File: test_backends.py

package info (click to toggle)
python-xarray 0.12.1-2~bpo10+1
  • links: PTS, VCS
  • area: main
  • in suites: stretch-backports-sloppy
  • size: 6,616 kB
  • sloc: python: 39,400; makefile: 230; sh: 1
file content (3751 lines) | stat: -rw-r--r-- 153,528 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
import contextlib
import itertools
import math
import os.path
from pathlib import Path
import pickle
import shutil
import sys
import tempfile
from typing import Optional
import warnings
from contextlib import ExitStack
from io import BytesIO

import numpy as np
import pandas as pd
import pytest

import xarray as xr
from xarray import (
    DataArray, Dataset, backends, open_dataarray, open_dataset, open_mfdataset,
    save_mfdataset)
from xarray.backends.common import robust_getitem
from xarray.backends.netCDF4_ import _extract_nc4_variable_encoding
from xarray.backends.pydap_ import PydapDataStore
from xarray.core import indexing
from xarray.core.options import set_options
from xarray.core.pycompat import dask_array_type
from xarray.tests import mock
from xarray.coding.variables import SerializationWarning

from . import (
    assert_allclose, assert_array_equal, assert_equal, assert_identical,
    has_dask, has_netCDF4, has_scipy, network, raises_regex, requires_cfgrib, arm_xfail,
    requires_cftime, requires_dask, requires_h5netcdf, requires_netCDF4,
    requires_pathlib, requires_pseudonetcdf, requires_pydap, requires_pynio,
    requires_rasterio, requires_scipy, requires_scipy_or_netCDF4,
    requires_zarr, requires_h5fileobj)
from .test_coding_times import (_STANDARD_CALENDARS, _NON_STANDARD_CALENDARS,
                                _ALL_CALENDARS)
from .test_dataset import create_test_data

try:
    import netCDF4 as nc4
except ImportError:
    pass

try:
    import dask.array as da
except ImportError:
    pass

try:
    from pandas.errors import OutOfBoundsDatetime
except ImportError:
    # pandas < 0.20
    from pandas.tslib import OutOfBoundsDatetime


ON_WINDOWS = sys.platform == 'win32'


def open_example_dataset(name, *args, **kwargs):
    return open_dataset(os.path.join(os.path.dirname(__file__), 'data', name),
                        *args, **kwargs)


def open_example_mfdataset(names, *args, **kwargs):
    return open_mfdataset(
        [os.path.join(os.path.dirname(__file__), 'data', name)
         for name in names],
        *args, **kwargs)


def create_masked_and_scaled_data():
    x = np.array([np.nan, np.nan, 10, 10.1, 10.2], dtype=np.float32)
    encoding = {'_FillValue': -1, 'add_offset': 10,
                'scale_factor': np.float32(0.1), 'dtype': 'i2'}
    return Dataset({'x': ('t', x, {}, encoding)})


def create_encoded_masked_and_scaled_data():
    attributes = {'_FillValue': -1, 'add_offset': 10,
                  'scale_factor': np.float32(0.1)}
    return Dataset({'x': ('t', np.int16([-1, -1, 0, 1, 2]), attributes)})


def create_unsigned_masked_scaled_data():
    encoding = {'_FillValue': 255, '_Unsigned': 'true', 'dtype': 'i1',
                'add_offset': 10, 'scale_factor': np.float32(0.1)}
    x = np.array([10.0, 10.1, 22.7, 22.8, np.nan], dtype=np.float32)
    return Dataset({'x': ('t', x, {}, encoding)})


def create_encoded_unsigned_masked_scaled_data():
    # These are values as written to the file: the _FillValue will
    # be represented in the signed form.
    attributes = {'_FillValue': -1, '_Unsigned': 'true',
                  'add_offset': 10, 'scale_factor': np.float32(0.1)}
    # Create unsigned data corresponding to [0, 1, 127, 128, 255] unsigned
    sb = np.asarray([0, 1, 127, -128, -1], dtype='i1')
    return Dataset({'x': ('t', sb, attributes)})


def create_bad_unsigned_masked_scaled_data():
    encoding = {'_FillValue': 255, '_Unsigned': True, 'dtype': 'i1',
                'add_offset': 10, 'scale_factor': np.float32(0.1)}
    x = np.array([10.0, 10.1, 22.7, 22.8, np.nan], dtype=np.float32)
    return Dataset({'x': ('t', x, {}, encoding)})


def create_bad_encoded_unsigned_masked_scaled_data():
    # These are values as written to the file: the _FillValue will
    # be represented in the signed form.
    attributes = {'_FillValue': -1, '_Unsigned': True,
                  'add_offset': 10, 'scale_factor': np.float32(0.1)}
    # Create signed data corresponding to [0, 1, 127, 128, 255] unsigned
    sb = np.asarray([0, 1, 127, -128, -1], dtype='i1')
    return Dataset({'x': ('t', sb, attributes)})


def create_signed_masked_scaled_data():
    encoding = {'_FillValue': -127, '_Unsigned': 'false', 'dtype': 'i1',
                'add_offset': 10, 'scale_factor': np.float32(0.1)}
    x = np.array([-1.0, 10.1, 22.7, np.nan], dtype=np.float32)
    return Dataset({'x': ('t', x, {}, encoding)})


def create_encoded_signed_masked_scaled_data():
    # These are values as written to the file: the _FillValue will
    # be represented in the signed form.
    attributes = {'_FillValue': -127, '_Unsigned': 'false',
                  'add_offset': 10, 'scale_factor': np.float32(0.1)}
    # Create signed data corresponding to [0, 1, 127, 128, 255] unsigned
    sb = np.asarray([-110, 1, 127, -127], dtype='i1')
    return Dataset({'x': ('t', sb, attributes)})


def create_boolean_data():
    attributes = {'units': '-'}
    return Dataset({'x': ('t', [True, False, False, True], attributes)})


class TestCommon(object):
    def test_robust_getitem(self):

        class UnreliableArrayFailure(Exception):
            pass

        class UnreliableArray(object):
            def __init__(self, array, failures=1):
                self.array = array
                self.failures = failures

            def __getitem__(self, key):
                if self.failures > 0:
                    self.failures -= 1
                    raise UnreliableArrayFailure
                return self.array[key]

        array = UnreliableArray([0])
        with pytest.raises(UnreliableArrayFailure):
            array[0]
        assert array[0] == 0

        actual = robust_getitem(array, 0, catch=UnreliableArrayFailure,
                                initial_delay=0)
        assert actual == 0


class NetCDF3Only(object):
    pass


class DatasetIOBase(object):
    engine = None  # type: Optional[str]
    file_format = None  # type: Optional[str]

    def create_store(self):
        raise NotImplementedError

    @contextlib.contextmanager
    def roundtrip(self, data, save_kwargs=None, open_kwargs=None,
                  allow_cleanup_failure=False):
        if save_kwargs is None:
            save_kwargs = {}
        if open_kwargs is None:
            open_kwargs = {}
        with create_tmp_file(
                allow_cleanup_failure=allow_cleanup_failure) as path:
            self.save(data, path, **save_kwargs)
            with self.open(path, **open_kwargs) as ds:
                yield ds

    @contextlib.contextmanager
    def roundtrip_append(self, data, save_kwargs=None, open_kwargs=None,
                         allow_cleanup_failure=False):
        if save_kwargs is None:
            save_kwargs = {}
        if open_kwargs is None:
            open_kwargs = {}
        with create_tmp_file(
                allow_cleanup_failure=allow_cleanup_failure) as path:
            for i, key in enumerate(data.variables):
                mode = 'a' if i > 0 else 'w'
                self.save(data[[key]], path, mode=mode, **save_kwargs)
            with self.open(path, **open_kwargs) as ds:
                yield ds

    # The save/open methods may be overwritten below
    def save(self, dataset, path, **kwargs):
        return dataset.to_netcdf(path, engine=self.engine,
                                 format=self.file_format, **kwargs)

    @contextlib.contextmanager
    def open(self, path, **kwargs):
        with open_dataset(path, engine=self.engine, **kwargs) as ds:
            yield ds

    def test_zero_dimensional_variable(self):
        expected = create_test_data()
        expected['float_var'] = ([], 1.0e9, {'units': 'units of awesome'})
        expected['bytes_var'] = ([], b'foobar')
        expected['string_var'] = ([], 'foobar')
        with self.roundtrip(expected) as actual:
            assert_identical(expected, actual)

    def test_write_store(self):
        expected = create_test_data()
        with self.create_store() as store:
            expected.dump_to_store(store)
            # we need to cf decode the store because it has time and
            # non-dimension coordinates
            with xr.decode_cf(store) as actual:
                assert_allclose(expected, actual)

    def check_dtypes_roundtripped(self, expected, actual):
        for k in expected.variables:
            expected_dtype = expected.variables[k].dtype
            if (isinstance(self, NetCDF3Only) and expected_dtype == 'int64'):
                # downcast
                expected_dtype = np.dtype('int32')
            actual_dtype = actual.variables[k].dtype
            # TODO: check expected behavior for string dtypes more carefully
            string_kinds = {'O', 'S', 'U'}
            assert (expected_dtype == actual_dtype
                    or (expected_dtype.kind in string_kinds and
                        actual_dtype.kind in string_kinds))

    def test_roundtrip_test_data(self):
        expected = create_test_data()
        with self.roundtrip(expected) as actual:
            self.check_dtypes_roundtripped(expected, actual)
            assert_identical(expected, actual)

    def test_load(self):
        expected = create_test_data()

        @contextlib.contextmanager
        def assert_loads(vars=None):
            if vars is None:
                vars = expected
            with self.roundtrip(expected) as actual:
                for k, v in actual.variables.items():
                    # IndexVariables are eagerly loaded into memory
                    assert v._in_memory == (k in actual.dims)
                yield actual
                for k, v in actual.variables.items():
                    if k in vars:
                        assert v._in_memory
                assert_identical(expected, actual)

        with pytest.raises(AssertionError):
            # make sure the contextmanager works!
            with assert_loads() as ds:
                pass

        with assert_loads() as ds:
            ds.load()

        with assert_loads(['var1', 'dim1', 'dim2']) as ds:
            ds['var1'].load()

        # verify we can read data even after closing the file
        with self.roundtrip(expected) as ds:
            actual = ds.load()
        assert_identical(expected, actual)

    def test_dataset_compute(self):
        expected = create_test_data()

        with self.roundtrip(expected) as actual:
            # Test Dataset.compute()
            for k, v in actual.variables.items():
                # IndexVariables are eagerly cached
                assert v._in_memory == (k in actual.dims)

            computed = actual.compute()

            for k, v in actual.variables.items():
                assert v._in_memory == (k in actual.dims)
            for v in computed.variables.values():
                assert v._in_memory

            assert_identical(expected, actual)
            assert_identical(expected, computed)

    def test_pickle(self):
        expected = Dataset({'foo': ('x', [42])})
        with self.roundtrip(
                expected, allow_cleanup_failure=ON_WINDOWS) as roundtripped:
            with roundtripped:
                # Windows doesn't like reopening an already open file
                raw_pickle = pickle.dumps(roundtripped)
            with pickle.loads(raw_pickle) as unpickled_ds:
                assert_identical(expected, unpickled_ds)

