1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
|
from __future__ import absolute_import, division, print_function
import pickle
from distutils.version import LooseVersion
from textwrap import dedent
import numpy as np
import pandas as pd
import pytest
import xarray as xr
import xarray.ufuncs as xu
from xarray import DataArray, Dataset, Variable
from xarray.core.pycompat import OrderedDict, suppress
from xarray.tests import mock
from . import (
assert_allclose, assert_array_equal, assert_equal, assert_frame_equal,
assert_identical, raises_regex)
dask = pytest.importorskip('dask')
da = pytest.importorskip('dask.array')
dd = pytest.importorskip('dask.dataframe')
class DaskTestCase(object):
def assertLazyAnd(self, expected, actual, test):
with (dask.config.set(scheduler='single-threaded')
if LooseVersion(dask.__version__) >= LooseVersion('0.18.0')
else dask.set_options(get=dask.get)):
test(actual, expected)
if isinstance(actual, Dataset):
for k, v in actual.variables.items():
if k in actual.dims:
assert isinstance(v.data, np.ndarray)
else:
assert isinstance(v.data, da.Array)
elif isinstance(actual, DataArray):
assert isinstance(actual.data, da.Array)
for k, v in actual.coords.items():
if k in actual.dims:
assert isinstance(v.data, np.ndarray)
else:
assert isinstance(v.data, da.Array)
elif isinstance(actual, Variable):
assert isinstance(actual.data, da.Array)
else:
assert False
class TestVariable(DaskTestCase):
def assertLazyAndIdentical(self, expected, actual):
self.assertLazyAnd(expected, actual, assert_identical)
def assertLazyAndAllClose(self, expected, actual):
self.assertLazyAnd(expected, actual, assert_allclose)
@pytest.fixture(autouse=True)
def setUp(self):
self.values = np.random.RandomState(0).randn(4, 6)
self.data = da.from_array(self.values, chunks=(2, 2))
self.eager_var = Variable(('x', 'y'), self.values)
self.lazy_var = Variable(('x', 'y'), self.data)
def test_basics(self):
v = self.lazy_var
assert self.data is v.data
assert self.data.chunks == v.chunks
assert_array_equal(self.values, v)
def test_copy(self):
self.assertLazyAndIdentical(self.eager_var, self.lazy_var.copy())
self.assertLazyAndIdentical(self.eager_var,
self.lazy_var.copy(deep=True))
def test_chunk(self):
for chunks, expected in [(None, ((2, 2), (2, 2, 2))),
(3, ((3, 1), (3, 3))),
({'x': 3, 'y': 3}, ((3, 1), (3, 3))),
({'x': 3}, ((3, 1), (2, 2, 2))),
({'x': (3, 1)}, ((3, 1), (2, 2, 2)))]:
rechunked = self.lazy_var.chunk(chunks)
assert rechunked.chunks == expected
self.assertLazyAndIdentical(self.eager_var, rechunked)
def test_indexing(self):
u = self.eager_var
v = self.lazy_var
self.assertLazyAndIdentical(u[0], v[0])
self.assertLazyAndIdentical(u[:1], v[:1])
self.assertLazyAndIdentical(u[[0, 1], [0, 1, 2]], v[[0, 1], [0, 1, 2]])
with raises_regex(TypeError, 'stored in a dask array'):
v[:1] = 0
def test_squeeze(self):
u = self.eager_var
v = self.lazy_var
self.assertLazyAndIdentical(u[0].squeeze(), v[0].squeeze())
def test_equals(self):
v = self.lazy_var
assert v.equals(v)
assert isinstance(v.data, da.Array)
assert v.identical(v)
assert isinstance(v.data, da.Array)
