1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
|
.. _installing:
Installation
============
Required dependencies
---------------------
- Python 2.7 [1]_, 3.5, 3.6, or 3.7
- `numpy <http://www.numpy.org/>`__ (1.12 or later)
- `pandas <http://pandas.pydata.org/>`__ (0.19.2 or later)
Optional dependencies
---------------------
For netCDF and IO
~~~~~~~~~~~~~~~~~
- `netCDF4 <https://github.com/Unidata/netcdf4-python>`__: recommended if you
want to use xarray for reading or writing netCDF files
- `scipy <http://scipy.org/>`__: used as a fallback for reading/writing netCDF3
- `pydap <http://www.pydap.org/>`__: used as a fallback for accessing OPeNDAP
- `h5netcdf <https://github.com/shoyer/h5netcdf>`__: an alternative library for
reading and writing netCDF4 files that does not use the netCDF-C libraries
- `pynio <https://www.pyngl.ucar.edu/Nio.shtml>`__: for reading GRIB and other
geoscience specific file formats
- `zarr <http://zarr.readthedocs.io/>`__: for chunked, compressed, N-dimensional arrays.
- `cftime <https://unidata.github.io/cftime>`__: recommended if you
want to encode/decode datetimes for non-standard calendars or dates before
year 1678 or after year 2262.
- `PseudoNetCDF <http://github.com/barronh/pseudonetcdf/>`__: recommended
for accessing CAMx, GEOS-Chem (bpch), NOAA ARL files, ICARTT files
(ffi1001) and many other.
- `rasterio <https://github.com/mapbox/rasterio>`__: for reading GeoTiffs and
other gridded raster datasets. (version 1.0 or later)
- `iris <https://github.com/scitools/iris>`__: for conversion to and from iris'
Cube objects
- `cfgrib <https://github.com/ecmwf/cfgrib>`__: for reading GRIB files via the
*ECMWF ecCodes* library.
For accelerating xarray
~~~~~~~~~~~~~~~~~~~~~~~
- `scipy <http://scipy.org/>`__: necessary to enable the interpolation features for xarray objects
- `bottleneck <https://github.com/kwgoodman/bottleneck>`__: speeds up
NaN-skipping and rolling window aggregations by a large factor
(1.1 or later)
- `cyordereddict <https://github.com/shoyer/cyordereddict>`__: speeds up most
internal operations with xarray data structures (for python versions < 3.5)
For parallel computing
~~~~~~~~~~~~~~~~~~~~~~
- `dask.array <http://dask.pydata.org>`__ (0.16 or later): required for
:ref:`dask`.
For plotting
~~~~~~~~~~~~
- `matplotlib <http://matplotlib.org/>`__: required for :ref:`plotting`
(1.5 or later)
- `cartopy <http://scitools.org.uk/cartopy/>`__: recommended for
:ref:`plot-maps`
- `seaborn <https://stanford.edu/~mwaskom/software/seaborn/>`__: for better
color palettes
Instructions
------------
xarray itself is a pure Python package, but its dependencies are not. The
easiest way to get everything installed is to use conda_. To install xarray
with its recommended dependencies using the conda command line tool::
$ conda install xarray dask netCDF4 bottleneck
.. _conda: http://conda.io/
We recommend using the community maintained `conda-forge <https://conda-forge.github.io/>`__ channel if you need difficult\-to\-build dependencies such as cartopy, pynio or PseudoNetCDF::
$ conda install -c conda-forge xarray cartopy pynio pseudonetcdf
New releases may also appear in conda-forge before being updated in the default
channel.
If you don't use conda, be sure you have the required dependencies (numpy and
pandas) installed first. Then, install xarray with pip::
$ pip install xarray
Testing
-------
To run the test suite after installing xarray, first install (via pypi or conda)
- `py.test <https://pytest.org>`__: Simple unit testing library
- `mock <https://pypi.python.org/pypi/mock>`__: additional testing library required for python version 2
and run
``py.test --pyargs xarray``.
Performance Monitoring
~~~~~~~~~~~~~~~~~~~~~~
A fixed-point performance monitoring of (a part of) our codes can be seen on
`this page <https://tomaugspurger.github.io/asv-collection/xarray/>`__.
To run these benchmark tests in a local machine, first install
- `airspeed-velocity <https://asv.readthedocs.io/en/latest/>`__: a tool for benchmarking Python packages over their lifetime.
and run
``asv run # this will install some conda environments in ./.asv/envs``
.. [1] Xarray plans to drop support for python 2.7 at the end of 2018. This
means that new releases of xarray published after this date will only be
installable on python 3+ environments, but older versions of xarray will
always be available to python 2.7 users. For more information see the
following references:
- `Xarray Github issue discussing dropping Python 2 <https://github.com/pydata/xarray/issues/1829>`__
- `Python 3 Statement <http://www.python3statement.org/>`__
- `Tips on porting to Python 3 <https://docs.python.org/3/howto/pyporting.html>`__
|