    @pytest.mark.filterwarnings("ignore:deallocating CachingFileManager")
    def test_pickle_dataarray(self):
        expected = Dataset({'foo': ('x', [42])})
        with self.roundtrip(
                expected, allow_cleanup_failure=ON_WINDOWS) as roundtripped:
            with roundtripped:
                raw_pickle = pickle.dumps(roundtripped['foo'])
            # TODO: figure out how to explicitly close the file for the
            # unpickled DataArray?
            unpickled = pickle.loads(raw_pickle)
            assert_identical(expected['foo'], unpickled)

    def test_dataset_caching(self):
        expected = Dataset({'foo': ('x', [5, 6, 7])})
        with self.roundtrip(expected) as actual:
            assert isinstance(actual.foo.variable._data,
                              indexing.MemoryCachedArray)
            assert not actual.foo.variable._in_memory
            actual.foo.values  # cache
            assert actual.foo.variable._in_memory

        with self.roundtrip(expected, open_kwargs={'cache': False}) as actual:
            assert isinstance(actual.foo.variable._data,
                              indexing.CopyOnWriteArray)
            assert not actual.foo.variable._in_memory
            actual.foo.values  # no caching
            assert not actual.foo.variable._in_memory

    def test_roundtrip_None_variable(self):
        expected = Dataset({None: (('x', 'y'), [[0, 1], [2, 3]])})
        with self.roundtrip(expected) as actual:
            assert_identical(expected, actual)

    def test_roundtrip_object_dtype(self):
        floats = np.array([0.0, 0.0, 1.0, 2.0, 3.0], dtype=object)
        floats_nans = np.array([np.nan, np.nan, 1.0, 2.0, 3.0], dtype=object)
        bytes_ = np.array([b'ab', b'cdef', b'g'], dtype=object)
        bytes_nans = np.array([b'ab', b'cdef', np.nan], dtype=object)
        strings = np.array(['ab', 'cdef', 'g'], dtype=object)
        strings_nans = np.array(['ab', 'cdef', np.nan], dtype=object)
        all_nans = np.array([np.nan, np.nan], dtype=object)
        original = Dataset({'floats': ('a', floats),
                            'floats_nans': ('a', floats_nans),
                            'bytes': ('b', bytes_),
                            'bytes_nans': ('b', bytes_nans),
                            'strings': ('b', strings),
                            'strings_nans': ('b', strings_nans),
                            'all_nans': ('c', all_nans),
                            'nan': ([], np.nan)})
        expected = original.copy(deep=True)
        with self.roundtrip(original) as actual:
            try:
                assert_identical(expected, actual)
            except AssertionError:
                # Most stores use '' for nans in strings, but some don't.
                # First try the ideal case (where the store returns exactly)
                # the original Dataset), then try a more realistic case.
                # This currently includes all netCDF files when encoding is not
                # explicitly set.
                # https://github.com/pydata/xarray/issues/1647
                expected['bytes_nans'][-1] = b''
                expected['strings_nans'][-1] = ''
                assert_identical(expected, actual)

    def test_roundtrip_string_data(self):
        expected = Dataset({'x': ('t', ['ab', 'cdef'])})
        with self.roundtrip(expected) as actual:
            assert_identical(expected, actual)

    def test_roundtrip_string_encoded_characters(self):
        expected = Dataset({'x': ('t', ['ab', 'cdef'])})
        expected['x'].encoding['dtype'] = 'S1'
        with self.roundtrip(expected) as actual:
            assert_identical(expected, actual)
            assert actual['x'].encoding['_Encoding'] == 'utf-8'

        expected['x'].encoding['_Encoding'] = 'ascii'
        with self.roundtrip(expected) as actual:
            assert_identical(expected, actual)
            assert actual['x'].encoding['_Encoding'] == 'ascii'

    @arm_xfail
    def test_roundtrip_numpy_datetime_data(self):
        times = pd.to_datetime(['2000-01-01', '2000-01-02', 'NaT'])
        expected = Dataset({'t': ('t', times), 't0': times[0]})
        kwds = {'encoding': {'t0': {'units': 'days since 1950-01-01'}}}
        with self.roundtrip(expected, save_kwargs=kwds) as actual:
            assert_identical(expected, actual)
            assert actual.t0.encoding['units'] == 'days since 1950-01-01'

    @requires_cftime
    def test_roundtrip_cftime_datetime_data(self):
        from .test_coding_times import _all_cftime_date_types

        date_types = _all_cftime_date_types()
        for date_type in date_types.values():
            times = [date_type(1, 1, 1), date_type(1, 1, 2)]
            expected = Dataset({'t': ('t', times), 't0': times[0]})
            kwds = {'encoding': {'t0': {'units': 'days since 0001-01-01'}}}
            expected_decoded_t = np.array(times)
            expected_decoded_t0 = np.array([date_type(1, 1, 1)])
            expected_calendar = times[0].calendar

            with warnings.catch_warnings():
                if expected_calendar in {'proleptic_gregorian', 'gregorian'}:
                    warnings.filterwarnings(
                        'ignore', 'Unable to decode time axis')

                with self.roundtrip(expected, save_kwargs=kwds) as actual:
                    abs_diff = abs(actual.t.values - expected_decoded_t)
                    assert (abs_diff <= np.timedelta64(1, 's')).all()
                    assert (actual.t.encoding['units']
                            == 'days since 0001-01-01 00:00:00.000000')
                    assert (actual.t.encoding['calendar']
                            == expected_calendar)

                    abs_diff = abs(actual.t0.values - expected_decoded_t0)
                    assert (abs_diff <= np.timedelta64(1, 's')).all()
                    assert (actual.t0.encoding['units']
                            == 'days since 0001-01-01')
                    assert (actual.t.encoding['calendar']
                            == expected_calendar)

    def test_roundtrip_timedelta_data(self):
        time_deltas = pd.to_timedelta(['1h', '2h', 'NaT'])
        expected = Dataset({'td': ('td', time_deltas), 'td0': time_deltas[0]})
        with self.roundtrip(expected) as actual:
            assert_identical(expected, actual)

    def test_roundtrip_float64_data(self):
        expected = Dataset({'x': ('y', np.array([1.0, 2.0, np.pi],
                                                dtype='float64'))})
        with self.roundtrip(expected) as actual:
            assert_identical(expected, actual)

    def test_roundtrip_example_1_netcdf(self):
        with open_example_dataset('example_1.nc') as expected:
            with self.roundtrip(expected) as actual:
                # we allow the attributes to differ since that
                # will depend on the encoding used.  For example,
                # without CF encoding 'actual' will end up with
                # a dtype attribute.
                assert_equal(expected, actual)

    def test_roundtrip_coordinates(self):
        original = Dataset({'foo': ('x', [0, 1])},
                           {'x': [2, 3], 'y': ('a', [42]), 'z': ('x', [4, 5])})

        with self.roundtrip(original) as actual:
            assert_identical(original, actual)

    def test_roundtrip_global_coordinates(self):
        original = Dataset({'x': [2, 3], 'y': ('a', [42]), 'z': ('x', [4, 5])})
        with self.roundtrip(original) as actual:
            assert_identical(original, actual)

    def test_roundtrip_coordinates_with_space(self):
        original = Dataset(coords={'x': 0, 'y z': 1})
        expected = Dataset({'y z': 1}, {'x': 0})
        with pytest.warns(xr.SerializationWarning):
            with self.roundtrip(original) as actual:
                assert_identical(expected, actual)

    def test_roundtrip_boolean_dtype(self):
        original = create_boolean_data()
        assert original['x'].dtype == 'bool'
        with self.roundtrip(original) as actual:
            assert_identical(original, actual)
            assert actual['x'].dtype == 'bool'

    def test_orthogonal_indexing(self):
        in_memory = create_test_data()
        with self.roundtrip(in_memory) as on_disk:
            indexers = {'dim1': [1, 2, 0], 'dim2': [3, 2, 0, 3],
                        'dim3': np.arange(5)}
            expected = in_memory.isel(**indexers)
            actual = on_disk.isel(**indexers)
            # make sure the array is not yet loaded into memory
            assert not actual['var1'].variable._in_memory
            assert_identical(expected, actual)
            # do it twice, to make sure we're switched from orthogonal -> numpy
            # when we cached the values
            actual = on_disk.isel(**indexers)
            assert_identical(expected, actual)

    def test_vectorized_indexing(self):
        in_memory = create_test_data()
        with self.roundtrip(in_memory) as on_disk:
            indexers = {'dim1': DataArray([0, 2, 0], dims='a'),
                        'dim2': DataArray([0, 2, 3], dims='a')}
            expected = in_memory.isel(**indexers)
            actual = on_disk.isel(**indexers)
            # make sure the array is not yet loaded into memory
            assert not actual['var1'].variable._in_memory
            assert_identical(expected, actual.load())
            # do it twice, to make sure we're switched from
            # vectorized -> numpy when we cached the values
            actual = on_disk.isel(**indexers)
            assert_identical(expected, actual)

        def multiple_indexing(indexers):
            # make sure a sequence of lazy indexings certainly works.
            with self.roundtrip(in_memory) as on_disk:
                actual = on_disk['var3']
                expected = in_memory['var3']
                for ind in indexers:
                    actual = actual.isel(**ind)
                    expected = expected.isel(**ind)
                    # make sure the array is not yet loaded into memory
                    assert not actual.variable._in_memory
                assert_identical(expected, actual.load())

        # two-staged vectorized-indexing
        indexers = [
            {'dim1': DataArray([[0, 7], [2, 6], [3, 5]], dims=['a', 'b']),
             'dim3': DataArray([[0, 4], [1, 3], [2, 2]], dims=['a', 'b'])},
            {'a': DataArray([0, 1], dims=['c']),
             'b': DataArray([0, 1], dims=['c'])}
        ]
        multiple_indexing(indexers)

        # vectorized-slice mixed
        indexers = [
            {'dim1': DataArray([[0, 7], [2, 6], [3, 5]], dims=['a', 'b']),
             'dim3': slice(None, 10)}
        ]
        multiple_indexing(indexers)

        # vectorized-integer mixed
        indexers = [
            {'dim3': 0},
            {'dim1': DataArray([[0, 7], [2, 6], [3, 5]], dims=['a', 'b'])},
            {'a': slice(None, None, 2)}
        ]
        multiple_indexing(indexers)

        # vectorized-integer mixed
        indexers = [
            {'dim3': 0},
            {'dim1': DataArray([[0, 7], [2, 6], [3, 5]], dims=['a', 'b'])},
            {'a': 1, 'b': 0}
        ]
        multiple_indexing(indexers)

        # with negative step slice.
        indexers = [
            {'dim1': DataArray([[0, 7], [2, 6], [3, 5]], dims=['a', 'b']),
             'dim3': slice(-1, 1, -1)},
        ]
        multiple_indexing(indexers)