def test_transpose(self):
u = self.eager_var
v = self.lazy_var
self.assertLazyAndIdentical(u.T, v.T)
def test_shift(self):
u = self.eager_var
v = self.lazy_var
self.assertLazyAndIdentical(u.shift(x=2), v.shift(x=2))
self.assertLazyAndIdentical(u.shift(x=-2), v.shift(x=-2))
assert v.data.chunks == v.shift(x=1).data.chunks
def test_roll(self):
u = self.eager_var
v = self.lazy_var
self.assertLazyAndIdentical(u.roll(x=2), v.roll(x=2))
assert v.data.chunks == v.roll(x=1).data.chunks
def test_unary_op(self):
u = self.eager_var
v = self.lazy_var
self.assertLazyAndIdentical(-u, -v)
self.assertLazyAndIdentical(abs(u), abs(v))
self.assertLazyAndIdentical(u.round(), v.round())
def test_binary_op(self):
u = self.eager_var
v = self.lazy_var
self.assertLazyAndIdentical(2 * u, 2 * v)
self.assertLazyAndIdentical(u + u, v + v)
self.assertLazyAndIdentical(u[0] + u, v[0] + v)
def test_repr(self):
expected = dedent("""\
<xarray.Variable (x: 4, y: 6)>
dask.array<shape=(4, 6), dtype=float64, chunksize=(2, 2)>""")
assert expected == repr(self.lazy_var)
def test_pickle(self):
# Test that pickling/unpickling does not convert the dask
# backend to numpy
a1 = Variable(['x'], build_dask_array('x'))
a1.compute()
assert not a1._in_memory
assert kernel_call_count == 1
a2 = pickle.loads(pickle.dumps(a1))
assert kernel_call_count == 1
assert_identical(a1, a2)
assert not a1._in_memory
assert not a2._in_memory
def test_reduce(self):
u = self.eager_var
v = self.lazy_var
self.assertLazyAndAllClose(u.mean(), v.mean())
self.assertLazyAndAllClose(u.std(), v.std())
self.assertLazyAndAllClose(u.argmax(dim='x'), v.argmax(dim='x'))
self.assertLazyAndAllClose((u > 1).any(), (v > 1).any())
self.assertLazyAndAllClose((u < 1).all('x'), (v < 1).all('x'))
with raises_regex(NotImplementedError, 'dask'):
v.median()
def test_missing_values(self):
values = np.array([0, 1, np.nan, 3])
data = da.from_array(values, chunks=(2,))
eager_var = Variable('x', values)
lazy_var = Variable('x', data)
self.assertLazyAndIdentical(eager_var, lazy_var.fillna(lazy_var))
self.assertLazyAndIdentical(Variable('x', range(4)),
lazy_var.fillna(2))
self.assertLazyAndIdentical(eager_var.count(), lazy_var.count())
def test_concat(self):
u = self.eager_var
v = self.lazy_var
self.assertLazyAndIdentical(u, Variable.concat([v[:2], v[2:]], 'x'))
self.assertLazyAndIdentical(u[:2], Variable.concat([v[0], v[1]], 'x'))
self.assertLazyAndIdentical(u[:2], Variable.concat([u[0], v[1]], 'x'))
self.assertLazyAndIdentical(u[:2], Variable.concat([v[0], u[1]], 'x'))
self.assertLazyAndIdentical(
u[:3],
Variable.concat([v[[0, 2]], v[[1]]], 'x', positions=[[0, 2], [1]]))
def test_missing_methods(self):
v = self.lazy_var
try:
v.argsort()
except NotImplementedError as err:
assert 'dask' in str(err)
try:
v[0].item()
except NotImplementedError as err:
assert 'dask' in str(err)
@pytest.mark.filterwarnings('ignore::PendingDeprecationWarning')
def test_univariate_ufunc(self):
u = self.eager_var
v = self.lazy_var
self.assertLazyAndAllClose(np.sin(u), xu.sin(v))
@pytest.mark.filterwarnings('ignore::PendingDeprecationWarning')
def test_bivariate_ufunc(self):
