File: plotting.rst

package info (click to toggle)
python-xarray 0.11.3-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 6,476 kB
  • sloc: python: 37,552; makefile: 231; sh: 1
file content (753 lines) | stat: -rw-r--r-- 23,434 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
.. _plotting:

Plotting
========

Introduction
------------

Labeled data enables expressive computations. These same
labels can also be used to easily create informative plots.

xarray's plotting capabilities are centered around
:py:class:`xarray.DataArray` objects.
To plot :py:class:`xarray.Dataset` objects
simply access the relevant DataArrays, ie ``dset['var1']``.
Here we focus mostly on arrays 2d or larger. If your data fits
nicely into a pandas DataFrame then you're better off using one of the more
developed tools there.

xarray plotting functionality is a thin wrapper around the popular
`matplotlib <http://matplotlib.org/>`_ library.
Matplotlib syntax and function names were copied as much as possible, which
makes for an easy transition between the two.
Matplotlib must be installed before xarray can plot.

For more extensive plotting applications consider the following projects:

- `Seaborn <http://seaborn.pydata.org/>`_: "provides
  a high-level interface for drawing attractive statistical graphics."
  Integrates well with pandas.

- `HoloViews <http://holoviews.org/>`_
  and `GeoViews <http://geo.holoviews.org/>`_: "Composable, declarative
  data structures for building even complex visualizations easily." Includes
  native support for xarray objects.

- `Cartopy <http://scitools.org.uk/cartopy/>`_: Provides cartographic
  tools.

Imports
~~~~~~~

.. ipython:: python
    :suppress:

    # Use defaults so we don't get gridlines in generated docs
    import matplotlib as mpl
    mpl.rcdefaults()

The following imports are necessary for all of the examples.

.. ipython:: python

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import xarray as xr

For these examples we'll use the North American air temperature dataset.

.. ipython:: python

    airtemps = xr.tutorial.open_dataset('air_temperature')
    airtemps

    # Convert to celsius
    air = airtemps.air - 273.15

    # copy attributes to get nice figure labels and change Kelvin to Celsius
    air.attrs = airtemps.air.attrs
    air.attrs['units'] = 'deg C'

.. note::
   Until :issue:`1614` is solved, you might need to copy over the metadata in ``attrs`` to get informative figure labels (as was done above).


One Dimension
-------------

Simple Example
~~~~~~~~~~~~~~

The simplest way to make a plot is to call the :py:func:`xarray.DataArray.plot()` method.

.. ipython:: python

    air1d = air.isel(lat=10, lon=10)

    @savefig plotting_1d_simple.png width=4in
    air1d.plot()

xarray uses the coordinate name along with  metadata ``attrs.long_name``, ``attrs.standard_name``, ``DataArray.name`` and ``attrs.units`` (if available) to label the axes. The names ``long_name``, ``standard_name`` and ``units`` are copied from the `CF-conventions spec <http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/build/ch03s03.html>`_. When choosing names, the order of precedence is ``long_name``, ``standard_name`` and finally ``DataArray.name``. The y-axis label in the above plot was constructed from the ``long_name`` and ``units`` attributes of ``air1d``.

.. ipython:: python

    air1d.attrs

Additional Arguments
~~~~~~~~~~~~~~~~~~~~~

Additional arguments are passed directly to the matplotlib function which
does the work.
For example, :py:func:`xarray.plot.line` calls
matplotlib.pyplot.plot_ passing in the index and the array values as x and y, respectively.
So to make a line plot with blue triangles a matplotlib format string
can be used:

.. _matplotlib.pyplot.plot: http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot

.. ipython:: python

    @savefig plotting_1d_additional_args.png width=4in
    air1d[:200].plot.line('b-^')

.. note::
    Not all xarray plotting methods support passing positional arguments
    to the wrapped matplotlib functions, but they do all
    support keyword arguments.

Keyword arguments work the same way, and are more explicit.

.. ipython:: python

    @savefig plotting_example_sin3.png width=4in
    air1d[:200].plot.line(color='purple', marker='o')

Adding to Existing Axis
~~~~~~~~~~~~~~~~~~~~~~~

To add the plot to an existing axis pass in the axis as a keyword argument
``ax``. This works for all xarray plotting methods.
In this example ``axes`` is an array consisting of the left and right
axes created by ``plt.subplots``.

