1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
|
from wordcloud import WordCloud, get_single_color_func, ImageColorGenerator
import numpy as np
import pytest
from random import Random
from numpy.testing import assert_array_equal
from PIL import Image
import xml.etree.ElementTree as ET
import matplotlib
matplotlib.use('Agg')
THIS = """The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!
3 . 14 15 92 65 35 89 79 32 38 46 26 433
83 27 95 02 88 41 97 16 93 99 37 510
58 20 97 49 44 59 23 07 81 64 06 286
20 89 98 62 80 34 82 53 42 11 70 679
82 14 80 86 51 32 82 30 66 47 09 384
46 09 55 05 82 23 17 25 35 94 08 128
"""
STOPWORDED_COLLOCATIONS = """
thank you very much
thank you very much
thank you very much
thanks
"""
STOPWORDED_COLLOCATIONS_UPPERCASE = """
Thank you very much
Thank you very much
Thank you very much
thank you very much
hi There
Hi there
Hi There
thanks
"""
SMALL_CANVAS = """
better late than never someone will say
"""
def test_collocations():
wc = WordCloud(collocations=False, stopwords=set())
wc.generate(THIS)
wc2 = WordCloud(collocations=True, stopwords=set())
wc2.generate(THIS)
assert "is better" in wc2.words_
assert "is better" not in wc.words_
assert "way may" not in wc2.words_
def test_collocation_stopwords():
wc = WordCloud(collocations=True, stopwords={"you", "very"}, collocation_threshold=9)
wc.generate(STOPWORDED_COLLOCATIONS)
assert "thank you" not in wc.words_
assert "very much" not in wc.words_
assert "thank" in wc.words_
# a bigram of all stopwords will be removed
assert "you very" not in wc.words_
def test_collocation_stopwords_uppercase():
wc = WordCloud(collocations=True, stopwords={"thank", "hi", "there"}, collocation_threshold=9)
wc.generate(STOPWORDED_COLLOCATIONS_UPPERCASE)
assert "Thank you" not in wc.words_
assert "thank you" not in wc.words_
assert "Thank" not in wc.words_
# a bigram of all stopwords will be removed
assert "hi There" not in wc.words_
assert "Hi there" not in wc.words_
assert "Hi There" not in wc.words_
def test_plurals_numbers():
text = THIS + "\n" + "1 idea 2 ideas three ideas although many Ideas"
wc = WordCloud(stopwords=[]).generate(text)
# not capitalized usually
assert "Ideas" not in wc.words_
# plural removed
assert "ideas" not in wc.words_
# usually capitalized
assert "although" not in wc.words_
assert "idea" in wc.words_
assert "Although" in wc.words_
assert "better than" in wc.words_
def test_multiple_s():
text = 'flo flos floss flosss'
wc = WordCloud(stopwords=[]).generate(text)
assert "flo" in wc.words_
assert "flos" not in wc.words_
assert "floss" in wc.words_
assert "flosss" in wc.words_
# not normalizing means that the one with just one s is kept
wc = WordCloud(stopwords=[], normalize_plurals=False).generate(text)
assert "flo" in wc.words_
assert "flos" in wc.words_
assert "floss" in wc.words_
assert "flosss" in wc.words_
def test_empty_text():
# test originally empty text raises an exception
wc = WordCloud(stopwords=[])
with pytest.raises(ValueError):
wc.generate('')
# test empty-after-filtering text raises an exception
wc = WordCloud(stopwords=['a', 'b'])
with pytest.raises(ValueError):
wc.generate('a b a')
def test_default():
# test that default word cloud creation and conversions work
wc = WordCloud(max_words=50)
wc.generate(THIS)
# check for proper word extraction
assert len(wc.words_) == wc.max_words
# check that we got enough words
assert len(wc.layout_) == wc.max_words
# check image export
wc_image = wc.to_image()
assert wc_image.size == (wc.width, wc.height)
# check that numpy conversion works
wc_array = np.array(wc)
assert_array_equal(wc_array, wc.to_array())
# check size
assert wc_array.shape == (wc.height, wc.width, 3)
def test_stopwords_lowercasing():