u = self.eager_var
v = self.lazy_var
self.assertLazyAndAllClose(np.maximum(u, 0), xu.maximum(v, 0))
self.assertLazyAndAllClose(np.maximum(u, 0), xu.maximum(0, v))
def test_compute(self):
u = self.eager_var
v = self.lazy_var
assert dask.is_dask_collection(v)
(v2,) = dask.compute(v + 1)
assert not dask.is_dask_collection(v2)
assert ((u + 1).data == v2.data).all()
def test_persist(self):
u = self.eager_var
v = self.lazy_var + 1
(v2,) = dask.persist(v)
assert v is not v2
assert len(v2.__dask_graph__()) < len(v.__dask_graph__())
assert v2.__dask_keys__() == v.__dask_keys__()
assert dask.is_dask_collection(v)
assert dask.is_dask_collection(v2)
self.assertLazyAndAllClose(u + 1, v)
self.assertLazyAndAllClose(u + 1, v2)
class TestDataArrayAndDataset(DaskTestCase):
def assertLazyAndIdentical(self, expected, actual):
self.assertLazyAnd(expected, actual, assert_identical)
def assertLazyAndAllClose(self, expected, actual):
self.assertLazyAnd(expected, actual, assert_allclose)
def assertLazyAndEqual(self, expected, actual):
self.assertLazyAnd(expected, actual, assert_equal)
@pytest.fixture(autouse=True)
def setUp(self):
self.values = np.random.randn(4, 6)
self.data = da.from_array(self.values, chunks=(2, 2))
self.eager_array = DataArray(self.values, coords={'x': range(4)},
dims=('x', 'y'), name='foo')
self.lazy_array = DataArray(self.data, coords={'x': range(4)},
dims=('x', 'y'), name='foo')
def test_rechunk(self):
chunked = self.eager_array.chunk({'x': 2}).chunk({'y': 2})
assert chunked.chunks == ((2,) * 2, (2,) * 3)
self.assertLazyAndIdentical(self.lazy_array, chunked)
def test_new_chunk(self):
chunked = self.eager_array.chunk()
assert chunked.data.name.startswith('xarray-<this-array>')
def test_lazy_dataset(self):
lazy_ds = Dataset({'foo': (('x', 'y'), self.data)})
assert isinstance(lazy_ds.foo.variable.data, da.Array)
def test_lazy_array(self):
u = self.eager_array
v = self.lazy_array
self.assertLazyAndAllClose(u, v)
self.assertLazyAndAllClose(-u, -v)
self.assertLazyAndAllClose(u.T, v.T)
self.assertLazyAndAllClose(u.mean(), v.mean())
self.assertLazyAndAllClose(1 + u, 1 + v)
actual = xr.concat([v[:2], v[2:]], 'x')
self.assertLazyAndAllClose(u, actual)
def test_compute(self):
u = self.eager_array
v = self.lazy_array
assert dask.is_dask_collection(v)
(v2,) = dask.compute(v + 1)
assert not dask.is_dask_collection(v2)
assert ((u + 1).data == v2.data).all()
def test_persist(self):
u = self.eager_array
v = self.lazy_array + 1
(v2,) = dask.persist(v)
assert v is not v2
assert len(v2.__dask_graph__()) < len(v.__dask_graph__())
assert v2.__dask_keys__() == v.__dask_keys__()
assert dask.is_dask_collection(v)
assert dask.is_dask_collection(v2)
self.assertLazyAndAllClose(u + 1, v)
self.assertLazyAndAllClose(u + 1, v2)
def test_concat_loads_variables(self):
# Test that concat() computes not-in-memory variables at most once
# and loads them in the output, while leaving the input unaltered.
d1 = build_dask_array('d1')
c1 = build_dask_array('c1')
d2 = build_dask_array('d2')
c2 = build_dask_array('c2')
d3 = build_dask_array('d3')
c3 = build_dask_array('c3')
