1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
"""Synset similarity metrics."""
import math
import wn
from wn._core import Synset
from wn.constants import ADJ, ADJ_SAT
from wn.ic import Freq, information_content
def path(synset1: Synset, synset2: Synset, simulate_root: bool = False) -> float:
"""Return the Path similarity of *synset1* and *synset2*.
Arguments:
synset1: The first synset to compare.
synset2: The second synset to compare.
simulate_root: When :python:`True`, a fake root node connects
all other roots; default: :python:`False`.
Example:
>>> import wn
>>> from wn.similarity import path
>>> ewn = wn.Wordnet("ewn:2020")
>>> spatula = ewn.synsets("spatula")[0]
>>> path(spatula, ewn.synsets("pancake")[0])
0.058823529411764705
>>> path(spatula, ewn.synsets("utensil")[0])
0.2
>>> path(spatula, spatula)
1.0
>>> flip = ewn.synsets("flip", pos="v")[0]
>>> turn_over = ewn.synsets("turn over", pos="v")[0]
>>> path(flip, turn_over)
0.0
>>> path(flip, turn_over, simulate_root=True)
0.16666666666666666
"""
_check_if_pos_compatible(synset1.pos, synset2.pos)
try:
path = synset1.shortest_path(synset2, simulate_root=simulate_root)
except wn.Error:
distance = float("inf")
else:
distance = len(path)
return 1 / (distance + 1)
def wup(synset1: Synset, synset2: Synset, simulate_root=False) -> float:
"""Return the Wu-Palmer similarity of *synset1* and *synset2*.
Arguments:
synset1: The first synset to compare.
synset2: The second synset to compare.
simulate_root: When :python:`True`, a fake root node connects
all other roots; default: :python:`False`.
Raises:
wn.Error: When no path connects the *synset1* and *synset2*.
Example:
>>> import wn
>>> from wn.similarity import wup
>>> ewn = wn.Wordnet("ewn:2020")
>>> spatula = ewn.synsets("spatula")[0]
>>> wup(spatula, ewn.synsets("pancake")[0])
0.2
>>> wup(spatula, ewn.synsets("utensil")[0])
0.8
>>> wup(spatula, spatula)
1.0
>>> flip = ewn.synsets("flip", pos="v")[0]
>>> turn_over = ewn.synsets("turn over", pos="v")[0]
>>> wup(flip, turn_over, simulate_root=True)
0.2857142857142857
"""
_check_if_pos_compatible(synset1.pos, synset2.pos)
lcs_list = _least_common_subsumers(synset1, synset2, simulate_root)
lcs = lcs_list[0]
i = len(synset1.shortest_path(lcs, simulate_root=simulate_root))
j = len(synset2.shortest_path(lcs, simulate_root=simulate_root))
k = lcs.max_depth() + 1
return (2 * k) / (i + j + 2 * k)
def lch(
synset1: Synset, synset2: Synset, max_depth: int, simulate_root: bool = False
) -> float:
"""Return the Leacock-Chodorow similarity between *synset1* and *synset2*.
Arguments:
synset1: The first synset to compare.
synset2: The second synset to compare.
max_depth: The taxonomy depth (see :func:`wn.taxonomy.taxonomy_depth`)
simulate_root: When :python:`True`, a fake root node connects
all other roots; default: :python:`False`.
Example:
>>> import wn, wn.taxonomy
>>> from wn.similarity import lch
>>> ewn = wn.Wordnet("ewn:2020")
>>> n_depth = wn.taxonomy.taxonomy_depth(ewn, "n")
>>> spatula = ewn.synsets("spatula")[0]
>>> lch(spatula, ewn.synsets("pancake")[0], n_depth)
0.8043728156701697
>>> lch(spatula, ewn.synsets("utensil")[0], n_depth)
2.0281482472922856
>>> lch(spatula, spatula, n_depth)
3.6375861597263857
>>> v_depth = taxonomy.taxonomy_depth(ewn, "v")
>>> flip = ewn.synsets("flip", pos="v")[0]
>>> turn_over = ewn.synsets("turn over", pos="v")[0]
>>> lch(flip, turn_over, v_depth, simulate_root=True)
1.3862943611198906
"""
_check_if_pos_compatible(synset1.pos, synset2.pos)
distance = len(synset1.shortest_path(synset2, simulate_root=simulate_root))
if max_depth <= 0:
raise wn.Error("max_depth must be greater than 0")
return -math.log((distance + 1) / (2 * max_depth))
def res(synset1: Synset, synset2: Synset, ic: Freq) -> float:
"""Return the Resnik similarity between *synset1* and *synset2*.
