1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
|
.. _io:
Serialization and IO
====================
xarray supports direct serialization and IO to several file formats, from
simple :ref:`io.pickle` files to the more flexible :ref:`io.netcdf`
format.
.. ipython:: python
:suppress:
import numpy as np
import pandas as pd
import xarray as xr
np.random.seed(123456)
.. _io.pickle:
Pickle
------
The simplest way to serialize an xarray object is to use Python's built-in pickle
module:
.. ipython:: python
import pickle
ds = xr.Dataset({'foo': (('x', 'y'), np.random.rand(4, 5))},
coords={'x': [10, 20, 30, 40],
'y': pd.date_range('2000-01-01', periods=5),
'z': ('x', list('abcd'))})
# use the highest protocol (-1) because it is way faster than the default
# text based pickle format
pkl = pickle.dumps(ds, protocol=-1)
pickle.loads(pkl)
Pickling is important because it doesn't require any external libraries
and lets you use xarray objects with Python modules like
:py:mod:`multiprocessing` or :ref:`Dask <dask>`. However, pickling is
**not recommended for long-term storage**.
Restoring a pickle requires that the internal structure of the types for the
pickled data remain unchanged. Because the internal design of xarray is still
being refined, we make no guarantees (at this point) that objects pickled with
this version of xarray will work in future versions.
.. note::
When pickling an object opened from a NetCDF file, the pickle file will
contain a reference to the file on disk. If you want to store the actual
array values, load it into memory first with :py:meth:`~xarray.Dataset.load`
or :py:meth:`~xarray.Dataset.compute`.
.. _dictionary io:
Dictionary
----------
We can convert a ``Dataset`` (or a ``DataArray``) to a dict using
:py:meth:`~xarray.Dataset.to_dict`:
.. ipython:: python
d = ds.to_dict()
d
We can create a new xarray object from a dict using
:py:meth:`~xarray.Dataset.from_dict`:
.. ipython:: python
ds_dict = xr.Dataset.from_dict(d)
ds_dict
Dictionary support allows for flexible use of xarray objects. It doesn't
require external libraries and dicts can easily be pickled, or converted to
json, or geojson. All the values are converted to lists, so dicts might
be quite large.
.. _io.netcdf:
netCDF
------
The recommended way to store xarray data structures is `netCDF`__, which
is a binary file format for self-described datasets that originated
in the geosciences. xarray is based on the netCDF data model, so netCDF files
on disk directly correspond to :py:class:`~xarray.Dataset` objects.
NetCDF is supported on almost all platforms, and parsers exist
for the vast majority of scientific programming languages. Recent versions of
netCDF are based on the even more widely used HDF5 file-format.
__ http://www.unidata.ucar.edu/software/netcdf/
.. tip::
If you aren't familiar with this data format, the `netCDF FAQ`_ is a good
place to start.
.. _netCDF FAQ: http://www.unidata.ucar.edu/software/netcdf/docs/faq.html#What-Is-netCDF
Reading and writing netCDF files with xarray requires scipy or the
`netCDF4-Python`__ library to be installed (the later is required to
read/write netCDF V4 files and use the compression options described below).
__ https://github.com/Unidata/netcdf4-python
We can save a Dataset to disk using the
:py:attr:`Dataset.to_netcdf <xarray.Dataset.to_netcdf>` method:
.. ipython:: python
ds.to_netcdf('saved_on_disk.nc')
By default, the file is saved as netCDF4 (assuming netCDF4-Python is
installed). You can control the format and engine used to write the file with
the ``format`` and ``engine`` arguments.
We can load netCDF files to create a new Dataset using
:py:func:`~xarray.open_dataset`:
.. ipython:: python
ds_disk = xr.open_dataset('saved_on_disk.nc')
ds_disk
Similarly, a DataArray can be saved to disk using the
:py:attr:`DataArray.to_netcdf <xarray.DataArray.to_netcdf>` method, and loaded
from disk using the :py:func:`~xarray.open_dataarray` function. As netCDF files
correspond to :py:class:`~xarray.Dataset` objects, these functions internally
convert the ``DataArray`` to a ``Dataset`` before saving, and then convert back
when loading, ensuring that the ``DataArray`` that is loaded is always exactly
the same as the one that was saved.