.. ipython:: python

    fig, axes = plt.subplots(ncols=2)

    axes

    air1d.plot(ax=axes[0])
    air1d.plot.hist(ax=axes[1])

    plt.tight_layout()

    @savefig plotting_example_existing_axes.png width=6in
    plt.draw()

On the right is a histogram created by :py:func:`xarray.plot.hist`.

.. _plotting.figsize:

Controlling the figure size
~~~~~~~~~~~~~~~~~~~~~~~~~~~

You can pass a ``figsize`` argument to all xarray's plotting methods to
control the figure size. For convenience, xarray's plotting methods also
support the ``aspect`` and ``size`` arguments which control the size of the
resulting image via the formula ``figsize = (aspect * size, size)``:

.. ipython:: python

    air1d.plot(aspect=2, size=3)
    @savefig plotting_example_size_and_aspect.png
    plt.tight_layout()

.. ipython:: python
    :suppress:

    # create a dummy figure so sphinx plots everything below normally
    plt.figure()

This feature also works with :ref:`plotting.faceting`. For facet plots,
``size`` and ``aspect`` refer to a single panel (so that ``aspect * size``
gives the width of each facet in inches), while ``figsize`` refers to the
entire figure (as for matplotlib's ``figsize`` argument).

.. note::

    If ``figsize`` or ``size`` are used, a new figure is created,
    so this is mutually exclusive with the ``ax`` argument.

.. note::

    The convention used by xarray (``figsize = (aspect * size, size)``) is
    borrowed from seaborn: it is therefore `not equivalent to matplotlib's`_.

.. _not equivalent to matplotlib's: https://github.com/mwaskom/seaborn/issues/746


.. _plotting.multiplelines:

Multiple lines showing variation along a dimension
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

It is possible to make line plots of two-dimensional data by calling :py:func:`xarray.plot.line`
with appropriate arguments. Consider the 3D variable ``air`` defined above. We can use line
plots to check the variation of air temperature at three different latitudes along a longitude line:

.. ipython:: python

    @savefig plotting_example_multiple_lines_x_kwarg.png
    air.isel(lon=10, lat=[19,21,22]).plot.line(x='time')

It is required to explicitly specify either

1. ``x``: the dimension to be used for the x-axis, or
2. ``hue``: the dimension you want to represent by multiple lines.

Thus, we could have made the previous plot by specifying ``hue='lat'`` instead of ``x='time'``.
If required, the automatic legend can be turned off using ``add_legend=False``. Alternatively,
``hue`` can be passed directly to :py:func:`xarray.plot` as `air.isel(lon=10, lat=[19,21,22]).plot(hue='lat')`.


Dimension along y-axis
~~~~~~~~~~~~~~~~~~~~~~

It is also possible to make line plots such that the data are on the x-axis and a dimension is on the y-axis. This can be done by specifying the appropriate ``y`` keyword argument.

.. ipython:: python

    @savefig plotting_example_xy_kwarg.png
    air.isel(time=10, lon=[10, 11]).plot(y='lat', hue='lon')