        # with negative step slice.
        indexers = [
            {'dim1': DataArray([[0, 7], [2, 6], [3, 5]], dims=['a', 'b']),
             'dim3': slice(-1, 1, -2)},
        ]
        multiple_indexing(indexers)

    def test_isel_dataarray(self):
        # Make sure isel works lazily. GH:issue:1688
        in_memory = create_test_data()
        with self.roundtrip(in_memory) as on_disk:
            expected = in_memory.isel(dim2=in_memory['dim2'] < 3)
            actual = on_disk.isel(dim2=on_disk['dim2'] < 3)
            assert_identical(expected, actual)

    def validate_array_type(self, ds):
        # Make sure that only NumpyIndexingAdapter stores a bare np.ndarray.
        def find_and_validate_array(obj):
            # recursively called function. obj: array or array wrapper.
            if hasattr(obj, 'array'):
                if isinstance(obj.array, indexing.ExplicitlyIndexed):
                    find_and_validate_array(obj.array)
                else:
                    if isinstance(obj.array, np.ndarray):
                        assert isinstance(obj, indexing.NumpyIndexingAdapter)
                    elif isinstance(obj.array, dask_array_type):
                        assert isinstance(obj, indexing.DaskIndexingAdapter)
                    elif isinstance(obj.array, pd.Index):
                        assert isinstance(obj, indexing.PandasIndexAdapter)
                    else:
                        raise TypeError('{} is wrapped by {}'.format(
                            type(obj.array), type(obj)))

        for k, v in ds.variables.items():
            find_and_validate_array(v._data)

    def test_array_type_after_indexing(self):
        in_memory = create_test_data()
        with self.roundtrip(in_memory) as on_disk:
            self.validate_array_type(on_disk)
            indexers = {'dim1': [1, 2, 0], 'dim2': [3, 2, 0, 3],
                        'dim3': np.arange(5)}
            expected = in_memory.isel(**indexers)
            actual = on_disk.isel(**indexers)
            assert_identical(expected, actual)
            self.validate_array_type(actual)
            # do it twice, to make sure we're switched from orthogonal -> numpy
            # when we cached the values
            actual = on_disk.isel(**indexers)
            assert_identical(expected, actual)
            self.validate_array_type(actual)

    def test_dropna(self):
        # regression test for GH:issue:1694
        a = np.random.randn(4, 3)
        a[1, 1] = np.NaN
        in_memory = xr.Dataset({'a': (('y', 'x'), a)},
                               coords={'y': np.arange(4), 'x': np.arange(3)})

        assert_identical(in_memory.dropna(dim='x'),
                         in_memory.isel(x=slice(None, None, 2)))

        with self.roundtrip(in_memory) as on_disk:
            self.validate_array_type(on_disk)
            expected = in_memory.dropna(dim='x')
            actual = on_disk.dropna(dim='x')
            assert_identical(expected, actual)

    def test_ondisk_after_print(self):
        """ Make sure print does not load file into memory """
        in_memory = create_test_data()
        with self.roundtrip(in_memory) as on_disk:
            repr(on_disk)
            assert not on_disk['var1']._in_memory


class CFEncodedBase(DatasetIOBase):

    def test_roundtrip_bytes_with_fill_value(self):
        values = np.array([b'ab', b'cdef', np.nan], dtype=object)
        encoding = {'_FillValue': b'X', 'dtype': 'S1'}
        original = Dataset({'x': ('t', values, {}, encoding)})
        expected = original.copy(deep=True)
        with self.roundtrip(original) as actual:
            assert_identical(expected, actual)

        original = Dataset({'x': ('t', values, {}, {'_FillValue': b''})})
        with self.roundtrip(original) as actual:
            assert_identical(expected, actual)

    def test_roundtrip_string_with_fill_value_nchar(self):
        values = np.array(['ab', 'cdef', np.nan], dtype=object)
        expected = Dataset({'x': ('t', values)})

        encoding = {'dtype': 'S1', '_FillValue': b'X'}
        original = Dataset({'x': ('t', values, {}, encoding)})
        # Not supported yet.
        with pytest.raises(NotImplementedError):
            with self.roundtrip(original) as actual:
                assert_identical(expected, actual)

    @pytest.mark.parametrize(
        'decoded_fn, encoded_fn',
        [(create_unsigned_masked_scaled_data,
          create_encoded_unsigned_masked_scaled_data),
         pytest.param(create_bad_unsigned_masked_scaled_data,
                      create_bad_encoded_unsigned_masked_scaled_data,
                      marks=pytest.mark.xfail(
                          reason="Bad _Unsigned attribute.")),
         (create_signed_masked_scaled_data,
          create_encoded_signed_masked_scaled_data),
         (create_masked_and_scaled_data,
          create_encoded_masked_and_scaled_data)])
    def test_roundtrip_mask_and_scale(self, decoded_fn, encoded_fn):
        decoded = decoded_fn()
        encoded = encoded_fn()

        with self.roundtrip(decoded) as actual:
            for k in decoded.variables:
                assert (decoded.variables[k].dtype
                        == actual.variables[k].dtype)
            assert_allclose(decoded, actual, decode_bytes=False)

        with self.roundtrip(decoded,
                            open_kwargs=dict(decode_cf=False)) as actual:
            # TODO: this assumes that all roundtrips will first
            # encode.  Is that something we want to test for?
            for k in encoded.variables:
                assert (encoded.variables[k].dtype
                        == actual.variables[k].dtype)
            assert_allclose(encoded, actual, decode_bytes=False)

        with self.roundtrip(encoded,
                            open_kwargs=dict(decode_cf=False)) as actual:
            for k in encoded.variables:
                assert (encoded.variables[k].dtype
                        == actual.variables[k].dtype)
            assert_allclose(encoded, actual, decode_bytes=False)

        # make sure roundtrip encoding didn't change the
        # original dataset.
        assert_allclose(encoded, encoded_fn(), decode_bytes=False)

        with self.roundtrip(encoded) as actual:
            for k in decoded.variables:
                assert (decoded.variables[k].dtype ==
                        actual.variables[k].dtype)
            assert_allclose(decoded, actual, decode_bytes=False)

    def test_coordinates_encoding(self):
        def equals_latlon(obj):
            return obj == 'lat lon' or obj == 'lon lat'

        original = Dataset({'temp': ('x', [0, 1]), 'precip': ('x', [0, -1])},
                           {'lat': ('x', [2, 3]), 'lon': ('x', [4, 5])})
        with self.roundtrip(original) as actual:
            assert_identical(actual, original)
        with create_tmp_file() as tmp_file:
            original.to_netcdf(tmp_file)
            with open_dataset(tmp_file, decode_coords=False) as ds:
                assert equals_latlon(ds['temp'].attrs['coordinates'])
                assert equals_latlon(ds['precip'].attrs['coordinates'])
                assert 'coordinates' not in ds.attrs
                assert 'coordinates' not in ds['lat'].attrs
                assert 'coordinates' not in ds['lon'].attrs

        modified = original.drop(['temp', 'precip'])
        with self.roundtrip(modified) as actual:
            assert_identical(actual, modified)
        with create_tmp_file() as tmp_file:
            modified.to_netcdf(tmp_file)
            with open_dataset(tmp_file, decode_coords=False) as ds:
                assert equals_latlon(ds.attrs['coordinates'])
                assert 'coordinates' not in ds['lat'].attrs
                assert 'coordinates' not in ds['lon'].attrs

    def test_roundtrip_endian(self):
        ds = Dataset({'x': np.arange(3, 10, dtype='>i2'),
                      'y': np.arange(3, 20, dtype='<i4'),
                      'z': np.arange(3, 30, dtype='=i8'),
                      'w': ('x', np.arange(3, 10, dtype=np.float))})

        with self.roundtrip(ds) as actual:
            # technically these datasets are slightly different,
            # one hold mixed endian data (ds) the other should be
            # all big endian (actual).  assertDatasetIdentical
            # should still pass though.
            assert_identical(ds, actual)

        if self.engine == 'netcdf4':
            ds['z'].encoding['endian'] = 'big'
            with pytest.raises(NotImplementedError):
                with self.roundtrip(ds) as actual:
                    pass

    def test_invalid_dataarray_names_raise(self):
        te = (TypeError, 'string or None')
        ve = (ValueError, 'string must be length 1 or')
        data = np.random.random((2, 2))
        da = xr.DataArray(data)
        for name, e in zip([0, (4, 5), True, ''], [te, te, te, ve]):
            ds = Dataset({name: da})
            with raises_regex(*e):
                with self.roundtrip(ds):
                    pass

    def test_encoding_kwarg(self):
        ds = Dataset({'x': ('y', np.arange(10.0))})
        kwargs = dict(encoding={'x': {'dtype': 'f4'}})
        with self.roundtrip(ds, save_kwargs=kwargs) as actual:
            assert actual.x.encoding['dtype'] == 'f4'
        assert ds.x.encoding == {}

        kwargs = dict(encoding={'x': {'foo': 'bar'}})
        with raises_regex(ValueError, 'unexpected encoding'):
            with self.roundtrip(ds, save_kwargs=kwargs) as actual:
                pass

        kwargs = dict(encoding={'x': 'foo'})
        with raises_regex(ValueError, 'must be castable'):
            with self.roundtrip(ds, save_kwargs=kwargs) as actual:
                pass

        kwargs = dict(encoding={'invalid': {}})
        with pytest.raises(KeyError):
            with self.roundtrip(ds, save_kwargs=kwargs) as actual:
                pass

    def test_encoding_kwarg_dates(self):
        ds = Dataset({'t': pd.date_range('2000-01-01', periods=3)})
        units = 'days since 1900-01-01'
        kwargs = dict(encoding={'t': {'units': units}})
        with self.roundtrip(ds, save_kwargs=kwargs) as actual:
            assert actual.t.encoding['units'] == units
            assert_identical(actual, ds)

    def test_encoding_kwarg_fixed_width_string(self):
        # regression test for GH2149
        for strings in [
            [b'foo', b'bar', b'baz'],
            ['foo', 'bar', 'baz'],
        ]:
            ds = Dataset({'x': strings})
            kwargs = dict(encoding={'x': {'dtype': 'S1'}})
            with self.roundtrip(ds, save_kwargs=kwargs) as actual:
                assert actual['x'].encoding['dtype'] == 'S1'
                assert_identical(actual, ds)

    def test_default_fill_value(self):
        # Test default encoding for float:
        ds = Dataset({'x': ('y', np.arange(10.0))})
        kwargs = dict(encoding={'x': {'dtype': 'f4'}})
        with self.roundtrip(ds, save_kwargs=kwargs) as actual:
            assert math.isnan(actual.x.encoding['_FillValue'])
        assert ds.x.encoding == {}

        # Test default encoding for int:
        ds = Dataset({'x': ('y', np.arange(10.0))})
        kwargs = dict(encoding={'x': {'dtype': 'int16'}})
        with warnings.catch_warnings():
            warnings.filterwarnings(
                'ignore', '.*floating point data as an integer')
            with self.roundtrip(ds, save_kwargs=kwargs) as actual:
                assert '_FillValue' not in actual.x.encoding
        assert ds.x.encoding == {}