# test that capitalized stopwords work.
wc = WordCloud(stopwords=["Beautiful"])
processed = wc.process_text(THIS)
words = [count[0] for count in processed]
assert "Beautiful" not in words
def test_writing_to_file(tmpdir):
wc = WordCloud()
wc.generate(THIS)
# check writing to file
filename = str(tmpdir.join("word_cloud.png"))
wc.to_file(filename)
loaded_image = Image.open(filename)
assert loaded_image.size == (wc.width, wc.height)
def test_check_errors():
wc = WordCloud()
try:
np.array(wc)
raise AssertionError("np.array(wc) didn't raise")
except ValueError as e:
assert "call generate" in str(e)
try:
wc.recolor()
raise AssertionError("wc.recolor didn't raise")
except ValueError as e:
assert "call generate" in str(e)
def test_svg_syntax():
wc = WordCloud()
wc.generate(THIS)
svg = wc.to_svg()
ET.fromstring(svg)
def test_recolor():
wc = WordCloud(max_words=50, colormap="jet")
wc.generate(THIS)
array_before = wc.to_array()
wc.recolor()
array_after = wc.to_array()
# check that the same places are filled
assert_array_equal(array_before.sum(axis=-1) != 0,
array_after.sum(axis=-1) != 0)
# check that they are not the same
assert np.abs(array_before - array_after).sum() > 10000
# check that recoloring is deterministic
wc.recolor(random_state=10)
wc_again = wc.to_array()
assert_array_equal(wc_again, wc.recolor(random_state=10))
def test_random_state():
# check that random state makes everything deterministic
wc = WordCloud(random_state=0)
wc2 = WordCloud(random_state=0)
wc.generate(THIS)
wc2.generate(THIS)
assert_array_equal(wc, wc2)
def test_mask():
# test masks
# check that using an empty mask is equivalent to not using a mask
wc = WordCloud(random_state=42)
wc.generate(THIS)
mask = np.zeros(np.array(wc).shape[:2], dtype=int)
wc_mask = WordCloud(mask=mask, random_state=42)
wc_mask.generate(THIS)
assert_array_equal(wc, wc_mask)
# use actual nonzero mask
mask = np.zeros((234, 456), dtype=int)
mask[100:150, 300:400] = 255
wc = WordCloud(mask=mask)
wc.generate(THIS)
wc_array = np.array(wc)
assert mask.shape == wc_array.shape[:2]
assert_array_equal(wc_array[mask != 0], 0)
assert wc_array[mask == 0].sum() > 10000
def test_mask_contour():
# test mask contour is created, learn more at:
# https://github.com/amueller/word_cloud/pull/348#issuecomment-370883873
mask = np.zeros((234, 456), dtype=int)
mask[100:150, 300:400] = 255
sm = WordCloud(mask=mask, contour_width=1, contour_color='blue')
sm.generate(THIS)
sm_array = np.array(sm)
sm_total = sm_array[100:150, 300:400].sum()
lg = WordCloud(mask=mask, contour_width=20, contour_color='blue')
lg.generate(THIS)
lg_array = np.array(lg)
lg_total = lg_array[100:150, 300:400].sum()
sc = WordCloud(mask=mask, contour_width=1, scale=2, contour_color='blue')
sc.generate(THIS)
sc_array = np.array(sc)
sc_total = sc_array[100:150, 300:400].sum()
# test `contour_width`
assert lg_total > sm_total
# test contour varies with `scale`
assert sc_total > sm_total
# test `contour_color`
assert all(sm_array[100, 300] == [0, 0, 255])
def test_single_color_func():
# test single color function for different color formats
random = Random(42)
red_function = get_single_color_func('red')
assert red_function(random_state=random) == 'rgb(181, 0, 0)'
hex_function = get_single_color_func('#00b4d2')
assert hex_function(random_state=random) == 'rgb(0, 48, 56)'
rgb_function = get_single_color_func('rgb(0,255,0)')
assert rgb_function(random_state=random) == 'rgb(0, 107, 0)'
rgb_perc_fun = get_single_color_func('rgb(80%,60%,40%)')
assert rgb_perc_fun(random_state=random) == 'rgb(97, 72, 48)'
hsl_function = get_single_color_func('hsl(0,100%,50%)')
assert hsl_function(random_state=random) == 'rgb(201, 0, 0)'
def test_single_color_func_grey():
# grey is special as it's a corner case
random = Random(42)
red_function = get_single_color_func('darkgrey')
assert red_function(random_state=random) == 'rgb(181, 181, 181)'
assert red_function(random_state=random) == 'rgb(56, 56, 56)'
def test_process_text():
# test that process function returns a dict
wc = WordCloud(max_words=50)
result = wc.process_text(THIS)
# check for proper return type
assert isinstance(result, dict)
def test_process_text_default_patterns():
wc = WordCloud(stopwords=set(), include_numbers=True, min_word_length=2)
words = wc.process_text(THIS)
wc2 = WordCloud(stopwords=set(), include_numbers=True, min_word_length=1)
words2 = wc2.process_text(THIS)
assert "a" not in words
assert "3" not in words
assert "a" in words2
assert "3" in words2
def test_process_text_regexp_parameter():
# test that word processing is influenced by `regexp`
wc = WordCloud(max_words=50, regexp=r'\w{5}')