# Note: c is a non-index coord.
# Index coords are loaded by IndexVariable.__init__.
ds1 = Dataset(data_vars={'d': ('x', d1)}, coords={'c': ('x', c1)})
ds2 = Dataset(data_vars={'d': ('x', d2)}, coords={'c': ('x', c2)})
ds3 = Dataset(data_vars={'d': ('x', d3)}, coords={'c': ('x', c3)})
assert kernel_call_count == 0
out = xr.concat([ds1, ds2, ds3], dim='n', data_vars='different',
coords='different')
# each kernel is computed exactly once
assert kernel_call_count == 6
# variables are loaded in the output
assert isinstance(out['d'].data, np.ndarray)
assert isinstance(out['c'].data, np.ndarray)
out = xr.concat(
[ds1, ds2, ds3], dim='n', data_vars='all', coords='all')
# no extra kernel calls
assert kernel_call_count == 6
assert isinstance(out['d'].data, dask.array.Array)
assert isinstance(out['c'].data, dask.array.Array)
out = xr.concat(
[ds1, ds2, ds3], dim='n', data_vars=['d'], coords=['c'])
# no extra kernel calls
assert kernel_call_count == 6
assert isinstance(out['d'].data, dask.array.Array)
assert isinstance(out['c'].data, dask.array.Array)
out = xr.concat([ds1, ds2, ds3], dim='n', data_vars=[], coords=[])
# variables are loaded once as we are validing that they're identical
assert kernel_call_count == 12
assert isinstance(out['d'].data, np.ndarray)
assert isinstance(out['c'].data, np.ndarray)
out = xr.concat([ds1, ds2, ds3], dim='n', data_vars='different',
coords='different', compat='identical')
# compat=identical doesn't do any more kernel calls than compat=equals
assert kernel_call_count == 18
assert isinstance(out['d'].data, np.ndarray)
assert isinstance(out['c'].data, np.ndarray)
# When the test for different turns true halfway through,
# stop computing variables as it would not have any benefit
ds4 = Dataset(data_vars={'d': ('x', [2.0])},
coords={'c': ('x', [2.0])})
out = xr.concat([ds1, ds2, ds4, ds3], dim='n', data_vars='different',
coords='different')
# the variables of ds1 and ds2 were computed, but those of ds3 didn't
assert kernel_call_count == 22
assert isinstance(out['d'].data, dask.array.Array)
assert isinstance(out['c'].data, dask.array.Array)
# the data of ds1 and ds2 was loaded into numpy and then
# concatenated to the data of ds3. Thus, only ds3 is computed now.
out.compute()
assert kernel_call_count == 24
# Finally, test that riginals are unaltered
assert ds1['d'].data is d1
assert ds1['c'].data is c1
assert ds2['d'].data is d2
assert ds2['c'].data is c2
assert ds3['d'].data is d3
assert ds3['c'].data is c3
def test_groupby(self):
u = self.eager_array
v = self.lazy_array
expected = u.groupby('x').mean(xr.ALL_DIMS)
actual = v.groupby('x').mean(xr.ALL_DIMS)
self.assertLazyAndAllClose(expected, actual)
def test_groupby_first(self):
u = self.eager_array
v = self.lazy_array
for coords in [u.coords, v.coords]:
coords['ab'] = ('x', ['a', 'a', 'b', 'b'])
with raises_regex(NotImplementedError, 'dask'):
v.groupby('ab').first()
expected = u.groupby('ab').first()
actual = v.groupby('ab').first(skipna=False)
self.assertLazyAndAllClose(expected, actual)
def test_reindex(self):
u = self.eager_array.assign_coords(y=range(6))
v = self.lazy_array.assign_coords(y=range(6))
for kwargs in [{'x': [2, 3, 4]},
{'x': [1, 100, 2, 101, 3]},
{'x': [2.5, 3, 3.5], 'y': [2, 2.5, 3]}]:
expected = u.reindex(**kwargs)
actual = v.reindex(**kwargs)
self.assertLazyAndAllClose(expected, actual)
def test_to_dataset_roundtrip(self):
u = self.eager_array
v = self.lazy_array
expected = u.assign_coords(x=u['x'])
self.assertLazyAndEqual(expected, v.to_dataset('x').to_array('x'))
def test_merge(self):
def duplicate_and_merge(array):
return xr.merge([array, array.rename('bar')]).to_array()
expected = duplicate_and_merge(self.eager_array)
actual = duplicate_and_merge(self.lazy_array)
self.assertLazyAndEqual(expected, actual)