        # Test default encoding for implicit int:
        ds = Dataset({'x': ('y', np.arange(10, dtype='int16'))})
        with self.roundtrip(ds) as actual:
            assert '_FillValue' not in actual.x.encoding
        assert ds.x.encoding == {}

    def test_explicitly_omit_fill_value(self):
        ds = Dataset({'x': ('y', [np.pi, -np.pi])})
        ds.x.encoding['_FillValue'] = None
        with self.roundtrip(ds) as actual:
            assert '_FillValue' not in actual.x.encoding

    def test_explicitly_omit_fill_value_via_encoding_kwarg(self):
        ds = Dataset({'x': ('y', [np.pi, -np.pi])})
        kwargs = dict(encoding={'x': {'_FillValue': None}})
        with self.roundtrip(ds, save_kwargs=kwargs) as actual:
            assert '_FillValue' not in actual.x.encoding
        assert ds.y.encoding == {}

    def test_explicitly_omit_fill_value_in_coord(self):
        ds = Dataset({'x': ('y', [np.pi, -np.pi])}, coords={'y': [0.0, 1.0]})
        ds.y.encoding['_FillValue'] = None
        with self.roundtrip(ds) as actual:
            assert '_FillValue' not in actual.y.encoding

    def test_explicitly_omit_fill_value_in_coord_via_encoding_kwarg(self):
        ds = Dataset({'x': ('y', [np.pi, -np.pi])}, coords={'y': [0.0, 1.0]})
        kwargs = dict(encoding={'y': {'_FillValue': None}})
        with self.roundtrip(ds, save_kwargs=kwargs) as actual:
            assert '_FillValue' not in actual.y.encoding
        assert ds.y.encoding == {}

    def test_encoding_same_dtype(self):
        ds = Dataset({'x': ('y', np.arange(10.0, dtype='f4'))})
        kwargs = dict(encoding={'x': {'dtype': 'f4'}})
        with self.roundtrip(ds, save_kwargs=kwargs) as actual:
            assert actual.x.encoding['dtype'] == 'f4'
        assert ds.x.encoding == {}

    def test_append_write(self):
        # regression for GH1215
        data = create_test_data()
        with self.roundtrip_append(data) as actual:
            assert_identical(data, actual)

    def test_append_overwrite_values(self):
        # regression for GH1215
        data = create_test_data()
        with create_tmp_file(allow_cleanup_failure=False) as tmp_file:
            self.save(data, tmp_file, mode='w')
            data['var2'][:] = -999
            data['var9'] = data['var2'] * 3
            self.save(data[['var2', 'var9']], tmp_file, mode='a')
            with self.open(tmp_file) as actual:
                assert_identical(data, actual)

    def test_append_with_invalid_dim_raises(self):
        data = create_test_data()
        with create_tmp_file(allow_cleanup_failure=False) as tmp_file:
            self.save(data, tmp_file, mode='w')
            data['var9'] = data['var2'] * 3
            data = data.isel(dim1=slice(2, 6))  # modify one dimension
            with raises_regex(ValueError,
                              'Unable to update size for existing dimension'):
                self.save(data, tmp_file, mode='a')

    def test_multiindex_not_implemented(self):
        ds = (Dataset(coords={'y': ('x', [1, 2]), 'z': ('x', ['a', 'b'])})
              .set_index(x=['y', 'z']))
        with raises_regex(NotImplementedError, 'MultiIndex'):
            with self.roundtrip(ds):
                pass


_counter = itertools.count()


@contextlib.contextmanager
def create_tmp_file(suffix='.nc', allow_cleanup_failure=False):
    temp_dir = tempfile.mkdtemp()
    path = os.path.join(temp_dir, 'temp-%s%s' % (next(_counter), suffix))
    try:
        yield path
    finally:
        try:
            shutil.rmtree(temp_dir)
        except OSError:
            if not allow_cleanup_failure:
                raise


@contextlib.contextmanager
def create_tmp_files(nfiles, suffix='.nc', allow_cleanup_failure=False):
    with ExitStack() as stack:
        files = [stack.enter_context(create_tmp_file(suffix,
                                                     allow_cleanup_failure))
                 for apath in np.arange(nfiles)]
        yield files


class NetCDF4Base(CFEncodedBase):
    """Tests for both netCDF4-python and h5netcdf."""

    engine = 'netcdf4'

    def test_open_group(self):
        # Create a netCDF file with a dataset stored within a group
        with create_tmp_file() as tmp_file:
            with nc4.Dataset(tmp_file, 'w') as rootgrp:
                foogrp = rootgrp.createGroup('foo')
                ds = foogrp
                ds.createDimension('time', size=10)
                x = np.arange(10)
                ds.createVariable('x', np.int32, dimensions=('time',))
                ds.variables['x'][:] = x

            expected = Dataset()
            expected['x'] = ('time', x)

            # check equivalent ways to specify group
            for group in 'foo', '/foo', 'foo/', '/foo/':
                with self.open(tmp_file, group=group) as actual:
                    assert_equal(actual['x'], expected['x'])

            # check that missing group raises appropriate exception
            with pytest.raises(IOError):
                open_dataset(tmp_file, group='bar')
            with raises_regex(ValueError, 'must be a string'):
                open_dataset(tmp_file, group=(1, 2, 3))

    def test_open_subgroup(self):
        # Create a netCDF file with a dataset stored within a group within a
        # group
        with create_tmp_file() as tmp_file:
            rootgrp = nc4.Dataset(tmp_file, 'w')
            foogrp = rootgrp.createGroup('foo')
            bargrp = foogrp.createGroup('bar')
            ds = bargrp
            ds.createDimension('time', size=10)
            x = np.arange(10)
            ds.createVariable('x', np.int32, dimensions=('time',))
            ds.variables['x'][:] = x
            rootgrp.close()

            expected = Dataset()
            expected['x'] = ('time', x)

            # check equivalent ways to specify group
            for group in 'foo/bar', '/foo/bar', 'foo/bar/', '/foo/bar/':
                with self.open(tmp_file, group=group) as actual:
                    assert_equal(actual['x'], expected['x'])

    def test_write_groups(self):
        data1 = create_test_data()
        data2 = data1 * 2
        with create_tmp_file() as tmp_file:
            self.save(data1, tmp_file, group='data/1')
            self.save(data2, tmp_file, group='data/2', mode='a')
            with self.open(tmp_file, group='data/1') as actual1:
                assert_identical(data1, actual1)
            with self.open(tmp_file, group='data/2') as actual2:
                assert_identical(data2, actual2)

    def test_encoding_kwarg_vlen_string(self):
        for input_strings in [
            [b'foo', b'bar', b'baz'],
            ['foo', 'bar', 'baz'],
        ]:
            original = Dataset({'x': input_strings})
            expected = Dataset({'x': ['foo', 'bar', 'baz']})
            kwargs = dict(encoding={'x': {'dtype': str}})
            with self.roundtrip(original, save_kwargs=kwargs) as actual:
                assert actual['x'].encoding['dtype'] is str
                assert_identical(actual, expected)

    def test_roundtrip_string_with_fill_value_vlen(self):
        values = np.array(['ab', 'cdef', np.nan], dtype=object)
        expected = Dataset({'x': ('t', values)})

        # netCDF4-based backends don't support an explicit fillvalue
        # for variable length strings yet.
        # https://github.com/Unidata/netcdf4-python/issues/730
        # https://github.com/shoyer/h5netcdf/issues/37
        original = Dataset({'x': ('t', values, {}, {'_FillValue': 'XXX'})})
        with pytest.raises(NotImplementedError):
            with self.roundtrip(original) as actual:
                assert_identical(expected, actual)

        original = Dataset({'x': ('t', values, {}, {'_FillValue': ''})})
        with pytest.raises(NotImplementedError):
            with self.roundtrip(original) as actual:
                assert_identical(expected, actual)

    def test_roundtrip_character_array(self):
        with create_tmp_file() as tmp_file:
            values = np.array([['a', 'b', 'c'], ['d', 'e', 'f']], dtype='S')

            with nc4.Dataset(tmp_file, mode='w') as nc:
                nc.createDimension('x', 2)
                nc.createDimension('string3', 3)
                v = nc.createVariable('x', np.dtype('S1'), ('x', 'string3'))
                v[:] = values

            values = np.array(['abc', 'def'], dtype='S')
            expected = Dataset({'x': ('x', values)})
            with open_dataset(tmp_file) as actual:
                assert_identical(expected, actual)
                # regression test for #157
                with self.roundtrip(actual) as roundtripped:
                    assert_identical(expected, roundtripped)

    def test_default_to_char_arrays(self):
        data = Dataset({'x': np.array(['foo', 'zzzz'], dtype='S')})
        with self.roundtrip(data) as actual:
            assert_identical(data, actual)
            assert actual['x'].dtype == np.dtype('S4')

    def test_open_encodings(self):
        # Create a netCDF file with explicit time units
        # and make sure it makes it into the encodings
        # and survives a round trip
        with create_tmp_file() as tmp_file:
            with nc4.Dataset(tmp_file, 'w') as ds:
                ds.createDimension('time', size=10)
                ds.createVariable('time', np.int32, dimensions=('time',))
                units = 'days since 1999-01-01'
                ds.variables['time'].setncattr('units', units)
                ds.variables['time'][:] = np.arange(10) + 4

            expected = Dataset()

            time = pd.date_range('1999-01-05', periods=10)
            encoding = {'units': units, 'dtype': np.dtype('int32')}
            expected['time'] = ('time', time, {}, encoding)

            with open_dataset(tmp_file) as actual:
                assert_equal(actual['time'], expected['time'])
                actual_encoding = dict((k, v) for k, v in
                                       actual['time'].encoding.items()
                                       if k in expected['time'].encoding)
                assert actual_encoding == \
                    expected['time'].encoding

    def test_dump_encodings(self):
        # regression test for #709
        ds = Dataset({'x': ('y', np.arange(10.0))})
        kwargs = dict(encoding={'x': {'zlib': True}})
        with self.roundtrip(ds, save_kwargs=kwargs) as actual:
            assert actual.x.encoding['zlib']

    def test_dump_and_open_encodings(self):
        # Create a netCDF file with explicit time units
        # and make sure it makes it into the encodings
        # and survives a round trip
        with create_tmp_file() as tmp_file:
            with nc4.Dataset(tmp_file, 'w') as ds:
                ds.createDimension('time', size=10)
                ds.createVariable('time', np.int32, dimensions=('time',))
                units = 'days since 1999-01-01'
                ds.variables['time'].setncattr('units', units)
                ds.variables['time'][:] = np.arange(10) + 4

            with open_dataset(tmp_file) as xarray_dataset:
                with create_tmp_file() as tmp_file2:
                    xarray_dataset.to_netcdf(tmp_file2)
                    with nc4.Dataset(tmp_file2, 'r') as ds:
                        assert ds.variables['time'].getncattr('units') == units
                        assert_array_equal(
                            ds.variables['time'], np.arange(10) + 4)

    def test_compression_encoding(self):
        data = create_test_data()
        data['var2'].encoding.update({'zlib': True,
                                      'chunksizes': (5, 5),
                                      'fletcher32': True,
                                      'shuffle': True,
                                      'original_shape': data.var2.shape})
        with self.roundtrip(data) as actual:
            for k, v in data['var2'].encoding.items():
                assert v == actual['var2'].encoding[k]

        # regression test for #156
        expected = data.isel(dim1=0)
        with self.roundtrip(expected) as actual:
            assert_equal(expected, actual)

    def test_encoding_kwarg_compression(self):
        ds = Dataset({'x': np.arange(10.0)})
        encoding = dict(dtype='f4', zlib=True, complevel=9, fletcher32=True,
                        chunksizes=(5,), shuffle=True)
        kwargs = dict(encoding=dict(x=encoding))

        with self.roundtrip(ds, save_kwargs=kwargs) as actual:
            assert_equal(actual, ds)
            assert actual.x.encoding['dtype'] == 'f4'
            assert actual.x.encoding['zlib']
            assert actual.x.encoding['complevel'] == 9
            assert actual.x.encoding['fletcher32']
            assert actual.x.encoding['chunksizes'] == (5,)
            assert actual.x.encoding['shuffle']

        assert ds.x.encoding == {}

    def test_encoding_chunksizes_unlimited(self):
        # regression test for GH1225
        ds = Dataset({'x': [1, 2, 3], 'y': ('x', [2, 3, 4])})
        ds.variables['x'].encoding = {
            'zlib': False,
            'shuffle': False,
            'complevel': 0,
            'fletcher32': False,
            'contiguous': False,
            'chunksizes': (2 ** 20,),
            'original_shape': (3,),
        }
        with self.roundtrip(ds) as actual:
            assert_equal(ds, actual)

    def test_mask_and_scale(self):
        with create_tmp_file() as tmp_file:
            with nc4.Dataset(tmp_file, mode='w') as nc:
                nc.createDimension('t', 5)
                nc.createVariable('x', 'int16', ('t',), fill_value=-1)
                v = nc.variables['x']
                v.set_auto_maskandscale(False)
                v.add_offset = 10
                v.scale_factor = 0.1
                v[:] = np.array([-1, -1, 0, 1, 2])

