(bravo OR c:charlie) delta")
    assert sorted(q.iter_all_terms()) == [("a", "alfa"), ("a", "delta"),
                                          ("b", "bravo"), ("c", "charlie")]

    q = qp.parse("alfa brav*")
    assert sorted(q.iter_all_terms()) == [("a", "alfa")]

    q = qp.parse('a b:("b c" d)^2 e')
    tokens = [(t.fieldname, t.text, t.boost) for t in q.all_tokens()]
    assert tokens == [('a', 'a', 1.0), ('b', 'b', 2.0), ('b', 'c', 2.0),
                      ('b', 'd', 2.0), ('a', 'e', 1.0)]


def test_correct_query():
    schema = fields.Schema(a=fields.TEXT(), b=fields.TEXT)
    with TempIndex(schema) as ix:
        with ix.writer() as w:
            w.add_document(a=u"alfa bravo charlie delta")
            w.add_document(a=u"delta echo foxtrot golf")
            w.add_document(a=u"golf hotel india juliet")
            w.add_document(a=u"juliet kilo lima mike")

        with ix.searcher() as s:
            qp = QueryParser("a", ix.schema)
            qtext = u'alpha ("brovo november" OR b:dolta) detail'
            q = qp.parse(qtext, ix.schema)

            c = s.correct_query(q, qtext)
            cq = c.query
            assert isinstance(cq, query.And)
            assert cq[0].text == "alfa"
            assert isinstance(cq[1], query.Or)
            assert isinstance(cq[1][0], query.Phrase)
            assert cq[1][0].words == ["bravo", "november"]

            qtext = u'alpha b:("brovo november" a:delta) detail'
            q = qp.parse(qtext, ix.schema)
            c = s.correct_query(q, qtext)
            assert c.query.__unicode__() == '(a:alfa AND b:"brovo november" AND a:delta AND a:detail)'
            assert c.string == 'alfa b:("brovo november" a:delta) detail'

            hf = highlight.HtmlFormatter(classname="c")
            assert c.format_string(hf) == '<strong class="c term0">alfa</strong> b:("brovo november" a:delta) detail'


def test_spelling_field():
    text = u"rendering shading modeling reactions"
    ana = analysis.StemmingAnalyzer()
    schema = fields.Schema(text=fields.TEXT(analyzer=ana, spelling=True))

    assert schema["text"].spelling
    assert schema["text"].separate_spelling()

    with TempIndex(schema) as ix:
        with ix.writer() as w:
            w.add_document(text=text)

        with ix.searcher() as s:
            r = s.reader()
            fieldobj = schema["text"]
            words = [fieldobj.from_bytes(t) for t in r.lexicon("text")]
            assert words == ["model", "reaction", "render", "shade"]

            words = [fieldobj.from_bytes(t) for t in r.lexicon("spell_text")]
            assert words == ["modeling", "reactions", "rendering", "shading"]

            # suggest() automatically looks in the spell_text field because
            # it calls fieldobj.spelling_fieldname() first
            assert s.suggest("text", "renderink") == ["rendering"]

        with ix.writer() as w:
            w.delete_document(0)


def test_correct_spell_field():
    ana = analysis.StemmingAnalyzer()
    schema = fields.Schema(text=fields.TEXT(analyzer=ana, spelling=True))
    with TempIndex(schema) as ix:
        with ix.writer() as w:
            w.add_document(text=u"rendering shading modeling reactions")

        with ix.searcher() as s:
            text = s.schema["text"]
            spell_text = s.schema["spell_text"]

            r = s.reader()
            words = [text.from_bytes(t) for t in r.lexicon("text")]
            assert words == ["model", "reaction", "render", "shade"]

            words = [spell_text.from_bytes(t) for t in r.lexicon("spell_text")]
            assert words == ["modeling", "reactions", "rendering", "shading"]

            qp = QueryParser("text", s.schema)
            qtext = u"renderink"
            q = qp.parse(qtext, s.schema)

            r = s.search(q)
            assert len(r) == 0

            c = s.correct_query(q, qtext)
            assert c.string == "rendering"
            assert c.query == query.Term("text", "rendering")

            hf = highlight.HtmlFormatter(classname="c")
            assert c.format_string(hf) == '<strong class="c term0">rendering</strong>'


def test_suggest_prefix():
    domain = ("Shoot To Kill",
              "Bloom, Split and Deviate",
              "Rankle the Seas and the Skies",
              "Lightning Flash Flame Shell",
              "Flower Wind Rage and Flower God Roar, Heavenly Wind Rage and "
              "Heavenly Demon Sneer",
              "All Waves, Rise now and Become my Shield, Lightning, Strike "
              "now and Become my Blade",
              "Cry, Raise Your Head, Rain Without end",
              "Sting All Enemies To Death",
              "Reduce All Creation to Ash",
              "Sit Upon the Frozen Heavens",
              "Call forth the Twilight")