@pytest.mark.filterwarnings('ignore::PendingDeprecationWarning')
def test_ufuncs(self):
u = self.eager_array
v = self.lazy_array
self.assertLazyAndAllClose(np.sin(u), xu.sin(v))
def test_where_dispatching(self):
a = np.arange(10)
b = a > 3
x = da.from_array(a, 5)
y = da.from_array(b, 5)
expected = DataArray(a).where(b)
self.assertLazyAndEqual(expected, DataArray(a).where(y))
self.assertLazyAndEqual(expected, DataArray(x).where(b))
self.assertLazyAndEqual(expected, DataArray(x).where(y))
def test_simultaneous_compute(self):
ds = Dataset({'foo': ('x', range(5)),
'bar': ('x', range(5))}).chunk()
count = [0]
def counting_get(*args, **kwargs):
count[0] += 1
return dask.get(*args, **kwargs)
if dask.__version__ < '0.19.4':
ds.load(get=counting_get)
else:
ds.load(scheduler=counting_get)
assert count[0] == 1
def test_stack(self):
data = da.random.normal(size=(2, 3, 4), chunks=(1, 3, 4))
arr = DataArray(data, dims=('w', 'x', 'y'))
stacked = arr.stack(z=('x', 'y'))
z = pd.MultiIndex.from_product([np.arange(3), np.arange(4)],
names=['x', 'y'])
expected = DataArray(data.reshape(2, -1), {'z': z}, dims=['w', 'z'])
assert stacked.data.chunks == expected.data.chunks
self.assertLazyAndEqual(expected, stacked)
def test_dot(self):
eager = self.eager_array.dot(self.eager_array[0])
lazy = self.lazy_array.dot(self.lazy_array[0])
self.assertLazyAndAllClose(eager, lazy)
def test_dataarray_repr(self):
# Test that __repr__ converts the dask backend to numpy
# in neither the data variable nor the non-index coords
data = build_dask_array('data')
nonindex_coord = build_dask_array('coord')
a = DataArray(data, dims=['x'], coords={'y': ('x', nonindex_coord)})
expected = dedent("""\
<xarray.DataArray 'data' (x: 1)>
dask.array<shape=(1,), dtype=int64, chunksize=(1,)>
Coordinates:
y (x) int64 dask.array<shape=(1,), chunksize=(1,)>
Dimensions without coordinates: x""")
assert expected == repr(a)
assert kernel_call_count == 0
def test_dataset_repr(self):
# Test that pickling/unpickling converts the dask backend
# to numpy in neither the data variables nor the non-index coords
data = build_dask_array('data')
nonindex_coord = build_dask_array('coord')
ds = Dataset(data_vars={'a': ('x', data)},
coords={'y': ('x', nonindex_coord)})
expected = dedent("""\
<xarray.Dataset>
Dimensions: (x: 1)
Coordinates:
y (x) int64 dask.array<shape=(1,), chunksize=(1,)>
Dimensions without coordinates: x
Data variables:
a (x) int64 dask.array<shape=(1,), chunksize=(1,)>""")
assert expected == repr(ds)
assert kernel_call_count == 0
def test_dataarray_pickle(self):
# Test that pickling/unpickling converts the dask backend
# to numpy in neither the data variable nor the non-index coords
data = build_dask_array('data')
nonindex_coord = build_dask_array('coord')
a1 = DataArray(data, dims=['x'], coords={'y': ('x', nonindex_coord)})
a1.compute()
assert not a1._in_memory
assert not a1.coords['y']._in_memory
assert kernel_call_count == 2
a2 = pickle.loads(pickle.dumps(a1))
assert kernel_call_count == 2
assert_identical(a1, a2)
assert not a1._in_memory
assert not a2._in_memory
assert not a1.coords['y']._in_memory
assert not a2.coords['y']._in_memory
def test_dataset_pickle(self):
# Test that pickling/unpickling converts the dask backend
# to numpy in neither the data variables nor the non-index coords
data = build_dask_array('data')
nonindex_coord = build_dask_array('coord')
ds1 = Dataset(data_vars={'a': ('x', data)},
coords={'y': ('x', nonindex_coord)})
ds1.compute()
assert not ds1['a']._in_memory
assert not ds1['y']._in_memory
assert kernel_call_count == 2
ds2 = pickle.loads(pickle.dumps(ds1))
assert kernel_call_count == 2
assert_identical(ds1, ds2)
assert not ds1['a']._in_memory
assert not ds2['a']._in_memory
assert not ds1['y']._in_memory
assert not ds2['y']._in_memory
def test_dataarray_getattr(self):