            # first make sure netCDF4 reads the masked and scaled data
            # correctly
            with nc4.Dataset(tmp_file, mode='r') as nc:
                expected = np.ma.array([-1, -1, 10, 10.1, 10.2],
                                       mask=[True, True, False, False, False])
                actual = nc.variables['x'][:]
                assert_array_equal(expected, actual)

            # now check xarray
            with open_dataset(tmp_file) as ds:
                expected = create_masked_and_scaled_data()
                assert_identical(expected, ds)

    def test_0dimensional_variable(self):
        # This fix verifies our work-around to this netCDF4-python bug:
        # https://github.com/Unidata/netcdf4-python/pull/220
        with create_tmp_file() as tmp_file:
            with nc4.Dataset(tmp_file, mode='w') as nc:
                v = nc.createVariable('x', 'int16')
                v[...] = 123

            with open_dataset(tmp_file) as ds:
                expected = Dataset({'x': ((), 123)})
                assert_identical(expected, ds)

    def test_already_open_dataset(self):
        with create_tmp_file() as tmp_file:
            with nc4.Dataset(tmp_file, mode='w') as nc:
                v = nc.createVariable('x', 'int')
                v[...] = 42

            nc = nc4.Dataset(tmp_file, mode='r')
            store = backends.NetCDF4DataStore(nc)
            with open_dataset(store) as ds:
                expected = Dataset({'x': ((), 42)})
                assert_identical(expected, ds)

    def test_read_variable_len_strings(self):
        with create_tmp_file() as tmp_file:
            values = np.array(['foo', 'bar', 'baz'], dtype=object)

            with nc4.Dataset(tmp_file, mode='w') as nc:
                nc.createDimension('x', 3)
                v = nc.createVariable('x', str, ('x',))
                v[:] = values

            expected = Dataset({'x': ('x', values)})
            for kwargs in [{}, {'decode_cf': True}]:
                with open_dataset(tmp_file, **kwargs) as actual:
                    assert_identical(expected, actual)

    def test_encoding_unlimited_dims(self):
        ds = Dataset({'x': ('y', np.arange(10.0))})
        with self.roundtrip(ds,
                            save_kwargs=dict(unlimited_dims=['y'])) as actual:
            assert actual.encoding['unlimited_dims'] == set('y')
            assert_equal(ds, actual)
        ds.encoding = {'unlimited_dims': ['y']}
        with self.roundtrip(ds) as actual:
            assert actual.encoding['unlimited_dims'] == set('y')
            assert_equal(ds, actual)


@requires_netCDF4
class TestNetCDF4Data(NetCDF4Base):

    @contextlib.contextmanager
    def create_store(self):
        with create_tmp_file() as tmp_file:
            with backends.NetCDF4DataStore.open(tmp_file, mode='w') as store:
                yield store

    def test_variable_order(self):
        # doesn't work with scipy or h5py :(
        ds = Dataset()
        ds['a'] = 1
        ds['z'] = 2
        ds['b'] = 3
        ds.coords['c'] = 4

        with self.roundtrip(ds) as actual:
            assert list(ds.variables) == list(actual.variables)

    def test_unsorted_index_raises(self):
        # should be fixed in netcdf4 v1.2.1
        random_data = np.random.random(size=(4, 6))
        dim0 = [0, 1, 2, 3]
        dim1 = [0, 2, 1, 3, 5, 4]  # We will sort this in a later step
        da = xr.DataArray(data=random_data, dims=('dim0', 'dim1'),
                          coords={'dim0': dim0, 'dim1': dim1}, name='randovar')
        ds = da.to_dataset()

        with self.roundtrip(ds) as ondisk:
            inds = np.argsort(dim1)
            ds2 = ondisk.isel(dim1=inds)
            # Older versions of NetCDF4 raise an exception here, and if so we
            # want to ensure we improve (that is, replace) the error message
            try:
                ds2.randovar.values
            except IndexError as err:
                assert 'first by calling .load' in str(err)

    def test_88_character_filename_segmentation_fault(self):
        # should be fixed in netcdf4 v1.3.1
        with mock.patch('netCDF4.__version__', '1.2.4'):
            with warnings.catch_warnings():
                message = ('A segmentation fault may occur when the '
                           'file path has exactly 88 characters')
                warnings.filterwarnings('error', message)
                with pytest.raises(Warning):
                    # Need to construct 88 character filepath
                    xr.Dataset().to_netcdf('a' * (88 - len(os.getcwd()) - 1))

    def test_setncattr_string(self):
        list_of_strings = ['list', 'of', 'strings']
        one_element_list_of_strings = ['one element']
        one_string = 'one string'
        attrs = {'foo': list_of_strings,
                 'bar': one_element_list_of_strings,
                 'baz': one_string}
        ds = Dataset({'x': ('y', [1, 2, 3], attrs)},
                     attrs=attrs)

        with self.roundtrip(ds) as actual:
            for totest in [actual, actual['x']]:
                assert_array_equal(list_of_strings, totest.attrs['foo'])
                assert_array_equal(one_element_list_of_strings,
                                   totest.attrs['bar'])
                assert one_string == totest.attrs['baz']

    def test_autoclose_future_warning(self):
        data = create_test_data()
        with create_tmp_file() as tmp_file:
            self.save(data, tmp_file)
            with pytest.warns(FutureWarning):
                with self.open(tmp_file, autoclose=True) as actual:
                    assert_identical(data, actual)


@requires_netCDF4
@requires_dask
@pytest.mark.filterwarnings('ignore:deallocating CachingFileManager')
class TestNetCDF4ViaDaskData(TestNetCDF4Data):
    @contextlib.contextmanager
    def roundtrip(self, data, save_kwargs=None, open_kwargs=None,
                  allow_cleanup_failure=False):
        if open_kwargs is None:
            open_kwargs = {}
        if save_kwargs is None:
            save_kwargs = {}
        open_kwargs.setdefault('chunks', -1)
        with TestNetCDF4Data.roundtrip(
                self, data, save_kwargs, open_kwargs,
                allow_cleanup_failure) as ds:
            yield ds

    def test_unsorted_index_raises(self):
        # Skip when using dask because dask rewrites indexers to getitem,
        # dask first pulls items by block.
        pass

    def test_dataset_caching(self):
        # caching behavior differs for dask
        pass

    def test_write_inconsistent_chunks(self):
        # Construct two variables with the same dimensions, but different
        # chunk sizes.
        x = da.zeros((100, 100), dtype='f4', chunks=(50, 100))
        x = DataArray(data=x, dims=('lat', 'lon'), name='x')
        x.encoding['chunksizes'] = (50, 100)
        x.encoding['original_shape'] = (100, 100)
        y = da.ones((100, 100), dtype='f4', chunks=(100, 50))
        y = DataArray(data=y, dims=('lat', 'lon'), name='y')
        y.encoding['chunksizes'] = (100, 50)
        y.encoding['original_shape'] = (100, 100)
        # Put them both into the same dataset
        ds = Dataset({'x': x, 'y': y})
        with self.roundtrip(ds) as actual:
            assert actual['x'].encoding['chunksizes'] == (50, 100)
            assert actual['y'].encoding['chunksizes'] == (100, 50)


@requires_zarr
class ZarrBase(CFEncodedBase):

    DIMENSION_KEY = '_ARRAY_DIMENSIONS'

    @contextlib.contextmanager
    def create_store(self):
        with self.create_zarr_target() as store_target:
            yield backends.ZarrStore.open_group(store_target, mode='w')

    def save(self, dataset, store_target, **kwargs):
        return dataset.to_zarr(store=store_target, **kwargs)

    @contextlib.contextmanager
    def open(self, store_target, **kwargs):
        with xr.open_zarr(store_target, **kwargs) as ds:
            yield ds

    @contextlib.contextmanager
    def roundtrip(self, data, save_kwargs=None, open_kwargs=None,
                  allow_cleanup_failure=False):
        if save_kwargs is None:
            save_kwargs = {}
        if open_kwargs is None:
            open_kwargs = {}
        with self.create_zarr_target() as store_target:
            self.save(data, store_target, **save_kwargs)
            with self.open(store_target, **open_kwargs) as ds:
                yield ds

    @contextlib.contextmanager
    def roundtrip_append(self, data, save_kwargs=None, open_kwargs=None,
                         allow_cleanup_failure=False):
        pytest.skip("zarr backend does not support appending")

    def test_roundtrip_consolidated(self):
        pytest.importorskip('zarr', minversion="2.2.1.dev2")
        expected = create_test_data()
        with self.roundtrip(expected,
                            save_kwargs={'consolidated': True},
                            open_kwargs={'consolidated': True}) as actual:
            self.check_dtypes_roundtripped(expected, actual)
            assert_identical(expected, actual)

    def test_auto_chunk(self):
        original = create_test_data().chunk()

        with self.roundtrip(
                original, open_kwargs={'auto_chunk': False}) as actual:
            for k, v in actual.variables.items():
                # only index variables should be in memory
                assert v._in_memory == (k in actual.dims)
                # there should be no chunks
                assert v.chunks is None

        with self.roundtrip(
                original, open_kwargs={'auto_chunk': True}) as actual:
            for k, v in actual.variables.items():
                # only index variables should be in memory
                assert v._in_memory == (k in actual.dims)
                # chunk size should be the same as original
                assert v.chunks == original[k].chunks

    def test_write_uneven_dask_chunks(self):
        # regression for GH#2225
        original = create_test_data().chunk({'dim1': 3, 'dim2': 4, 'dim3': 3})

        with self.roundtrip(
                original, open_kwargs={'auto_chunk': True}) as actual:
            for k, v in actual.data_vars.items():
                print(k)
                assert v.chunks == actual[k].chunks

    def test_chunk_encoding(self):
        # These datasets have no dask chunks. All chunking specified in
        # encoding
        data = create_test_data()
        chunks = (5, 5)
        data['var2'].encoding.update({'chunks': chunks})

        with self.roundtrip(data) as actual:
            assert chunks == actual['var2'].encoding['chunks']

        # expect an error with non-integer chunks
        data['var2'].encoding.update({'chunks': (5, 4.5)})
        with pytest.raises(TypeError):
            with self.roundtrip(data) as actual:
                pass

    def test_chunk_encoding_with_dask(self):
        # These datasets DO have dask chunks. Need to check for various
        # interactions between dask and zarr chunks
        ds = xr.DataArray((np.arange(12)), dims='x', name='var1').to_dataset()

        # - no encoding specified -
        # zarr automatically gets chunk information from dask chunks
        ds_chunk4 = ds.chunk({'x': 4})
        with self.roundtrip(ds_chunk4) as actual:
            assert (4,) == actual['var1'].encoding['chunks']

        # should fail if dask_chunks are irregular...
        ds_chunk_irreg = ds.chunk({'x': (5, 4, 3)})
        with pytest.raises(ValueError) as e_info:
            with self.roundtrip(ds_chunk_irreg) as actual:
                pass
        # make sure this error message is correct and not some other error
        assert e_info.match('chunks')