words = wc.process_text(THIS)
assert 'than' not in words
def test_generate_from_frequencies():
# test that generate_from_frequencies() takes input argument dicts
wc = WordCloud(max_words=50)
words = wc.process_text(THIS)
result = wc.generate_from_frequencies(words)
assert isinstance(result, WordCloud)
def test_relative_scaling_zero():
# non-regression test for non-integer font size
wc = WordCloud(relative_scaling=0)
wc.generate(THIS)
def test_unicode_stopwords():
wc_unicode = WordCloud(stopwords=[u'Beautiful'])
try:
words_unicode = wc_unicode.process_text(unicode(THIS))
except NameError: # PY3
words_unicode = wc_unicode.process_text(THIS)
wc_str = WordCloud(stopwords=['Beautiful'])
words_str = wc_str.process_text(str(THIS))
assert words_unicode == words_str
def test_include_numbers():
wc_numbers = WordCloud(include_numbers=True)
wc = wc_numbers.process_text(THIS)
assert '14' in wc.keys()
def test_min_word_length():
wc_numbers = WordCloud(min_word_length=5)
wc = wc_numbers.process_text(THIS)
word_lengths = [len(word) for word in wc.keys()]
assert min(word_lengths) == 5
def test_recolor_too_small():
# check exception is raised when image is too small
colouring = np.array(Image.new('RGB', size=(20, 20)))
wc = WordCloud(width=30, height=30, random_state=0, min_font_size=1).generate(THIS)
image_colors = ImageColorGenerator(colouring)
with pytest.raises(ValueError, match='ImageColorGenerator is smaller than the canvas'):
wc.recolor(color_func=image_colors)
def test_recolor_too_small_set_default():
# check no exception is raised when default colour is used
colouring = np.array(Image.new('RGB', size=(20, 20)))
wc = WordCloud(max_words=50, width=30, height=30, min_font_size=1).generate(THIS)
image_colors = ImageColorGenerator(colouring, default_color=(0, 0, 0))
wc.recolor(color_func=image_colors)
def test_small_canvas():
# check font size fallback works on small canvas
wc = WordCloud(max_words=50, width=21, height=21)
wc.generate(SMALL_CANVAS)
assert len(wc.layout_) > 0
def test_tiny_canvas():
# check exception if canvas too small for fallback
w = WordCloud(max_words=50, width=1, height=1)
with pytest.raises(ValueError, match="Couldn't find space to draw"):
w.generate(THIS)
assert len(w.layout_) == 0
def test_coloring_black_works():
# check that using black colors works.
mask = np.zeros((50, 50, 3))
image_colors = ImageColorGenerator(mask)
wc = WordCloud(width=50, height=50, random_state=42,
color_func=image_colors, min_font_size=1)
wc.generate(THIS)
def test_repeat():
short_text = "Some short text"
wc = WordCloud(stopwords=[]).generate(short_text)
assert len(wc.layout_) == 3
wc = WordCloud(max_words=50, stopwords=[], repeat=True).generate(short_text)
# multiple of word count larger than max_words
assert len(wc.layout_) == 51
# relative scaling doesn't work well with repeat
assert wc.relative_scaling == 0
# all frequencies are 1
assert len(wc.words_) == 3
assert_array_equal(list(wc.words_.values()), 1)
frequencies = [w[0][1] for w in wc.layout_]
assert_array_equal(frequencies, 1)
repetition_text = "Some short text with text"
wc = WordCloud(max_words=52, stopwords=[], repeat=True)
wc.generate(repetition_text)
assert len(wc.words_) == 4
# normalized frequencies
assert wc.words_['text'] == 1
assert wc.words_['with'] == .5
assert len(wc.layout_), wc.max_words
frequencies = [w[0][1] for w in wc.layout_]
# check that frequencies are sorted
assert np.all(np.diff(frequencies) <= 0)
def test_zero_frequencies():
word_cloud = WordCloud()
word_cloud.generate_from_frequencies({'test': 1, 'test1': 0, 'test2': 0})
assert len(word_cloud.layout_) == 1
assert word_cloud.layout_[0][0][0] == 'test'
def test_plural_stopwords():
x = '''was was was was was was was was was was was was was was was
wa
hello hello hello hello hello hello hello hello
goodbye good bye maybe yes no'''
w = WordCloud().generate(x)
assert w.words_['wa'] < 1
w = WordCloud(collocations=False).generate(x)
assert w.words_['wa'] < 1
def test_max_font_size_as_mask_height():
# test if max font size will respect the mask height
x = '''hello hello hello
bye'''
# Get default wordcloud size
wcd = WordCloud()
default_size = (wcd.height, wcd.width)
# Make sure the size we are using is larger than the default size
size = (default_size[0] * 2, default_size[1] * 2)
# using mask, all drawable
mask = np.zeros(size, dtype=int)
mask[:, :] = 0
wc = WordCloud(mask=mask, random_state=42)
wc.generate(x)
# no mask
wc2 = WordCloud(width=size[1], height=size[0], random_state=42)
wc2.generate(x)
# Check if the biggest element has the same font size
assert wc.layout_[0][1] == wc2.layout_[0][1]
|