A dataset can also be loaded or written to a specific group within a netCDF
file. To load from a group, pass a ``group`` keyword argument to the
``open_dataset`` function. The group can be specified as a path-like
string, e.g., to access subgroup 'bar' within group 'foo' pass
'/foo/bar' as the ``group`` argument. When writing multiple groups in one file,
pass ``mode='a'`` to ``to_netcdf`` to ensure that each call does not delete the
file.
Data is always loaded lazily from netCDF files. You can manipulate, slice and subset
Dataset and DataArray objects, and no array values are loaded into memory until
you try to perform some sort of actual computation. For an example of how these
lazy arrays work, see the OPeNDAP section below.
It is important to note that when you modify values of a Dataset, even one
linked to files on disk, only the in-memory copy you are manipulating in xarray
is modified: the original file on disk is never touched.
.. tip::
xarray's lazy loading of remote or on-disk datasets is often but not always
desirable. Before performing computationally intense operations, it is
often a good idea to load a Dataset (or DataArray) entirely into memory by
invoking the :py:meth:`~xarray.Dataset.load` method.
Datasets have a :py:meth:`~xarray.Dataset.close` method to close the associated
netCDF file. However, it's often cleaner to use a ``with`` statement:
.. ipython:: python
# this automatically closes the dataset after use
with xr.open_dataset('saved_on_disk.nc') as ds:
print(ds.keys())
Although xarray provides reasonable support for incremental reads of files on
disk, it does not support incremental writes, which can be a useful strategy
for dealing with datasets too big to fit into memory. Instead, xarray integrates
with dask.array (see :ref:`dask`), which provides a fully featured engine for
streaming computation.
It is possible to append or overwrite netCDF variables using the ``mode='a'``
argument. When using this option, all variables in the dataset will be written
to the original netCDF file, regardless if they exist in the original dataset.
.. _io.encoding:
Reading encoded data
~~~~~~~~~~~~~~~~~~~~
NetCDF files follow some conventions for encoding datetime arrays (as numbers
with a "units" attribute) and for packing and unpacking data (as
described by the "scale_factor" and "add_offset" attributes). If the argument
``decode_cf=True`` (default) is given to ``open_dataset``, xarray will attempt
to automatically decode the values in the netCDF objects according to
`CF conventions`_. Sometimes this will fail, for example, if a variable
has an invalid "units" or "calendar" attribute. For these cases, you can
turn this decoding off manually.
.. _CF conventions: http://cfconventions.org/
You can view this encoding information (among others) in the
:py:attr:`DataArray.encoding <xarray.DataArray.encoding>` and
:py:attr:`DataArray.encoding <xarray.DataArray.encoding>` attributes:
.. ipython::
:verbatim:
In [1]: ds_disk['y'].encoding
Out[1]:
{'zlib': False,
'shuffle': False,
'complevel': 0,
'fletcher32': False,
'contiguous': True,
'chunksizes': None,
'source': 'saved_on_disk.nc',
'original_shape': (5,),
'dtype': dtype('int64'),
'units': 'days since 2000-01-01 00:00:00',
'calendar': 'proleptic_gregorian'}
In [9]: ds_disk.encoding
Out[9]:
{'unlimited_dims': set(),
'source': 'saved_on_disk.nc'}
Note that all operations that manipulate variables other than indexing
will remove encoding information.
.. ipython:: python
:suppress:
ds_disk.close()
import os
os.remove('saved_on_disk.nc')
.. _io.netcdf.writing_encoded:
Writing encoded data
~~~~~~~~~~~~~~~~~~~~
Conversely, you can customize how xarray writes netCDF files on disk by
providing explicit encodings for each dataset variable. The ``encoding``
argument takes a dictionary with variable names as keys and variable specific
encodings as values. These encodings are saved as attributes on the netCDF
variables on disk, which allows xarray to faithfully read encoded data back into
memory.
It is important to note that using encodings is entirely optional: if you do not
supply any of these encoding options, xarray will write data to disk using a
default encoding, or the options in the ``encoding`` attribute, if set.
This works perfectly fine in most cases, but encoding can be useful for
additional control, especially for enabling compression.