        # ... except if the last chunk is smaller than the first
        ds_chunk_irreg = ds.chunk({'x': (5, 5, 2)})
        with self.roundtrip(ds_chunk_irreg) as actual:
            assert (5,) == actual['var1'].encoding['chunks']
        # re-save Zarr arrays
        with self.roundtrip(ds_chunk_irreg) as original:
            with self.roundtrip(original) as actual:
                assert_identical(original, actual)

        # - encoding specified  -
        # specify compatible encodings
        for chunk_enc in 4, (4, ):
            ds_chunk4['var1'].encoding.update({'chunks': chunk_enc})
            with self.roundtrip(ds_chunk4) as actual:
                assert (4,) == actual['var1'].encoding['chunks']

        # TODO: remove this failure once syncronized overlapping writes are
        # supported by xarray
        ds_chunk4['var1'].encoding.update({'chunks': 5})
        with pytest.raises(NotImplementedError):
            with self.roundtrip(ds_chunk4) as actual:
                pass

    def test_hidden_zarr_keys(self):
        expected = create_test_data()
        with self.create_store() as store:
            expected.dump_to_store(store)
            zarr_group = store.ds

            # check that a variable hidden attribute is present and correct
            # JSON only has a single array type, which maps to list in Python.
            # In contrast, dims in xarray is always a tuple.
            for var in expected.variables.keys():
                dims = zarr_group[var].attrs[self.DIMENSION_KEY]
                assert dims == list(expected[var].dims)

            with xr.decode_cf(store):
                # make sure it is hidden
                for var in expected.variables.keys():
                    assert self.DIMENSION_KEY not in expected[var].attrs

            # put it back and try removing from a variable
            del zarr_group.var2.attrs[self.DIMENSION_KEY]
            with pytest.raises(KeyError):
                with xr.decode_cf(store):
                    pass

    def test_write_persistence_modes(self):
        original = create_test_data()

        # overwrite mode
        with self.roundtrip(original, save_kwargs={'mode': 'w'}) as actual:
            assert_identical(original, actual)

        # don't overwrite mode
        with self.roundtrip(original, save_kwargs={'mode': 'w-'}) as actual:
            assert_identical(original, actual)

        # make sure overwriting works as expected
        with self.create_zarr_target() as store:
            self.save(original, store)
            # should overwrite with no error
            self.save(original, store, mode='w')
            with self.open(store) as actual:
                assert_identical(original, actual)
                with pytest.raises(ValueError):
                    self.save(original, store, mode='w-')

        # check that we can't use other persistence modes
        # TODO: reconsider whether other persistence modes should be supported
        with pytest.raises(ValueError):
            with self.roundtrip(original, save_kwargs={'mode': 'a'}) as actual:
                pass

    def test_compressor_encoding(self):
        original = create_test_data()
        # specify a custom compressor
        import zarr
        blosc_comp = zarr.Blosc(cname='zstd', clevel=3, shuffle=2)
        save_kwargs = dict(encoding={'var1': {'compressor': blosc_comp}})
        with self.roundtrip(original, save_kwargs=save_kwargs) as ds:
            actual = ds['var1'].encoding['compressor']
            # get_config returns a dictionary of compressor attributes
            assert actual.get_config() == blosc_comp.get_config()

    def test_group(self):
        original = create_test_data()
        group = 'some/random/path'
        with self.roundtrip(original, save_kwargs={'group': group},
                            open_kwargs={'group': group}) as actual:
            assert_identical(original, actual)

    def test_encoding_kwarg_fixed_width_string(self):
        # not relevant for zarr, since we don't use EncodedStringCoder
        pass

    # TODO: someone who understand caching figure out whether chaching
    # makes sense for Zarr backend
    @pytest.mark.xfail(reason="Zarr caching not implemented")
    def test_dataset_caching(self):
        super(CFEncodedBase, self).test_dataset_caching()

    @pytest.mark.xfail(reason="Zarr stores can not be appended to")
    def test_append_write(self):
        super(CFEncodedBase, self).test_append_write()

    @pytest.mark.xfail(reason="Zarr stores can not be appended to")
    def test_append_overwrite_values(self):
        super(CFEncodedBase, self).test_append_overwrite_values()

    @pytest.mark.xfail(reason="Zarr stores can not be appended to")
    def test_append_with_invalid_dim_raises(self):
        super(CFEncodedBase, self).test_append_with_invalid_dim_raises()

    def test_to_zarr_compute_false_roundtrip(self):
        from dask.delayed import Delayed

        original = create_test_data().chunk()

        with self.create_zarr_target() as store:
            delayed_obj = self.save(original, store, compute=False)
            assert isinstance(delayed_obj, Delayed)
            delayed_obj.compute()

            with self.open(store) as actual:
                assert_identical(original, actual)

    def test_encoding_chunksizes(self):
        # regression test for GH2278
        # see also test_encoding_chunksizes_unlimited
        nx, ny, nt = 4, 4, 5
        original = xr.Dataset({}, coords={'x': np.arange(nx),
                                          'y': np.arange(ny),
                                          't': np.arange(nt)})
        original['v'] = xr.Variable(('x', 'y', 't'), np.zeros((nx, ny, nt)))
        original = original.chunk({'t': 1, 'x': 2, 'y': 2})

        with self.roundtrip(original) as ds1:
            assert_equal(ds1, original)
            with self.roundtrip(ds1.isel(t=0)) as ds2:
                assert_equal(ds2, original.isel(t=0))


@requires_zarr
class TestZarrDictStore(ZarrBase):
    @contextlib.contextmanager
    def create_zarr_target(self):
        yield {}


@requires_zarr
class TestZarrDirectoryStore(ZarrBase):
    @contextlib.contextmanager
    def create_zarr_target(self):
        with create_tmp_file(suffix='.zarr') as tmp:
            yield tmp


class ScipyWriteBase(CFEncodedBase, NetCDF3Only):

    def test_append_write(self):
        import scipy
        if scipy.__version__ == '1.0.1':
            pytest.xfail('https://github.com/scipy/scipy/issues/8625')
        super(ScipyWriteBase, self).test_append_write()

    def test_append_overwrite_values(self):
        import scipy
        if scipy.__version__ == '1.0.1':
            pytest.xfail('https://github.com/scipy/scipy/issues/8625')
        super(ScipyWriteBase, self).test_append_overwrite_values()


@requires_scipy
class TestScipyInMemoryData(ScipyWriteBase):
    engine = 'scipy'

    @contextlib.contextmanager
    def create_store(self):
        fobj = BytesIO()
        yield backends.ScipyDataStore(fobj, 'w')

    def test_to_netcdf_explicit_engine(self):
        # regression test for GH1321
        Dataset({'foo': 42}).to_netcdf(engine='scipy')

    def test_bytes_pickle(self):
        data = Dataset({'foo': ('x', [1, 2, 3])})
        fobj = data.to_netcdf()
        with self.open(fobj) as ds:
            unpickled = pickle.loads(pickle.dumps(ds))
            assert_identical(unpickled, data)


@requires_scipy
class TestScipyFileObject(ScipyWriteBase):
    engine = 'scipy'

    @contextlib.contextmanager
    def create_store(self):
        fobj = BytesIO()
        yield backends.ScipyDataStore(fobj, 'w')

    @contextlib.contextmanager
    def roundtrip(self, data, save_kwargs=None, open_kwargs=None,
                  allow_cleanup_failure=False):
        if save_kwargs is None:
            save_kwargs = {}
        if open_kwargs is None:
            open_kwargs = {}
        with create_tmp_file() as tmp_file:
            with open(tmp_file, 'wb') as f:
                self.save(data, f, **save_kwargs)
            with open(tmp_file, 'rb') as f:
                with self.open(f, **open_kwargs) as ds:
                    yield ds

    @pytest.mark.skip(reason='cannot pickle file objects')
    def test_pickle(self):
        pass

    @pytest.mark.skip(reason='cannot pickle file objects')
    def test_pickle_dataarray(self):
        pass


@requires_scipy
class TestScipyFilePath(ScipyWriteBase):
    engine = 'scipy'

    @contextlib.contextmanager
    def create_store(self):
        with create_tmp_file() as tmp_file:
            with backends.ScipyDataStore(tmp_file, mode='w') as store:
                yield store

    def test_array_attrs(self):
        ds = Dataset(attrs={'foo': [[1, 2], [3, 4]]})
        with raises_regex(ValueError, 'must be 1-dimensional'):
            with self.roundtrip(ds):
                pass

    def test_roundtrip_example_1_netcdf_gz(self):
        with open_example_dataset('example_1.nc.gz') as expected:
            with open_example_dataset('example_1.nc') as actual:
                assert_identical(expected, actual)

    def test_netcdf3_endianness(self):
        # regression test for GH416
        with open_example_dataset('bears.nc', engine='scipy') as expected:
            for var in expected.variables.values():
                assert var.dtype.isnative

    @requires_netCDF4
    def test_nc4_scipy(self):
        with create_tmp_file(allow_cleanup_failure=True) as tmp_file:
            with nc4.Dataset(tmp_file, 'w', format='NETCDF4') as rootgrp:
                rootgrp.createGroup('foo')

            with raises_regex(TypeError, 'pip install netcdf4'):
                open_dataset(tmp_file, engine='scipy')


@requires_netCDF4
class TestNetCDF3ViaNetCDF4Data(CFEncodedBase, NetCDF3Only):
    engine = 'netcdf4'
    file_format = 'NETCDF3_CLASSIC'

    @contextlib.contextmanager
    def create_store(self):
        with create_tmp_file() as tmp_file:
            with backends.NetCDF4DataStore.open(
                    tmp_file, mode='w', format='NETCDF3_CLASSIC') as store:
                yield store

    def test_encoding_kwarg_vlen_string(self):
        original = Dataset({'x': ['foo', 'bar', 'baz']})
        kwargs = dict(encoding={'x': {'dtype': str}})
        with raises_regex(ValueError, 'encoding dtype=str for vlen'):
            with self.roundtrip(original, save_kwargs=kwargs):
                pass


@requires_netCDF4
class TestNetCDF4ClassicViaNetCDF4Data(CFEncodedBase, NetCDF3Only):
    engine = 'netcdf4'
    file_format = 'NETCDF4_CLASSIC'

    @contextlib.contextmanager
    def create_store(self):
        with create_tmp_file() as tmp_file:
            with backends.NetCDF4DataStore.open(
                    tmp_file, mode='w', format='NETCDF4_CLASSIC') as store:
                yield store