# ipython/jupyter does a long list of getattr() calls to when trying to
# represent an object.
# Make sure we're not accidentally computing dask variables.
data = build_dask_array('data')
nonindex_coord = build_dask_array('coord')
a = DataArray(data, dims=['x'],
coords={'y': ('x', nonindex_coord)})
with suppress(AttributeError):
getattr(a, 'NOTEXIST')
assert kernel_call_count == 0
def test_dataset_getattr(self):
# Test that pickling/unpickling converts the dask backend
# to numpy in neither the data variables nor the non-index coords
data = build_dask_array('data')
nonindex_coord = build_dask_array('coord')
ds = Dataset(data_vars={'a': ('x', data)},
coords={'y': ('x', nonindex_coord)})
with suppress(AttributeError):
getattr(ds, 'NOTEXIST')
assert kernel_call_count == 0
def test_values(self):
# Test that invoking the values property does not convert the dask
# backend to numpy
a = DataArray([1, 2]).chunk()
assert not a._in_memory
assert a.values.tolist() == [1, 2]
assert not a._in_memory
def test_from_dask_variable(self):
# Test array creation from Variable with dask backend.
# This is used e.g. in broadcast()
a = DataArray(self.lazy_array.variable,
coords={'x': range(4)}, name='foo')
self.assertLazyAndIdentical(self.lazy_array, a)
class TestToDaskDataFrame(object):
def test_to_dask_dataframe(self):
# Test conversion of Datasets to dask DataFrames
x = da.from_array(np.random.randn(10), chunks=4)
y = np.arange(10, dtype='uint8')
t = list('abcdefghij')
ds = Dataset(OrderedDict([('a', ('t', x)),
('b', ('t', y)),
('t', ('t', t))]))
expected_pd = pd.DataFrame({'a': x,
'b': y},
index=pd.Index(t, name='t'))
# test if 1-D index is correctly set up
expected = dd.from_pandas(expected_pd, chunksize=4)
actual = ds.to_dask_dataframe(set_index=True)
# test if we have dask dataframes
assert isinstance(actual, dd.DataFrame)
# use the .equals from pandas to check dataframes are equivalent
assert_frame_equal(expected.compute(), actual.compute())
# test if no index is given
expected = dd.from_pandas(expected_pd.reset_index(drop=False),
chunksize=4)
actual = ds.to_dask_dataframe(set_index=False)
assert isinstance(actual, dd.DataFrame)
assert_frame_equal(expected.compute(), actual.compute())
def test_to_dask_dataframe_2D(self):
# Test if 2-D dataset is supplied
w = da.from_array(np.random.randn(2, 3), chunks=(1, 2))
ds = Dataset({'w': (('x', 'y'), w)})
ds['x'] = ('x', np.array([0, 1], np.int64))
ds['y'] = ('y', list('abc'))
# dask dataframes do not (yet) support multiindex,
# but when it does, this would be the expected index:
exp_index = pd.MultiIndex.from_arrays(
[[0, 0, 0, 1, 1, 1], ['a', 'b', 'c', 'a', 'b', 'c']],
names=['x', 'y'])
expected = pd.DataFrame({'w': w.reshape(-1)},
index=exp_index)
# so for now, reset the index
expected = expected.reset_index(drop=False)
actual = ds.to_dask_dataframe(set_index=False)
assert isinstance(actual, dd.DataFrame)
assert_frame_equal(expected, actual.compute())
@pytest.mark.xfail(raises=NotImplementedError)
def test_to_dask_dataframe_2D_set_index(self):
# This will fail until dask implements MultiIndex support
w = da.from_array(np.random.randn(2, 3), chunks=(1, 2))
ds = Dataset({'w': (('x', 'y'), w)})
ds['x'] = ('x', np.array([0, 1], np.int64))
ds['y'] = ('y', list('abc'))
expected = ds.compute().to_dataframe()
actual = ds.to_dask_dataframe(set_index=True)
assert isinstance(actual, dd.DataFrame)
assert_frame_equal(expected, actual.compute())
