1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
|
from __future__ import absolute_import, division, print_function
import pandas as pd
import xarray as xr
from . import randn, requires_dask
try:
import dask # noqa
except ImportError:
pass
def make_bench_data(shape, frac_nan, chunks):
vals = randn(shape, frac_nan)
coords = {'time': pd.date_range('2000-01-01', freq='D',
periods=shape[0])}
da = xr.DataArray(vals, dims=('time', 'x', 'y'), coords=coords)
if chunks is not None:
da = da.chunk(chunks)
return da
def time_interpolate_na(shape, chunks, method, limit):
if chunks is not None:
requires_dask()
da = make_bench_data(shape, 0.1, chunks=chunks)
actual = da.interpolate_na(dim='time', method='linear', limit=limit)
if chunks is not None:
actual = actual.compute()
time_interpolate_na.param_names = ['shape', 'chunks', 'method', 'limit']
time_interpolate_na.params = ([(3650, 200, 400), (100, 25, 25)],
[None, {'x': 25, 'y': 25}],
['linear', 'spline', 'quadratic', 'cubic'],
[None, 3])
def time_ffill(shape, chunks, limit):
da = make_bench_data(shape, 0.1, chunks=chunks)
actual = da.ffill(dim='time', limit=limit)
if chunks is not None:
actual = actual.compute()
time_ffill.param_names = ['shape', 'chunks', 'limit']
time_ffill.params = ([(3650, 200, 400), (100, 25, 25)],
[None, {'x': 25, 'y': 25}],
[None, 3])
def time_bfill(shape, chunks, limit):
da = make_bench_data(shape, 0.1, chunks=chunks)
actual = da.bfill(dim='time', limit=limit)
if chunks is not None:
actual = actual.compute()
time_bfill.param_names = ['shape', 'chunks', 'limit']
time_bfill.params = ([(3650, 200, 400), (100, 25, 25)],
[None, {'x': 25, 'y': 25}],
[None, 3])
|