Step plots
~~~~~~~~~~

As an alternative, also a step plot similar to matplotlib's ``plt.step`` can be
made using 1D data. 

.. ipython:: python

    @savefig plotting_example_step.png width=4in
    air1d[:20].plot.step(where='mid')

The argument ``where`` defines where the steps should be placed, options are
``'pre'`` (default), ``'post'``, and ``'mid'``. This is particularly handy
when plotting data grouped with :py:func:`xarray.Dataset.groupby_bins`.

.. ipython:: python

    air_grp = air.mean(['time','lon']).groupby_bins('lat',[0,23.5,66.5,90])
    air_mean = air_grp.mean()
    air_std = air_grp.std()
    air_mean.plot.step()
    (air_mean + air_std).plot.step(ls=':')
    (air_mean - air_std).plot.step(ls=':')
    plt.ylim(-20,30)
    @savefig plotting_example_step_groupby.png width=4in
    plt.title('Zonal mean temperature')
    
In this case, the actual boundaries of the bins are used and the ``where`` argument
is ignored.


Other axes kwargs
-----------------


The keyword arguments ``xincrease`` and ``yincrease`` let you control the axes direction.

.. ipython:: python

    @savefig plotting_example_xincrease_yincrease_kwarg.png
    air.isel(time=10, lon=[10, 11]).plot.line(y='lat', hue='lon', xincrease=False, yincrease=False)

In addition, one can use ``xscale, yscale`` to set axes scaling; ``xticks, yticks`` to set axes ticks and ``xlim, ylim`` to set axes limits. These accept the same values as the matplotlib methods ``Axes.set_(x,y)scale()``, ``Axes.set_(x,y)ticks()``, ``Axes.set_(x,y)lim()`` respectively.


Two Dimensions
--------------

Simple Example
~~~~~~~~~~~~~~

The default method :py:meth:`xarray.DataArray.plot` calls :py:func:`xarray.plot.pcolormesh` by default when the data is two-dimensional.

.. ipython:: python

    air2d = air.isel(time=500)

    @savefig 2d_simple.png width=4in
    air2d.plot()

All 2d plots in xarray allow the use of the keyword arguments ``yincrease``
and ``xincrease``.

.. ipython:: python

    @savefig 2d_simple_yincrease.png width=4in
    air2d.plot(yincrease=False)

.. note::

    We use :py:func:`xarray.plot.pcolormesh` as the default two-dimensional plot
    method because it is more flexible than :py:func:`xarray.plot.imshow`.
    However, for large arrays, ``imshow`` can be much faster than ``pcolormesh``.
    If speed is important to you and you are plotting a regular mesh, consider
    using ``imshow``.

Missing Values
~~~~~~~~~~~~~~

xarray plots data with :ref:`missing_values`.

.. ipython:: python

    bad_air2d = air2d.copy()

    bad_air2d[dict(lat=slice(0, 10), lon=slice(0, 25))] = np.nan

    @savefig plotting_missing_values.png width=4in
    bad_air2d.plot()

Nonuniform Coordinates
~~~~~~~~~~~~~~~~~~~~~~

It's not necessary for the coordinates to be evenly spaced. Both
:py:func:`xarray.plot.pcolormesh` (default) and :py:func:`xarray.plot.contourf` can
produce plots with nonuniform coordinates.

.. ipython:: python

    b = air2d.copy()
    # Apply a nonlinear transformation to one of the coords
    b.coords['lat'] = np.log(b.coords['lat'])

    @savefig plotting_nonuniform_coords.png width=4in
    b.plot()

Calling Matplotlib
~~~~~~~~~~~~~~~~~~

Since this is a thin wrapper around matplotlib, all the functionality of
matplotlib is available.

.. ipython:: python

    air2d.plot(cmap=plt.cm.Blues)
    plt.title('These colors prove North America\nhas fallen in the ocean')
    plt.ylabel('latitude')
    plt.xlabel('longitude')
    plt.tight_layout()

    @savefig plotting_2d_call_matplotlib.png width=4in
    plt.draw()

.. note::

    xarray methods update label information and generally play around with the
    axes. So any kind of updates to the plot
    should be done *after* the call to the xarray's plot.
    In the example below, ``plt.xlabel`` effectively does nothing, since
    ``d_ylog.plot()`` updates the xlabel.

    .. ipython:: python

        plt.xlabel('Never gonna see this.')
        air2d.plot()

        @savefig plotting_2d_call_matplotlib2.png width=4in
        plt.draw()

Colormaps
~~~~~~~~~

xarray borrows logic from Seaborn to infer what kind of color map to use. For
example, consider the original data in Kelvins rather than Celsius:

.. ipython:: python

    @savefig plotting_kelvin.png width=4in
    airtemps.air.isel(time=0).plot()

The Celsius data contain 0, so a diverging color map was used. The
Kelvins do not have 0, so the default color map was used.