def test_to_dask_dataframe_coordinates(self):
# Test if coordinate is also a dask array
x = da.from_array(np.random.randn(10), chunks=4)
t = da.from_array(np.arange(10) * 2, chunks=4)
ds = Dataset(OrderedDict([('a', ('t', x)),
('t', ('t', t))]))
expected_pd = pd.DataFrame({'a': x},
index=pd.Index(t, name='t'))
expected = dd.from_pandas(expected_pd, chunksize=4)
actual = ds.to_dask_dataframe(set_index=True)
assert isinstance(actual, dd.DataFrame)
assert_frame_equal(expected.compute(), actual.compute())
def test_to_dask_dataframe_not_daskarray(self):
# Test if DataArray is not a dask array
x = np.random.randn(10)
y = np.arange(10, dtype='uint8')
t = list('abcdefghij')
ds = Dataset(OrderedDict([('a', ('t', x)),
('b', ('t', y)),
('t', ('t', t))]))
expected = pd.DataFrame({'a': x, 'b': y},
index=pd.Index(t, name='t'))
actual = ds.to_dask_dataframe(set_index=True)
assert isinstance(actual, dd.DataFrame)
assert_frame_equal(expected, actual.compute())
def test_to_dask_dataframe_no_coordinate(self):
x = da.from_array(np.random.randn(10), chunks=4)
ds = Dataset({'x': ('dim_0', x)})
expected = ds.compute().to_dataframe().reset_index()
actual = ds.to_dask_dataframe()
assert isinstance(actual, dd.DataFrame)
assert_frame_equal(expected, actual.compute())
expected = ds.compute().to_dataframe()
actual = ds.to_dask_dataframe(set_index=True)
assert isinstance(actual, dd.DataFrame)
assert_frame_equal(expected, actual.compute())
def test_to_dask_dataframe_dim_order(self):
values = np.array([[1, 2], [3, 4]], dtype=np.int64)
ds = Dataset({'w': (('x', 'y'), values)}).chunk(1)
expected = ds['w'].to_series().reset_index()
actual = ds.to_dask_dataframe(dim_order=['x', 'y'])
assert isinstance(actual, dd.DataFrame)
assert_frame_equal(expected, actual.compute())
expected = ds['w'].T.to_series().reset_index()
actual = ds.to_dask_dataframe(dim_order=['y', 'x'])
assert isinstance(actual, dd.DataFrame)
assert_frame_equal(expected, actual.compute())
with raises_regex(ValueError, 'does not match the set of dimensions'):
ds.to_dask_dataframe(dim_order=['x'])
@pytest.mark.parametrize("method", ['load', 'compute'])
def test_dask_kwargs_variable(method):
x = Variable('y', da.from_array(np.arange(3), chunks=(2,)))
# args should be passed on to da.Array.compute()
with mock.patch.object(da.Array, 'compute',
return_value=np.arange(3)) as mock_compute:
getattr(x, method)(foo='bar')
mock_compute.assert_called_with(foo='bar')
@pytest.mark.parametrize("method", ['load', 'compute', 'persist'])
def test_dask_kwargs_dataarray(method):
data = da.from_array(np.arange(3), chunks=(2,))
x = DataArray(data)
if method in ['load', 'compute']:
dask_func = 'dask.array.compute'
else:
dask_func = 'dask.persist'
# args should be passed on to "dask_func"
with mock.patch(dask_func) as mock_func:
getattr(x, method)(foo='bar')
mock_func.assert_called_with(data, foo='bar')
@pytest.mark.parametrize("method", ['load', 'compute', 'persist'])
def test_dask_kwargs_dataset(method):
data = da.from_array(np.arange(3), chunks=(2,))
x = Dataset({'x': (('y'), data)})
if method in ['load', 'compute']:
dask_func = 'dask.array.compute'
else:
dask_func = 'dask.persist'
# args should be passed on to "dask_func"
with mock.patch(dask_func) as mock_func:
getattr(x, method)(foo='bar')
mock_func.assert_called_with(data, foo='bar')
kernel_call_count = 0
def kernel(name):
"""Dask kernel to test pickling/unpickling and __repr__.