In the file on disk, these encodings as saved as attributes on each variable, which
allow xarray and other CF-compliant tools for working with netCDF files to correctly
read the data.
Scaling and type conversions
............................
These encoding options work on any version of the netCDF file format:
- ``dtype``: Any valid NumPy dtype or string convertable to a dtype, e.g., ``'int16'``
or ``'float32'``. This controls the type of the data written on disk.
- ``_FillValue``: Values of ``NaN`` in xarray variables are remapped to this value when
saved on disk. This is important when converting floating point with missing values
to integers on disk, because ``NaN`` is not a valid value for integer dtypes. As a
default, variables with float types are attributed a ``_FillValue`` of ``NaN`` in the
output file, unless explicitly disabled with an encoding ``{'_FillValue': None}``.
- ``scale_factor`` and ``add_offset``: Used to convert from encoded data on disk to
to the decoded data in memory, according to the formula
``decoded = scale_factor * encoded + add_offset``.
These parameters can be fruitfully combined to compress discretized data on disk. For
example, to save the variable ``foo`` with a precision of 0.1 in 16-bit integers while
converting ``NaN`` to ``-9999``, we would use
``encoding={'foo': {'dtype': 'int16', 'scale_factor': 0.1, '_FillValue': -9999}}``.
Compression and decompression with such discretization is extremely fast.
.. _io.string-encoding:
String encoding
...............
xarray can write unicode strings to netCDF files in two ways:
- As variable length strings. This is only supported on netCDF4 (HDF5) files.
- By encoding strings into bytes, and writing encoded bytes as a character
array. The default encoding is UTF-8.
By default, we use variable length strings for compatible files and fall-back
to using encoded character arrays. Character arrays can be selected even for
netCDF4 files by setting the ``dtype`` field in ``encoding`` to ``S1``
(corresponding to NumPy's single-character bytes dtype).
If character arrays are used, the string encoding that was used is stored on
disk in the ``_Encoding`` attribute, which matches an ad-hoc convention
`adopted by the netCDF4-Python library <https://github.com/Unidata/netcdf4-python/pull/665>`_.
At the time of this writing (October 2017), a standard convention for indicating
string encoding for character arrays in netCDF files was
`still under discussion <https://github.com/Unidata/netcdf-c/issues/402>`_.
Technically, you can use
`any string encoding recognized by Python <https://docs.python.org/3/library/codecs.html#standard-encodings>`_ if you feel the need to deviate from UTF-8,
by setting the ``_Encoding`` field in ``encoding``. But
`we don't recommend it <http://utf8everywhere.org/>`_.
.. warning::
Missing values in bytes or unicode string arrays (represented by ``NaN`` in
xarray) are currently written to disk as empty strings ``''``. This means
missing values will not be restored when data is loaded from disk.
This behavior is likely to change in the future (:issue:`1647`).
Unfortunately, explicitly setting a ``_FillValue`` for string arrays to handle
missing values doesn't work yet either, though we also hope to fix this in the
future.
Chunk based compression
.......................
``zlib``, ``complevel``, ``fletcher32``, ``continguous`` and ``chunksizes``
can be used for enabling netCDF4/HDF5's chunk based compression, as described
in the `documentation for createVariable`_ for netCDF4-Python. This only works
for netCDF4 files and thus requires using ``format='netCDF4'`` and either
``engine='netcdf4'`` or ``engine='h5netcdf'``.
.. _documentation for createVariable: http://unidata.github.io/netcdf4-python/#netCDF4.Dataset.createVariable
Chunk based gzip compression can yield impressive space savings, especially
for sparse data, but it comes with significant performance overhead. HDF5
libraries can only read complete chunks back into memory, and maximum
decompression speed is in the range of 50-100 MB/s. Worse, HDF5's compression
and decompression currently cannot be parallelized with dask. For these reasons, we
recommend trying discretization based compression (described above) first.
Time units
..........
The ``units`` and ``calendar`` attributes control how xarray serializes ``datetime64`` and
``timedelta64`` arrays to datasets on disk as numeric values. The ``units`` encoding
should be a string like ``'days since 1900-01-01'`` for ``datetime64`` data or a string
like ``'days'`` for ``timedelta64`` data. ``calendar`` should be one of the calendar types
supported by netCDF4-python: 'standard', 'gregorian', 'proleptic_gregorian' 'noleap',
'365_day', '360_day', 'julian', 'all_leap', '366_day'.