@requires_scipy_or_netCDF4
class TestGenericNetCDFData(CFEncodedBase, NetCDF3Only):
    # verify that we can read and write netCDF3 files as long as we have scipy
    # or netCDF4-python installed
    file_format = 'netcdf3_64bit'

    def test_write_store(self):
        # there's no specific store to test here
        pass

    def test_engine(self):
        data = create_test_data()
        with raises_regex(ValueError, 'unrecognized engine'):
            data.to_netcdf('foo.nc', engine='foobar')
        with raises_regex(ValueError, 'invalid engine'):
            data.to_netcdf(engine='netcdf4')

        with create_tmp_file() as tmp_file:
            data.to_netcdf(tmp_file)
            with raises_regex(ValueError, 'unrecognized engine'):
                open_dataset(tmp_file, engine='foobar')

        netcdf_bytes = data.to_netcdf()
        with raises_regex(ValueError, 'unrecognized engine'):
            open_dataset(BytesIO(netcdf_bytes), engine='foobar')

    def test_cross_engine_read_write_netcdf3(self):
        data = create_test_data()
        valid_engines = set()
        if has_netCDF4:
            valid_engines.add('netcdf4')
        if has_scipy:
            valid_engines.add('scipy')

        for write_engine in valid_engines:
            for format in ['NETCDF3_CLASSIC', 'NETCDF3_64BIT']:
                with create_tmp_file() as tmp_file:
                    data.to_netcdf(tmp_file, format=format,
                                   engine=write_engine)
                    for read_engine in valid_engines:
                        with open_dataset(tmp_file,
                                          engine=read_engine) as actual:
                            # hack to allow test to work:
                            # coord comes back as DataArray rather than coord,
                            # and so need to loop through here rather than in
                            # the test function (or we get recursion)
                            [assert_allclose(data[k].variable,
                                             actual[k].variable)
                             for k in data.variables]

    def test_encoding_unlimited_dims(self):
        ds = Dataset({'x': ('y', np.arange(10.0))})
        with self.roundtrip(ds,
                            save_kwargs=dict(unlimited_dims=['y'])) as actual:
            assert actual.encoding['unlimited_dims'] == set('y')
            assert_equal(ds, actual)

        # Regression test for https://github.com/pydata/xarray/issues/2134
        with self.roundtrip(ds,
                            save_kwargs=dict(unlimited_dims='y')) as actual:
            assert actual.encoding['unlimited_dims'] == set('y')
            assert_equal(ds, actual)

        ds.encoding = {'unlimited_dims': ['y']}
        with self.roundtrip(ds) as actual:
            assert actual.encoding['unlimited_dims'] == set('y')
            assert_equal(ds, actual)

        # Regression test for https://github.com/pydata/xarray/issues/2134
        ds.encoding = {'unlimited_dims': 'y'}
        with self.roundtrip(ds) as actual:
            assert actual.encoding['unlimited_dims'] == set('y')
            assert_equal(ds, actual)


@requires_h5netcdf
@requires_netCDF4
class TestH5NetCDFData(NetCDF4Base):
    engine = 'h5netcdf'

    @contextlib.contextmanager
    def create_store(self):
        with create_tmp_file() as tmp_file:
            yield backends.H5NetCDFStore(tmp_file, 'w')

    @pytest.mark.filterwarnings('ignore:complex dtypes are supported by h5py')
    def test_complex(self):
        expected = Dataset({'x': ('y', np.ones(5) + 1j * np.ones(5))})
        with pytest.warns(FutureWarning):
            # TODO: make it possible to write invalid netCDF files from xarray
            # without a warning
            with self.roundtrip(expected) as actual:
                assert_equal(expected, actual)

    def test_cross_engine_read_write_netcdf4(self):
        # Drop dim3, because its labels include strings. These appear to be
        # not properly read with python-netCDF4, which converts them into
        # unicode instead of leaving them as bytes.
        data = create_test_data().drop('dim3')
        data.attrs['foo'] = 'bar'
        valid_engines = ['netcdf4', 'h5netcdf']
        for write_engine in valid_engines:
            with create_tmp_file() as tmp_file:
                data.to_netcdf(tmp_file, engine=write_engine)
                for read_engine in valid_engines:
                    with open_dataset(tmp_file, engine=read_engine) as actual:
                        assert_identical(data, actual)

    def test_read_byte_attrs_as_unicode(self):
        with create_tmp_file() as tmp_file:
            with nc4.Dataset(tmp_file, 'w') as nc:
                nc.foo = b'bar'
            with open_dataset(tmp_file) as actual:
                expected = Dataset(attrs={'foo': 'bar'})
                assert_identical(expected, actual)

    def test_encoding_unlimited_dims(self):
        ds = Dataset({'x': ('y', np.arange(10.0))})
        with self.roundtrip(ds,
                            save_kwargs=dict(unlimited_dims=['y'])) as actual:
            assert actual.encoding['unlimited_dims'] == set('y')
            assert_equal(ds, actual)
        ds.encoding = {'unlimited_dims': ['y']}
        with self.roundtrip(ds) as actual:
            assert actual.encoding['unlimited_dims'] == set('y')
            assert_equal(ds, actual)

    def test_compression_encoding_h5py(self):
        ENCODINGS = (
            # h5py style compression with gzip codec will be converted to
            # NetCDF4-Python style on round-trip
            ({'compression': 'gzip', 'compression_opts': 9},
             {'zlib': True, 'complevel': 9}),
            # What can't be expressed in NetCDF4-Python style is
            # round-tripped unaltered
            ({'compression': 'lzf', 'compression_opts': None},
             {'compression': 'lzf', 'compression_opts': None}),
            # If both styles are used together, h5py format takes precedence
            ({'compression': 'lzf', 'compression_opts': None,
              'zlib': True, 'complevel': 9},
             {'compression': 'lzf', 'compression_opts': None}))

        for compr_in, compr_out in ENCODINGS:
            data = create_test_data()
            compr_common = {
                'chunksizes': (5, 5),
                'fletcher32': True,
                'shuffle': True,
                'original_shape': data.var2.shape
            }
            data['var2'].encoding.update(compr_in)
            data['var2'].encoding.update(compr_common)
            compr_out.update(compr_common)
            data['scalar'] = ('scalar_dim', np.array([2.0]))
            data['scalar'] = data['scalar'][0]
            with self.roundtrip(data) as actual:
                for k, v in compr_out.items():
                    assert v == actual['var2'].encoding[k]

    def test_compression_check_encoding_h5py(self):
        """When mismatched h5py and NetCDF4-Python encodings are expressed
        in to_netcdf(encoding=...), must raise ValueError
        """
        data = Dataset({'x': ('y', np.arange(10.0))})
        # Compatible encodings are graciously supported
        with create_tmp_file() as tmp_file:
            data.to_netcdf(
                tmp_file, engine='h5netcdf',
                encoding={'x': {'compression': 'gzip', 'zlib': True,
                                'compression_opts': 6, 'complevel': 6}})
            with open_dataset(tmp_file, engine='h5netcdf') as actual:
                assert actual.x.encoding['zlib'] is True
                assert actual.x.encoding['complevel'] == 6

        # Incompatible encodings cause a crash
        with create_tmp_file() as tmp_file:
            with raises_regex(ValueError,
                              "'zlib' and 'compression' encodings mismatch"):
                data.to_netcdf(
                    tmp_file, engine='h5netcdf',
                    encoding={'x': {'compression': 'lzf', 'zlib': True}})

        with create_tmp_file() as tmp_file:
            with raises_regex(
                    ValueError,
                    "'complevel' and 'compression_opts' encodings mismatch"):
                data.to_netcdf(
                    tmp_file, engine='h5netcdf',
                    encoding={'x': {'compression': 'gzip',
                                    'compression_opts': 5, 'complevel': 6}})

    def test_dump_encodings_h5py(self):
        # regression test for #709
        ds = Dataset({'x': ('y', np.arange(10.0))})

        kwargs = {'encoding': {'x': {
            'compression': 'gzip', 'compression_opts': 9}}}
        with self.roundtrip(ds, save_kwargs=kwargs) as actual:
            assert actual.x.encoding['zlib']
            assert actual.x.encoding['complevel'] == 9

        kwargs = {'encoding': {'x': {
            'compression': 'lzf', 'compression_opts': None}}}
        with self.roundtrip(ds, save_kwargs=kwargs) as actual:
            assert actual.x.encoding['compression'] == 'lzf'
            assert actual.x.encoding['compression_opts'] is None


@requires_h5fileobj
class TestH5NetCDFFileObject(TestH5NetCDFData):
    engine = 'h5netcdf'

    def test_open_badbytes(self):
        with raises_regex(ValueError, "HDF5 as bytes"):
            with open_dataset(b'\211HDF\r\n\032\n', engine='h5netcdf'):
                pass
        with raises_regex(ValueError, "not a valid netCDF"):
            with open_dataset(b'garbage'):
                pass
        with raises_regex(ValueError, "can only read bytes"):
            with open_dataset(b'garbage', engine='netcdf4'):
                pass
        with raises_regex(ValueError, "not a valid netCDF"):
            with open_dataset(BytesIO(b'garbage'), engine='h5netcdf'):
                pass

    def test_open_twice(self):
        expected = create_test_data()
        expected.attrs['foo'] = 'bar'
        with raises_regex(ValueError, 'read/write pointer not at zero'):
            with create_tmp_file() as tmp_file:
                expected.to_netcdf(tmp_file, engine='h5netcdf')
                with open(tmp_file, 'rb') as f:
                    with open_dataset(f, engine='h5netcdf'):
                        with open_dataset(f, engine='h5netcdf'):
                            pass

    def test_open_fileobj(self):
        # open in-memory datasets instead of local file paths
        expected = create_test_data().drop('dim3')
        expected.attrs['foo'] = 'bar'
        with create_tmp_file() as tmp_file:
            expected.to_netcdf(tmp_file, engine='h5netcdf')

            with open(tmp_file, 'rb') as f:
                with open_dataset(f, engine='h5netcdf') as actual:
                    assert_identical(expected, actual)

                f.seek(0)
                with BytesIO(f.read()) as bio:
                    with open_dataset(bio, engine='h5netcdf') as actual:
                        assert_identical(expected, actual)


@requires_h5netcdf
@requires_dask
@pytest.mark.filterwarnings('ignore:deallocating CachingFileManager')
class TestH5NetCDFViaDaskData(TestH5NetCDFData):

    @contextlib.contextmanager
    def roundtrip(self, data, save_kwargs=None, open_kwargs=None,
                  allow_cleanup_failure=False):
        if save_kwargs is None:
            save_kwargs = {}
        if open_kwargs is None:
            open_kwargs = {}
        open_kwargs.setdefault('chunks', -1)
        with TestH5NetCDFData.roundtrip(
                self, data, save_kwargs, open_kwargs,
                allow_cleanup_failure) as ds:
            yield ds

    def test_dataset_caching(self):
        # caching behavior differs for dask
        pass

    def test_write_inconsistent_chunks(self):
        # Construct two variables with the same dimensions, but different
        # chunk sizes.
        x = da.zeros((100, 100), dtype='f4', chunks=(50, 100))
        x = DataArray(data=x, dims=('lat', 'lon'), name='x')
        x.encoding['chunksizes'] = (50, 100)
        x.encoding['original_shape'] = (100, 100)
        y = da.ones((100, 100), dtype='f4', chunks=(100, 50))
        y = DataArray(data=y, dims=('lat', 'lon'), name='y')
        y.encoding['chunksizes'] = (100, 50)
        y.encoding['original_shape'] = (100, 100)
        # Put them both into the same dataset
        ds = Dataset({'x': x, 'y': y})
        with self.roundtrip(ds) as actual:
            assert actual['x'].encoding['chunksizes'] == (50, 100)
            assert actual['y'].encoding['chunksizes'] == (100, 50)


@pytest.fixture(params=['scipy', 'netcdf4', 'h5netcdf', 'pynio'])
def readengine(request):
    return request.param


@pytest.fixture(params=[1, 20])
def nfiles(request):
    return request.param


@pytest.fixture(params=[5, None])
def file_cache_maxsize(request):
    maxsize = request.param
    if maxsize is not None:
        with set_options(file_cache_maxsize=maxsize):
            yield maxsize
    else:
        yield maxsize


@pytest.fixture(params=[True, False])
def parallel(request):
    return request.param