.. _robust-plotting:

Robust
~~~~~~

Outliers often have an extreme effect on the output of the plot.
Here we add two bad data points. This affects the color scale,
washing out the plot.

.. ipython:: python

    air_outliers = airtemps.air.isel(time=0).copy()
    air_outliers[0, 0] = 100
    air_outliers[-1, -1] = 400

    @savefig plotting_robust1.png width=4in
    air_outliers.plot()

This plot shows that we have outliers. The easy way to visualize
the data without the outliers is to pass the parameter
``robust=True``.
This will use the 2nd and 98th
percentiles of the data to compute the color limits.

.. ipython:: python

    @savefig plotting_robust2.png width=4in
    air_outliers.plot(robust=True)

Observe that the ranges of the color bar have changed. The arrows on the
color bar indicate
that the colors include data points outside the bounds.

Discrete Colormaps
~~~~~~~~~~~~~~~~~~

It is often useful, when visualizing 2d data, to use a discrete colormap,
rather than the default continuous colormaps that matplotlib uses. The
``levels`` keyword argument can be used to generate plots with discrete
colormaps. For example, to make a plot with 8 discrete color intervals:

.. ipython:: python

    @savefig plotting_discrete_levels.png width=4in
    air2d.plot(levels=8)

It is also possible to use a list of levels to specify the boundaries of the
discrete colormap:

.. ipython:: python

    @savefig plotting_listed_levels.png width=4in
    air2d.plot(levels=[0, 12, 18, 30])

You can also specify a list of discrete colors through the ``colors`` argument:

.. ipython:: python

    flatui = ["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e", "#2ecc71"]
    @savefig plotting_custom_colors_levels.png width=4in
    air2d.plot(levels=[0, 12, 18, 30], colors=flatui)

Finally, if you have `Seaborn <http://seaborn.pydata.org/>`_
installed, you can also specify a seaborn color palette to the ``cmap``
argument. Note that ``levels`` *must* be specified with seaborn color palettes
if using ``imshow`` or ``pcolormesh`` (but not with ``contour`` or ``contourf``,
since levels are chosen automatically).

.. ipython:: python
   :okwarning:

    @savefig plotting_seaborn_palette.png width=4in
    air2d.plot(levels=10, cmap='husl')
    plt.draw()

.. _plotting.faceting:

Faceting
--------

Faceting here refers to splitting an array along one or two dimensions and
plotting each group.
xarray's basic plotting is useful for plotting two dimensional arrays. What
about three or four dimensional arrays? That's where facets become helpful.

Consider the temperature data set. There are 4 observations per day for two
years which makes for 2920 values along the time dimension.
One way to visualize this data is to make a
separate plot for each time period.

The faceted dimension should not have too many values;
faceting on the time dimension will produce 2920 plots. That's
too much to be helpful. To handle this situation try performing
an operation that reduces the size of the data in some way. For example, we
could compute the average air temperature for each month and reduce the
size of this dimension from 2920 -> 12. A simpler way is
to just take a slice on that dimension.
So let's use a slice to pick 6 times throughout the first year.

.. ipython:: python

    t = air.isel(time=slice(0, 365 * 4, 250))
    t.coords

Simple Example
~~~~~~~~~~~~~~

The easiest way to create faceted plots is to pass in ``row`` or ``col``
arguments to the xarray plotting methods/functions. This returns a
:py:class:`xarray.plot.FacetGrid` object.

.. ipython:: python

    @savefig plot_facet_dataarray.png
    g_simple = t.plot(x='lon', y='lat', col='time', col_wrap=3)

Faceting also works for line plots.

.. ipython:: python

    @savefig plot_facet_dataarray_line.png
    g_simple_line = t.isel(lat=slice(0,None,4)).plot(x='lon', hue='lat', col='time', col_wrap=3)

4 dimensional
~~~~~~~~~~~~~

For 4 dimensional arrays we can use the rows and columns of the grids.
Here we create a 4 dimensional array by taking the original data and adding
a fixed amount. Now we can see how the temperature maps would compare if
one were much hotter.