By default, xarray uses the 'proleptic_gregorian' calendar and units of the smallest time
difference between values, with a reference time of the first time value.
.. _io.iris:
Iris
----
The Iris_ tool allows easy reading of common meteorological and climate model formats
(including GRIB and UK MetOffice PP files) into ``Cube`` objects which are in many ways very
similar to ``DataArray`` objects, while enforcing a CF-compliant data model. If iris is
installed xarray can convert a ``DataArray`` into a ``Cube`` using
:py:meth:`~xarray.DataArray.to_iris`:
.. ipython:: python
da = xr.DataArray(np.random.rand(4, 5), dims=['x', 'y'],
coords=dict(x=[10, 20, 30, 40],
y=pd.date_range('2000-01-01', periods=5)))
cube = da.to_iris()
cube
Conversely, we can create a new ``DataArray`` object from a ``Cube`` using
:py:meth:`~xarray.DataArray.from_iris`:
.. ipython:: python
da_cube = xr.DataArray.from_iris(cube)
da_cube
.. _Iris: http://scitools.org.uk/iris
OPeNDAP
-------
xarray includes support for `OPeNDAP`__ (via the netCDF4 library or Pydap), which
lets us access large datasets over HTTP.
__ http://www.opendap.org/
For example, we can open a connection to GBs of weather data produced by the
`PRISM`__ project, and hosted by `IRI`__ at Columbia:
__ http://www.prism.oregonstate.edu/
__ http://iri.columbia.edu/
.. ipython source code for this section
we don't use this to avoid hitting the DAP server on every doc build.
remote_data = xr.open_dataset(
'http://iridl.ldeo.columbia.edu/SOURCES/.OSU/.PRISM/.monthly/dods',
decode_times=False)
tmax = remote_data.tmax[:500, ::3, ::3]
tmax
@savefig opendap-prism-tmax.png
tmax[0].plot()
.. ipython::
:verbatim:
In [3]: remote_data = xr.open_dataset(
...: 'http://iridl.ldeo.columbia.edu/SOURCES/.OSU/.PRISM/.monthly/dods',
...: decode_times=False)
In [4]: remote_data
Out[4]:
<xarray.Dataset>
Dimensions: (T: 1422, X: 1405, Y: 621)
Coordinates:
* X (X) float32 -125.0 -124.958 -124.917 -124.875 -124.833 -124.792 -124.75 ...
* T (T) float32 -779.5 -778.5 -777.5 -776.5 -775.5 -774.5 -773.5 -772.5 -771.5 ...
* Y (Y) float32 49.9167 49.875 49.8333 49.7917 49.75 49.7083 49.6667 49.625 ...
Data variables:
ppt (T, Y, X) float64 ...
tdmean (T, Y, X) float64 ...
tmax (T, Y, X) float64 ...
tmin (T, Y, X) float64 ...
Attributes:
Conventions: IRIDL
expires: 1375315200
.. TODO: update this example to show off decode_cf?
.. note::
Like many real-world datasets, this dataset does not entirely follow
`CF conventions`_. Unexpected formats will usually cause xarray's automatic
decoding to fail. The way to work around this is to either set
``decode_cf=False`` in ``open_dataset`` to turn off all use of CF
conventions, or by only disabling the troublesome parser.
In this case, we set ``decode_times=False`` because the time axis here
provides the calendar attribute in a format that xarray does not expect
(the integer ``360`` instead of a string like ``'360_day'``).
We can select and slice this data any number of times, and nothing is loaded
over the network until we look at particular values:
.. ipython::
:verbatim:
In [4]: tmax = remote_data['tmax'][:500, ::3, ::3]
In [5]: tmax
Out[5]:
<xarray.DataArray 'tmax' (T: 500, Y: 207, X: 469)>
[48541500 values with dtype=float64]
Coordinates:
* Y (Y) float32 49.9167 49.7917 49.6667 49.5417 49.4167 49.2917 ...
* X (X) float32 -125.0 -124.875 -124.75 -124.625 -124.5 -124.375 ...