Arguments:
synset1: The first synset to compare.
synset2: The second synset to compare.
ic: Information Content weights.
Example:
>>> import wn, wn.ic, wn.taxonomy
>>> from wn.similarity import res
>>> pwn = wn.Wordnet("pwn:3.0")
>>> ic = wn.ic.load("~/nltk_data/corpora/wordnet_ic/ic-brown.dat", pwn)
>>> spatula = pwn.synsets("spatula")[0]
>>> res(spatula, pwn.synsets("pancake")[0], ic)
0.8017591149538994
>>> res(spatula, pwn.synsets("utensil")[0], ic)
5.87738923441087
"""
_check_if_pos_compatible(synset1.pos, synset2.pos)
lcs = _most_informative_lcs(synset1, synset2, ic)
return information_content(lcs, ic)
def jcn(synset1: Synset, synset2: Synset, ic: Freq) -> float:
"""Return the Jiang-Conrath similarity of two synsets.
Arguments:
synset1: The first synset to compare.
synset2: The second synset to compare.
ic: Information Content weights.
Example:
>>> import wn, wn.ic, wn.taxonomy
>>> from wn.similarity import jcn
>>> pwn = wn.Wordnet("pwn:3.0")
>>> ic = wn.ic.load("~/nltk_data/corpora/wordnet_ic/ic-brown.dat", pwn)
>>> spatula = pwn.synsets("spatula")[0]
>>> jcn(spatula, pwn.synsets("pancake")[0], ic)
0.04061799236354239
>>> jcn(spatula, pwn.synsets("utensil")[0], ic)
0.10794048564613007
"""
_check_if_pos_compatible(synset1.pos, synset2.pos)
ic1 = information_content(synset1, ic)
ic2 = information_content(synset2, ic)
lcs = _most_informative_lcs(synset1, synset2, ic)
ic_lcs = information_content(lcs, ic)
if ic1 == ic2 == ic_lcs == 0:
return 0
elif ic1 + ic2 == 2 * ic_lcs:
return float("inf")
else:
return 1 / (ic1 + ic2 - 2 * ic_lcs)
def lin(synset1: Synset, synset2: Synset, ic: Freq) -> float:
"""Return the Lin similarity of two synsets.
Arguments:
synset1: The first synset to compare.
synset2: The second synset to compare.
ic: Information Content weights.
Example:
>>> import wn, wn.ic, wn.taxonomy
>>> from wn.similarity import lin
>>> pwn = wn.Wordnet("pwn:3.0")
>>> ic = wn.ic.load("~/nltk_data/corpora/wordnet_ic/ic-brown.dat", pwn)
>>> spatula = pwn.synsets("spatula")[0]
>>> lin(spatula, pwn.synsets("pancake")[0], ic)
0.061148956278604116
>>> lin(spatula, pwn.synsets("utensil")[0], ic)
0.5592415686750427
"""
_check_if_pos_compatible(synset1.pos, synset2.pos)
lcs = _most_informative_lcs(synset1, synset2, ic)
ic1 = information_content(synset1, ic)
ic2 = information_content(synset2, ic)
if ic1 == 0 or ic2 == 0:
return 0.0
return 2 * information_content(lcs, ic) / (ic1 + ic2)
# Helper functions
def _least_common_subsumers(
synset1: Synset, synset2: Synset, simulate_root: bool
) -> list[Synset]:
lcs = synset1.lowest_common_hypernyms(synset2, simulate_root=simulate_root)
if not lcs:
raise wn.Error(f"no common hypernyms for {synset1!r} and {synset2!r}")
return lcs
def _most_informative_lcs(synset1: Synset, synset2: Synset, ic: Freq) -> Synset:
pos_ic = ic[synset1.pos]
lcs = _least_common_subsumers(synset1, synset2, False)
return max(lcs, key=lambda ss: pos_ic[ss.id])
def _check_if_pos_compatible(pos1: str, pos2: str) -> None:
_pos1 = ADJ if pos1 == ADJ_SAT else pos1
_pos2 = ADJ if pos2 == ADJ_SAT else pos2
if _pos1 != _pos2:
raise wn.Error("synsets must have the same part of speech")
|