    schema = fields.Schema(content=fields.TEXT(stored=True, ),
                           quick=fields.NGRAM(maxsize=10, stored=True))
    with TempIndex(schema, "sugprefix") as ix:
        with ix.writer() as w:
            for item in domain:
                content = u(item)
                w.add_document(content=content, quick=content)

        with ix.searcher() as s:
            sugs = s.suggest("content", u"ra", maxdist=2, prefix=2)
            assert sugs == ['rage', 'rain']

            sugs = s.suggest("content", "ra", maxdist=2, prefix=1)
            assert sugs == ["rage", "rain", "roar"]


def test_prefix_address():
    fieldtype = fields.TEXT()
    schema = fields.Schema(f1=fieldtype, f2=fieldtype)
    with TempIndex(schema, "prefixaddr") as ix:
        with ix.writer() as w:
            w.add_document(f1=u"aabc aawx aaqr aade",
                           f2=u"aa12 aa34 aa56 aa78")

        with ix.searcher() as s:
            sugs = s.suggest("f1", u"aa", maxdist=2, prefix=2)
            assert sorted(sugs) == ["aabc", "aade", "aaqr", "aawx"]

            sugs = s.suggest("f2", u"aa", maxdist=2, prefix=2)
            assert sorted(sugs) == ["aa12", "aa34", "aa56", "aa78"]


def test_correct_correct():
    from whoosh import qparser

    schema = fields.Schema(a=fields.TEXT())
    with TempIndex(schema) as ix:
        with ix.writer() as w:
            w.add_document(a=u'dworska')
            w.add_document(a=u'swojska')

        with ix.searcher() as s:
            s = ix.searcher()
            qtext = u'dworska'

            qp = qparser.QueryParser('a', ix.schema)
            q = qp.parse(qtext, ix.schema)
            c = s.correct_query(q, qtext)

            assert c.string == "dworska"
            string = c.format_string(highlight.UppercaseFormatter())
            assert string == "dworska"


def test_very_long_words():
    import sys
    length = int(sys.getrecursionlimit() * 1.5)

    strings1 = [u(chr(i) * length) for i in range(65, 70)]
    strings2 = [u(chr(i) * length) for i in range(71, 75)]

    ana = analysis.StemmingAnalyzer()
    schema = fields.Schema(text=fields.TEXT(analyzer=ana, ))
    with TempIndex(schema) as ix:
        with ix.writer() as w:
            for string in strings1:
                w.add_document(text=string)

        with ix.writer() as w:
            for string in strings2:
                w.add_document(text=string)
            w.optimize = True


# def test_add_spelling():
#     schema = fields.Schema(text1=fields.TEXT, text2=fields.TEXT)
#     ix = RamStorage().create_index(schema)
#     w = ix.writer()
#     w.add_document(text1=u"render zorro kaori postal", text2=u"alfa")
#     w.add_document(text1=u"reader zebra koala pastry", text2=u"alpa")
#     w.add_document(text1=u"leader libra ooala paster", text2=u"alpha")
#     w.add_document(text1=u"feeder lorry zoala baster", text2=u"olfo")
#     w.commit()
#
#     with ix.reader() as r:
#         assert not r.has_word_graph("text1")
#         assert not r.has_word_graph("text2")
#
#     from whoosh.writing import add_spelling
#     add_spelling(ix, ["text1", "text2"])
#
#     with ix.reader() as r:
#         assert r.has_word_graph("text1")
#         assert r.has_word_graph("text2")
#
#         sp = spelling.ReaderCorrector(r, "text1")
#         assert sp.suggest(u"kaola", maxdist=1) == [u'koala']
#         assert sp.suggest(u"kaola", maxdist=2) == [u'koala', u'kaori', u'ooala', u'zoala']
#
#         sp = spelling.ReaderCorrector(r, "text2")
#         assert sp.suggest(u"alfo", maxdist=1) == [u"alfa", u"olfo"]


# def test_multicorrector():
#     schema = fields.Schema(text=fields.TEXT())
#     ix = RamStorage().create_index(schema)
#     domain = u"special specious spectacular spongy spring specials".split()
#     for word in domain:
#         w = ix.writer()
#         w.add_document(text=word)
#         w.commit(merge=False)
#
#     c1 = ix.reader().corrector("text")
#
#     wordlist = sorted(u"bear bare beer sprung".split())
#     c2 = words_to_corrector(wordlist)
#
#     mc = spelling.MultiCorrector([c1, c2])
#     assert mc.suggest("specail") == ["special", "specials"]
#     assert mc.suggest("beur") == ["bear", "beer"]
#     assert mc.suggest("sprang") == ["sprung", "spring"]