* T (T) float32 -779.5 -778.5 -777.5 -776.5 -775.5 -774.5 -773.5 ...
Attributes:
pointwidth: 120
standard_name: air_temperature
units: Celsius_scale
expires: 1443657600
# the data is downloaded automatically when we make the plot
In [6]: tmax[0].plot()
.. image:: _static/opendap-prism-tmax.png
Some servers require authentication before we can access the data. For this
purpose we can explicitly create a :py:class:`~xarray.backends.PydapDataStore`
and pass in a `Requests`__ session object. For example for
HTTP Basic authentication::
import xarray as xr
import requests
session = requests.Session()
session.auth = ('username', 'password')
store = xr.backends.PydapDataStore.open('http://example.com/data',
session=session)
ds = xr.open_dataset(store)
`Pydap's cas module`__ has functions that generate custom sessions for
servers that use CAS single sign-on. For example, to connect to servers
that require NASA's URS authentication::
import xarray as xr
from pydata.cas.urs import setup_session
ds_url = 'https://gpm1.gesdisc.eosdis.nasa.gov/opendap/hyrax/example.nc'
session = setup_session('username', 'password', check_url=ds_url)
store = xr.backends.PydapDataStore.open(ds_url, session=session)
ds = xr.open_dataset(store)
__ http://docs.python-requests.org
__ http://pydap.readthedocs.io/en/latest/client.html#authentication
.. _io.rasterio:
Rasterio
--------
GeoTIFFs and other gridded raster datasets can be opened using `rasterio`_, if
rasterio is installed. Here is an example of how to use
:py:func:`~xarray.open_rasterio` to read one of rasterio's `test files`_:
.. ipython::
:verbatim:
In [7]: rio = xr.open_rasterio('RGB.byte.tif')
In [8]: rio
Out[8]:
<xarray.DataArray (band: 3, y: 718, x: 791)>
[1703814 values with dtype=uint8]
Coordinates:
* band (band) int64 1 2 3
* y (y) float64 2.827e+06 2.826e+06 2.826e+06 2.826e+06 2.826e+06 ...
* x (x) float64 1.021e+05 1.024e+05 1.027e+05 1.03e+05 1.033e+05 ...
Attributes:
res: (300.0379266750948, 300.041782729805)
transform: (300.0379266750948, 0.0, 101985.0, 0.0, -300.041782729805, 28...
is_tiled: 0
crs: +init=epsg:32618
The ``x`` and ``y`` coordinates are generated out of the file's metadata
(``bounds``, ``width``, ``height``), and they can be understood as cartesian
coordinates defined in the file's projection provided by the ``crs`` attribute.
``crs`` is a PROJ4 string which can be parsed by e.g. `pyproj`_ or rasterio.
See :ref:`recipes.rasterio` for an example of how to convert these to
longitudes and latitudes.
.. warning::
This feature has been added in xarray v0.9.6 and should still be
considered as being experimental. Please report any bug you may find
on xarray's github repository.
.. _rasterio: https://rasterio.readthedocs.io/en/latest/
.. _test files: https://github.com/mapbox/rasterio/blob/master/tests/data/RGB.byte.tif
.. _pyproj: https://github.com/jswhit/pyproj
.. _io.zarr:
Zarr
----
`Zarr`_ is a Python package providing an implementation of chunked, compressed,
N-dimensional arrays.
Zarr has the ability to store arrays in a range of ways, including in memory,
in files, and in cloud-based object storage such as `Amazon S3`_ and
`Google Cloud Storage`_.
Xarray's Zarr backend allows xarray to leverage these capabilities.
.. warning::
Zarr support is still an experimental feature. Please report any bugs or
unexepected behavior via github issues.
Xarray can't open just any zarr dataset, because xarray requires special
metadata (attributes) describing the dataset dimensions and coordinates.
At this time, xarray can only open zarr datasets that have been written by
xarray. To write a dataset with zarr, we use the
:py:attr:`Dataset.to_zarr <xarray.Dataset.to_zarr>` method.
