File: plot_rasterio.py

package info (click to toggle)
python-xarray 0.11.3-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 6,476 kB
  • sloc: python: 37,552; makefile: 231; sh: 1
file content (59 lines) | stat: -rw-r--r-- 1,704 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# -*- coding: utf-8 -*-
"""
.. _recipes.rasterio:

=================================
Parsing rasterio's geocoordinates
=================================


Converting a projection's cartesian coordinates into 2D longitudes and
latitudes.

These new coordinates might be handy for plotting and indexing, but it should
be kept in mind that a grid which is regular in projection coordinates will
likely be irregular in lon/lat. It is often recommended to work in the data's
original map projection (see :ref:`recipes.rasterio_rgb`).
"""

import os
import urllib.request

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import numpy as np
from rasterio.warp import transform

import xarray as xr

# Download the file from rasterio's repository
url = 'https://github.com/mapbox/rasterio/raw/master/tests/data/RGB.byte.tif'
urllib.request.urlretrieve(url, 'RGB.byte.tif')

# Read the data
da = xr.open_rasterio('RGB.byte.tif')

# Compute the lon/lat coordinates with rasterio.warp.transform
ny, nx = len(da['y']), len(da['x'])
x, y = np.meshgrid(da['x'], da['y'])

# Rasterio works with 1D arrays
lon, lat = transform(da.crs, {'init': 'EPSG:4326'},
                     x.flatten(), y.flatten())
lon = np.asarray(lon).reshape((ny, nx))
lat = np.asarray(lat).reshape((ny, nx))
da.coords['lon'] = (('y', 'x'), lon)
da.coords['lat'] = (('y', 'x'), lat)

# Compute a greyscale out of the rgb image
greyscale = da.mean(dim='band')

# Plot on a map
ax = plt.subplot(projection=ccrs.PlateCarree())
greyscale.plot(ax=ax, x='lon', y='lat', transform=ccrs.PlateCarree(),
               cmap='Greys_r', add_colorbar=False)
ax.coastlines('10m', color='r')
plt.show()

# Delete the file
os.remove('RGB.byte.tif')