Must be global to make it pickleable.
"""
print("kernel(%s)" % name)
global kernel_call_count
kernel_call_count += 1
return np.ones(1, dtype=np.int64)
def build_dask_array(name):
global kernel_call_count
kernel_call_count = 0
return dask.array.Array(
dask={(name, 0): (kernel, name)}, name=name,
chunks=((1,),), dtype=np.int64)
# test both the perist method and the dask.persist function
# the dask.persist function requires a new version of dask
@pytest.mark.parametrize('persist', [lambda x: x.persist(),
lambda x: dask.persist(x)[0]])
def test_persist_Dataset(persist):
ds = Dataset({'foo': ('x', range(5)),
'bar': ('x', range(5))}).chunk()
ds = ds + 1
n = len(ds.foo.data.dask)
ds2 = persist(ds)
assert len(ds2.foo.data.dask) == 1
assert len(ds.foo.data.dask) == n # doesn't mutate in place
@pytest.mark.parametrize('persist', [lambda x: x.persist(),
lambda x: dask.persist(x)[0]])
def test_persist_DataArray(persist):
x = da.arange(10, chunks=(5,))
y = DataArray(x)
z = y + 1
n = len(z.data.dask)
zz = persist(z)
assert len(z.data.dask) == n
assert len(zz.data.dask) == zz.data.npartitions
def test_dataarray_with_dask_coords():
import toolz
x = xr.Variable('x', da.arange(8, chunks=(4,)))
y = xr.Variable('y', da.arange(8, chunks=(4,)) * 2)
data = da.random.random((8, 8), chunks=(4, 4)) + 1
array = xr.DataArray(data, dims=['x', 'y'])
array.coords['xx'] = x
array.coords['yy'] = y
assert dict(array.__dask_graph__()) == toolz.merge(data.__dask_graph__(),
x.__dask_graph__(),
y.__dask_graph__())
(array2,) = dask.compute(array)
assert not dask.is_dask_collection(array2)
assert all(isinstance(v._variable.data, np.ndarray)
for v in array2.coords.values())
def test_basic_compute():
ds = Dataset({'foo': ('x', range(5)),
'bar': ('x', range(5))}).chunk({'x': 2})
for get in [dask.threaded.get,
dask.multiprocessing.get,
dask.local.get_sync,
None]:
with (dask.config.set(scheduler=get)
if LooseVersion(dask.__version__) >= LooseVersion('0.19.4')
else dask.config.set(scheduler=get)
if LooseVersion(dask.__version__) >= LooseVersion('0.18.0')
else dask.set_options(get=get)):
ds.compute()
ds.foo.compute()
ds.foo.variable.compute()
@pytest.mark.skipif(LooseVersion(dask.__version__) < LooseVersion('0.20.0'),
reason='needs newer dask')
def test_dask_layers_and_dependencies():
ds = Dataset({'foo': ('x', range(5)),
'bar': ('x', range(5))}).chunk()
x = dask.delayed(ds)
assert set(x.__dask_graph__().dependencies).issuperset(
ds.__dask_graph__().dependencies)
assert set(x.foo.__dask_graph__().dependencies).issuperset(
ds.__dask_graph__().dependencies)
|