To write to a local directory, we pass a path to a directory
.. ipython:: python
:suppress:
! rm -rf path/to/directory.zarr
.. ipython:: python
ds = xr.Dataset({'foo': (('x', 'y'), np.random.rand(4, 5))},
coords={'x': [10, 20, 30, 40],
'y': pd.date_range('2000-01-01', periods=5),
'z': ('x', list('abcd'))})
ds.to_zarr('path/to/directory.zarr')
(The suffix ``.zarr`` is optional--just a reminder that a zarr store lives
there.) If the directory does not exist, it will be created. If a zarr
store is already present at that path, an error will be raised, preventing it
from being overwritten. To override this behavior and overwrite an existing
store, add ``mode='w'`` when invoking ``to_zarr``.
To read back a zarr dataset that has been created this way, we use the
:py:func:`~xarray.open_zarr` method:
.. ipython:: python
ds_zarr = xr.open_zarr('path/to/directory.zarr')
ds_zarr
Cloud Storage Buckets
~~~~~~~~~~~~~~~~~~~~~
It is possible to read and write xarray datasets directly from / to cloud
storage buckets using zarr. This example uses the `gcsfs`_ package to provide
a ``MutableMapping`` interface to `Google Cloud Storage`_, which we can then
pass to xarray::
import gcsfs
fs = gcsfs.GCSFileSystem(project='<project-name>', token=None)
gcsmap = gcsfs.mapping.GCSMap('<bucket-name>', gcs=fs, check=True, create=False)
# write to the bucket
ds.to_zarr(store=gcsmap)
# read it back
ds_gcs = xr.open_zarr(gcsmap)
.. _Zarr: http://zarr.readthedocs.io/
.. _Amazon S3: https://aws.amazon.com/s3/
.. _Google Cloud Storage: https://cloud.google.com/storage/
.. _gcsfs: https://github.com/dask/gcsfs
Zarr Compressors and Filters
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are many different options for compression and filtering possible with
zarr. These are described in the
`zarr documentation <http://zarr.readthedocs.io/en/stable/tutorial.html#compressors>`_.
These options can be passed to the ``to_zarr`` method as variable encoding.
For example:
.. ipython:: python
:suppress:
! rm -rf foo.zarr
.. ipython:: python
import zarr
compressor = zarr.Blosc(cname='zstd', clevel=3, shuffle=2)
ds.to_zarr('foo.zarr', encoding={'foo': {'compressor': compressor}})
.. note::
Not all native zarr compression and filtering options have been tested with
xarray.
Consolidated Metadata
~~~~~~~~~~~~~~~~~~~~~
Xarray needs to read all of the zarr metadata when it opens a dataset.
In some storage mediums, such as with cloud object storage (e.g. amazon S3),
this can introduce significant overhead, because two separate HTTP calls to the
object store must be made for each variable in the dataset.
With version 2.3, zarr will support a feature called *consolidated metadata*,
which allows all metadata for the entire dataset to be stored with a single
key (by default called ``.zmetadata``). This can drastically speed up
opening the store. (For more information on this feature, consult the
`zarr docs <https://zarr.readthedocs.io/en/latest/tutorial.html#consolidating-metadata>`_.)
If you have zarr version 2.3 or greater, xarray can write and read stores
with consolidated metadata. To write consolidated metadata, pass the
``consolidated=True`` option to the
:py:attr:`Dataset.to_zarr <xarray.Dataset.to_zarr>` method::
ds.to_zarr('foo.zarr', consolidated=True)
To read a consolidated store, pass the ``consolidated=True`` option to
:py:func:`~xarray.open_zarr`::
ds = xr.open_zarr('foo.zarr', consolidated=True)
Xarray can't perform consolidation on pre-existing zarr datasets. This should
be done directly from zarr, as described in the
`zarr docs <https://zarr.readthedocs.io/en/latest/tutorial.html#consolidating-metadata>`_.
.. _io.cfgrib:
GRIB format via cfgrib
----------------------
xarray supports reading GRIB files via ECMWF cfgrib_ python driver and ecCodes_
C-library, if they are installed. To open a GRIB file supply ``engine='cfgrib'``
to :py:func:`~xarray.open_dataset`:
.. ipython::
:verbatim:
In [1]: ds_grib = xr.open_dataset('example.grib', engine='cfgrib')
We recommend installing ecCodes via conda::
conda install -c conda-forge eccodes
pip install cfgrib
.. _cfgrib: https://github.com/ecmwf/cfgrib
.. _ecCodes: https://confluence.ecmwf.int/display/ECC/ecCodes+Home
.. _io.pynio:
Formats supported by PyNIO
--------------------------
xarray can also read GRIB, HDF4 and other file formats supported by PyNIO_,
if PyNIO is installed. To use PyNIO to read such files, supply
``engine='pynio'`` to :py:func:`~xarray.open_dataset`.