.. ipython:: python

    t2 = t.isel(time=slice(0, 2))
    t4d = xr.concat([t2, t2 + 40], pd.Index(['normal', 'hot'], name='fourth_dim'))
    # This is a 4d array
    t4d.coords

    @savefig plot_facet_4d.png
    t4d.plot(x='lon', y='lat', col='time', row='fourth_dim')

Other features
~~~~~~~~~~~~~~

Faceted plotting supports other arguments common to xarray 2d plots.

.. ipython:: python
   :suppress:

      plt.close('all')

.. ipython:: python

    hasoutliers = t.isel(time=slice(0, 5)).copy()
    hasoutliers[0, 0, 0] = -100
    hasoutliers[-1, -1, -1] = 400

    @savefig plot_facet_robust.png
    g = hasoutliers.plot.pcolormesh('lon', 'lat', col='time', col_wrap=3,
                                    robust=True, cmap='viridis',
				    cbar_kwargs={'label': 'this has outliers'})

FacetGrid Objects
~~~~~~~~~~~~~~~~~

:py:class:`xarray.plot.FacetGrid` is used to control the behavior of the
multiple plots.
It borrows an API and code from `Seaborn's FacetGrid
<http://seaborn.pydata.org/tutorial/axis_grids.html>`_.
The structure is contained within the ``axes`` and ``name_dicts``
attributes, both 2d Numpy object arrays.

.. ipython:: python

    g.axes

    g.name_dicts

It's possible to select the :py:class:`xarray.DataArray` or
:py:class:`xarray.Dataset` corresponding to the FacetGrid through the
``name_dicts``.

.. ipython:: python

   g.data.loc[g.name_dicts[0, 0]]

Here is an example of using the lower level API and then modifying the axes after
they have been plotted.

.. ipython:: python

    g = t.plot.imshow('lon', 'lat', col='time', col_wrap=3, robust=True)

    for i, ax in enumerate(g.axes.flat):
        ax.set_title('Air Temperature %d' % i)

    bottomright = g.axes[-1, -1]
    bottomright.annotate('bottom right', (240, 40))

    @savefig plot_facet_iterator.png
    plt.draw()

TODO: add an example of using the ``map`` method to plot dataset variables
(e.g., with ``plt.quiver``).

.. _plot-maps:

Maps
----

To follow this section you'll need to have Cartopy installed and working.

This script will plot the air temperature on a map.

.. ipython:: python

    import cartopy.crs as ccrs
    air = xr.tutorial.open_dataset('air_temperature').air
    ax = plt.axes(projection=ccrs.Orthographic(-80, 35))
    air.isel(time=0).plot.contourf(ax=ax, transform=ccrs.PlateCarree());
    @savefig plotting_maps_cartopy.png width=100%
    ax.set_global(); ax.coastlines();

When faceting on maps, the projection can be transferred to the ``plot``
function using the ``subplot_kws`` keyword. The axes for the subplots created
by faceting are accessible in the object returned by ``plot``:

.. ipython:: python

    p = air.isel(time=[0, 4]).plot(transform=ccrs.PlateCarree(), col='time',
                                   subplot_kws={'projection': ccrs.Orthographic(-80, 35)})
    for ax in p.axes.flat:
        ax.coastlines()
        ax.gridlines()
    @savefig plotting_maps_cartopy_facetting.png width=100%
    plt.draw();