We recommend installing PyNIO via conda::
conda install -c conda-forge pynio
.. _PyNIO: https://www.pyngl.ucar.edu/Nio.shtml
.. _io.PseudoNetCDF:
Formats supported by PseudoNetCDF
---------------------------------
xarray can also read CAMx, BPCH, ARL PACKED BIT, and many other file
formats supported by PseudoNetCDF_, if PseudoNetCDF is installed.
PseudoNetCDF can also provide Climate Forecasting Conventions to
CMAQ files. In addition, PseudoNetCDF can automatically register custom
readers that subclass PseudoNetCDF.PseudoNetCDFFile. PseudoNetCDF can
identify readers heuristically, or format can be specified via a key in
`backend_kwargs`.
To use PseudoNetCDF to read such files, supply
``engine='pseudonetcdf'`` to :py:func:`~xarray.open_dataset`.
Add ``backend_kwargs={'format': '<format name>'}`` where `<format name>`
options are listed on the PseudoNetCDF page.
.. _PseudoNetCDF: http://github.com/barronh/PseudoNetCDF
Formats supported by Pandas
---------------------------
For more options (tabular formats and CSV files in particular), consider
exporting your objects to pandas and using its broad range of `IO tools`_.
.. _IO tools: http://pandas.pydata.org/pandas-docs/stable/io.html
.. _combining multiple files:
Combining multiple files
------------------------
NetCDF files are often encountered in collections, e.g., with different files
corresponding to different model runs. xarray can straightforwardly combine such
files into a single Dataset by making use of :py:func:`~xarray.concat`.
.. note::
Xarray includes support for manipulating datasets that don't fit into memory
with dask_. If you have dask installed, you can open multiple files
simultaneously using :py:func:`~xarray.open_mfdataset`::
xr.open_mfdataset('my/files/*.nc')
This function automatically concatenates and merges multiple files into a
single xarray dataset.
It is the recommended way to open multiple files with xarray.
For more details, see :ref:`dask.io` and a `blog post`_ by Stephan Hoyer.
.. _dask: http://dask.pydata.org
.. _blog post: http://stephanhoyer.com/2015/06/11/xray-dask-out-of-core-labeled-arrays/
For example, here's how we could approximate ``MFDataset`` from the netCDF4
library::
from glob import glob
import xarray as xr
def read_netcdfs(files, dim):
# glob expands paths with * to a list of files, like the unix shell
paths = sorted(glob(files))
datasets = [xr.open_dataset(p) for p in paths]
combined = xr.concat(dataset, dim)
return combined
combined = read_netcdfs('/all/my/files/*.nc', dim='time')
This function will work in many cases, but it's not very robust. First, it
never closes files, which means it will fail one you need to load more than
a few thousands file. Second, it assumes that you want all the data from each
file and that it can all fit into memory. In many situations, you only need
a small subset or an aggregated summary of the data from each file.
Here's a slightly more sophisticated example of how to remedy these
deficiencies::
def read_netcdfs(files, dim, transform_func=None):
def process_one_path(path):
# use a context manager, to ensure the file gets closed after use
with xr.open_dataset(path) as ds:
# transform_func should do some sort of selection or
# aggregation
if transform_func is not None:
ds = transform_func(ds)
# load all data from the transformed dataset, to ensure we can
# use it after closing each original file
ds.load()
return ds
paths = sorted(glob(files))
datasets = [process_one_path(p) for p in paths]
combined = xr.concat(datasets, dim)
return combined
# here we suppose we only care about the combined mean of each file;
# you might also use indexing operations like .sel to subset datasets
combined = read_netcdfs('/all/my/files/*.nc', dim='time',
transform_func=lambda ds: ds.mean())
This pattern works well and is very robust. We've used similar code to process
tens of thousands of files constituting 100s of GB of data.
|