Details
-------

Ways to Use
~~~~~~~~~~~

There are three ways to use the xarray plotting functionality:

1. Use ``plot`` as a convenience method for a DataArray.

2. Access a specific plotting method from the ``plot`` attribute of a
   DataArray.

3. Directly from the xarray plot submodule.

These are provided for user convenience; they all call the same code.

.. ipython:: python

    import xarray.plot as xplt
    da = xr.DataArray(range(5))
    fig, axes = plt.subplots(ncols=2, nrows=2)
    da.plot(ax=axes[0, 0])
    da.plot.line(ax=axes[0, 1])
    xplt.plot(da, ax=axes[1, 0])
    xplt.line(da, ax=axes[1, 1])
    plt.tight_layout()
    @savefig plotting_ways_to_use.png width=6in
    plt.draw()

Here the output is the same. Since the data is 1 dimensional the line plot
was used.

The convenience method :py:meth:`xarray.DataArray.plot` dispatches to an appropriate
plotting function based on the dimensions of the ``DataArray`` and whether
the coordinates are sorted and uniformly spaced. This table
describes what gets plotted:

=============== ===========================
Dimensions      Plotting function
--------------- ---------------------------
1               :py:func:`xarray.plot.line`
2               :py:func:`xarray.plot.pcolormesh`
Anything else   :py:func:`xarray.plot.hist`
=============== ===========================

Coordinates
~~~~~~~~~~~

If you'd like to find out what's really going on in the coordinate system,
read on.

.. ipython:: python

    a0 = xr.DataArray(np.zeros((4, 3, 2)), dims=('y', 'x', 'z'),
                      name='temperature')
    a0[0, 0, 0] = 1
    a = a0.isel(z=0)
    a

The plot will produce an image corresponding to the values of the array.
Hence the top left pixel will be a different color than the others.
Before reading on, you may want to look at the coordinates and
think carefully about what the limits, labels, and orientation for
each of the axes should be.

.. ipython:: python

    @savefig plotting_example_2d_simple.png width=4in
    a.plot()

It may seem strange that
the values on the y axis are decreasing with -0.5 on the top. This is because
the pixels are centered over their coordinates, and the
axis labels and ranges correspond to the values of the
coordinates.

Multidimensional coordinates
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

See also: :ref:`examples.multidim`.

You can plot irregular grids defined by multidimensional coordinates with
xarray, but you'll have to tell the plot function to use these coordinates
instead of the default ones:

.. ipython:: python

    lon, lat = np.meshgrid(np.linspace(-20, 20, 5), np.linspace(0, 30, 4))
    lon += lat/10
    lat += lon/10
    da = xr.DataArray(np.arange(20).reshape(4, 5), dims=['y', 'x'],
                      coords = {'lat': (('y', 'x'), lat),
                                'lon': (('y', 'x'), lon)})

    @savefig plotting_example_2d_irreg.png width=4in
    da.plot.pcolormesh('lon', 'lat');

Note that in this case, xarray still follows the pixel centered convention.
This might be undesirable in some cases, for example when your data is defined
on a polar projection (:issue:`781`). This is why the default is to not follow
this convention when plotting on a map:

.. ipython:: python

    import cartopy.crs as ccrs
    ax = plt.subplot(projection=ccrs.PlateCarree());
    da.plot.pcolormesh('lon', 'lat', ax=ax);
    ax.scatter(lon, lat, transform=ccrs.PlateCarree());
    @savefig plotting_example_2d_irreg_map.png width=4in
    ax.coastlines(); ax.gridlines(draw_labels=True);

You can however decide to infer the cell boundaries and use the
``infer_intervals`` keyword:

.. ipython:: python

    ax = plt.subplot(projection=ccrs.PlateCarree());
    da.plot.pcolormesh('lon', 'lat', ax=ax, infer_intervals=True);
    ax.scatter(lon, lat, transform=ccrs.PlateCarree());
    @savefig plotting_example_2d_irreg_map_infer.png width=4in
    ax.coastlines(); ax.gridlines(draw_labels=True);

.. note::
    The data model of xarray does not support datasets with `cell boundaries`_
    yet. If you want to use these coordinates, you'll have to make the plots
    outside the xarray framework.

.. _cell boundaries: http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html#cell-boundaries

One can also make line plots with multidimensional coordinates. In this case, ``hue`` must be a dimension name, not a coordinate name.

.. ipython:: python

    f, ax = plt.subplots(2, 1)
    da.plot.line(x='lon', hue='y', ax=ax[0]);
    @savefig plotting_example_2d_hue_xy.png
    da.plot.line(x='lon', hue='x', ax=ax[1]);