@pytest.fixture(params=[None, 5])
def chunks(request):
    return request.param


# using pytest.mark.skipif does not work so this a work around
def skip_if_not_engine(engine):
    if engine == 'netcdf4':
        pytest.importorskip('netCDF4')
    elif engine == 'pynio':
        pytest.importorskip('Nio')
    else:
        pytest.importorskip(engine)


def test_open_mfdataset_manyfiles(readengine, nfiles, parallel, chunks,
                                  file_cache_maxsize):

    # skip certain combinations
    skip_if_not_engine(readengine)

    if not has_dask and parallel:
        pytest.skip('parallel requires dask')

    if ON_WINDOWS:
        pytest.skip('Skipping on Windows')

    randdata = np.random.randn(nfiles)
    original = Dataset({'foo': ('x', randdata)})
    # test standard open_mfdataset approach with too many files
    with create_tmp_files(nfiles) as tmpfiles:
        writeengine = (readengine if readengine != 'pynio' else 'netcdf4')
        # split into multiple sets of temp files
        for ii in original.x.values:
            subds = original.isel(x=slice(ii, ii + 1))
            subds.to_netcdf(tmpfiles[ii], engine=writeengine)

        # check that calculation on opened datasets works properly
        with open_mfdataset(tmpfiles, engine=readengine, parallel=parallel,
                            chunks=chunks) as actual:

            # check that using open_mfdataset returns dask arrays for variables
            assert isinstance(actual['foo'].data, dask_array_type)

            assert_identical(original, actual)


@requires_scipy_or_netCDF4
class TestOpenMFDatasetWithDataVarsAndCoordsKw(object):
    coord_name = 'lon'
    var_name = 'v1'

    @contextlib.contextmanager
    def setup_files_and_datasets(self):
        ds1, ds2 = self.gen_datasets_with_common_coord_and_time()
        with create_tmp_file() as tmpfile1:
            with create_tmp_file() as tmpfile2:

                # save data to the temporary files
                ds1.to_netcdf(tmpfile1)
                ds2.to_netcdf(tmpfile2)

                yield [tmpfile1, tmpfile2], [ds1, ds2]

    def gen_datasets_with_common_coord_and_time(self):
        # create coordinate data
        nx = 10
        nt = 10
        x = np.arange(nx)
        t1 = np.arange(nt)
        t2 = np.arange(nt, 2 * nt, 1)

        v1 = np.random.randn(nt, nx)
        v2 = np.random.randn(nt, nx)

        ds1 = Dataset(data_vars={self.var_name: (['t', 'x'], v1),
                                 self.coord_name: ('x', 2 * x)},
                      coords={
                          't': (['t', ], t1),
                          'x': (['x', ], x)
        })

        ds2 = Dataset(data_vars={self.var_name: (['t', 'x'], v2),
                                 self.coord_name: ('x', 2 * x)},
                      coords={
                          't': (['t', ], t2),
                          'x': (['x', ], x)
        })

        return ds1, ds2

    @pytest.mark.parametrize('opt', ['all', 'minimal', 'different'])
    def test_open_mfdataset_does_same_as_concat(self, opt):
        with self.setup_files_and_datasets() as (files, [ds1, ds2]):
            with open_mfdataset(files, data_vars=opt) as ds:
                kwargs = dict(data_vars=opt, dim='t')
                ds_expect = xr.concat([ds1, ds2], **kwargs)
                assert_identical(ds, ds_expect)
            with open_mfdataset(files, coords=opt) as ds:
                kwargs = dict(coords=opt, dim='t')
                ds_expect = xr.concat([ds1, ds2], **kwargs)
                assert_identical(ds, ds_expect)

    def test_common_coord_when_datavars_all(self):
        opt = 'all'

        with self.setup_files_and_datasets() as (files, [ds1, ds2]):
            # open the files with the data_var option
            with open_mfdataset(files, data_vars=opt) as ds:

                coord_shape = ds[self.coord_name].shape
                coord_shape1 = ds1[self.coord_name].shape
                coord_shape2 = ds2[self.coord_name].shape

                var_shape = ds[self.var_name].shape

                assert var_shape == coord_shape
                assert coord_shape1 != coord_shape
                assert coord_shape2 != coord_shape

    def test_common_coord_when_datavars_minimal(self):
        opt = 'minimal'

        with self.setup_files_and_datasets() as (files, [ds1, ds2]):
            # open the files using data_vars option
            with open_mfdataset(files, data_vars=opt) as ds:

                coord_shape = ds[self.coord_name].shape
                coord_shape1 = ds1[self.coord_name].shape
                coord_shape2 = ds2[self.coord_name].shape

                var_shape = ds[self.var_name].shape

                assert var_shape != coord_shape
                assert coord_shape1 == coord_shape
                assert coord_shape2 == coord_shape

    def test_invalid_data_vars_value_should_fail(self):

        with self.setup_files_and_datasets() as (files, _):
            with pytest.raises(ValueError):
                with open_mfdataset(files, data_vars='minimum'):
                    pass

            # test invalid coord parameter
            with pytest.raises(ValueError):
                with open_mfdataset(files, coords='minimum'):
                    pass


@requires_dask
@requires_scipy
@requires_netCDF4
class TestDask(DatasetIOBase):
    @contextlib.contextmanager
    def create_store(self):
        yield Dataset()

    @contextlib.contextmanager
    def roundtrip(self, data, save_kwargs=None, open_kwargs=None,
                  allow_cleanup_failure=False):
        yield data.chunk()

    # Override methods in DatasetIOBase - not applicable to dask
    def test_roundtrip_string_encoded_characters(self):
        pass

    def test_roundtrip_coordinates_with_space(self):
        pass

    def test_roundtrip_numpy_datetime_data(self):
        # Override method in DatasetIOBase - remove not applicable
        # save_kwds
        times = pd.to_datetime(['2000-01-01', '2000-01-02', 'NaT'])
        expected = Dataset({'t': ('t', times), 't0': times[0]})
        with self.roundtrip(expected) as actual:
            assert_identical(expected, actual)

    def test_roundtrip_cftime_datetime_data(self):
        # Override method in DatasetIOBase - remove not applicable
        # save_kwds
        from .test_coding_times import _all_cftime_date_types

        date_types = _all_cftime_date_types()
        for date_type in date_types.values():
            times = [date_type(1, 1, 1), date_type(1, 1, 2)]
            expected = Dataset({'t': ('t', times), 't0': times[0]})
            expected_decoded_t = np.array(times)
            expected_decoded_t0 = np.array([date_type(1, 1, 1)])

            with self.roundtrip(expected) as actual:
                abs_diff = abs(actual.t.values - expected_decoded_t)
                assert (abs_diff <= np.timedelta64(1, 's')).all()

                abs_diff = abs(actual.t0.values - expected_decoded_t0)
                assert (abs_diff <= np.timedelta64(1, 's')).all()

    def test_write_store(self):
        # Override method in DatasetIOBase - not applicable to dask
        pass

    def test_dataset_caching(self):
        expected = Dataset({'foo': ('x', [5, 6, 7])})
        with self.roundtrip(expected) as actual:
            assert not actual.foo.variable._in_memory
            actual.foo.values  # no caching
            assert not actual.foo.variable._in_memory

    def test_open_mfdataset(self):
        original = Dataset({'foo': ('x', np.random.randn(10))})
        with create_tmp_file() as tmp1:
            with create_tmp_file() as tmp2:
                original.isel(x=slice(5)).to_netcdf(tmp1)
                original.isel(x=slice(5, 10)).to_netcdf(tmp2)
                with open_mfdataset([tmp1, tmp2]) as actual:
                    assert isinstance(actual.foo.variable.data, da.Array)
                    assert actual.foo.variable.data.chunks == ((5, 5),)
                    assert_identical(original, actual)
                with open_mfdataset([tmp1, tmp2], chunks={'x': 3}) as actual:
                    assert actual.foo.variable.data.chunks == ((3, 2, 3, 2),)

        with raises_regex(IOError, 'no files to open'):
            open_mfdataset('foo-bar-baz-*.nc')

        with raises_regex(ValueError, 'wild-card'):
            open_mfdataset('http://some/remote/uri')

    def test_open_mfdataset_2d(self):
        original = Dataset({'foo': (['x', 'y'], np.random.randn(10, 8))})
        with create_tmp_file() as tmp1:
            with create_tmp_file() as tmp2:
                with create_tmp_file() as tmp3:
                    with create_tmp_file() as tmp4:
                        original.isel(x=slice(5),
                                      y=slice(4)).to_netcdf(tmp1)
                        original.isel(x=slice(5, 10),
                                      y=slice(4)).to_netcdf(tmp2)
                        original.isel(x=slice(5),
                                      y=slice(4, 8)).to_netcdf(tmp3)
                        original.isel(x=slice(5, 10),
                                      y=slice(4, 8)).to_netcdf(tmp4)
                        with open_mfdataset([[tmp1, tmp2],
                                             [tmp3, tmp4]],
                                            concat_dim=['y', 'x']) as actual:
                            assert isinstance(actual.foo.variable.data,
                                              da.Array)
                            assert actual.foo.variable.data.chunks == \
                                ((5, 5), (4, 4))
                            assert_identical(original, actual)
                        with open_mfdataset([[tmp1, tmp2],
                                             [tmp3, tmp4]],
                                            concat_dim=['y', 'x'],
                                            chunks={'x': 3, 'y': 2}) as actual:
                            assert actual.foo.variable.data.chunks == \
                                ((3, 2, 3, 2), (2, 2, 2, 2),)

    @requires_pathlib
    def test_open_mfdataset_pathlib(self):
        original = Dataset({'foo': ('x', np.random.randn(10))})
        with create_tmp_file() as tmp1:
            with create_tmp_file() as tmp2:
                tmp1 = Path(tmp1)
                tmp2 = Path(tmp2)
                original.isel(x=slice(5)).to_netcdf(tmp1)
                original.isel(x=slice(5, 10)).to_netcdf(tmp2)
                with open_mfdataset([tmp1, tmp2]) as actual:
                    assert_identical(original, actual)

    @requires_pathlib
    def test_open_mfdataset_2d_pathlib(self):
        original = Dataset({'foo': (['x', 'y'], np.random.randn(10, 8))})
        with create_tmp_file() as tmp1:
            with create_tmp_file() as tmp2:
                with create_tmp_file() as tmp3:
                    with create_tmp_file() as tmp4:
                        tmp1 = Path(tmp1)
                        tmp2 = Path(tmp2)
                        tmp3 = Path(tmp3)
                        tmp4 = Path(tmp4)
                        original.isel(x=slice(5),
                                      y=slice(4)).to_netcdf(tmp1)
                        original.isel(x=slice(5, 10),
                                      y=slice(4)).to_netcdf(tmp2)
                        original.isel(x=slice(5),
                                      y=slice(4, 8)).to_netcdf(tmp3)
                        original.isel(x=slice(5, 10),
                                      y=slice(4, 8)).to_netcdf(tmp4)
                        with open_mfdataset([[tmp1, tmp2],
                                             [tmp3, tmp4]],
                                            concat_dim=['y', 'x']) as actual:
                            assert_identical(original, actual)

    @pytest.mark.xfail(reason="Not yet implemented")
    def test_open_mfdataset_2(self):
        original = Dataset({'foo': ('x', np.random.randn(10))})
        with create_tmp_file() as tmp1:
            with create_tmp_file() as tmp2:
                original.isel(x=slice(5)).to_netcdf(tmp1)
                original.isel(x=slice(5, 10)).to_netcdf(tmp2)

                with pytest.raises(NotImplementedError):
                    open_mfdataset([tmp1, tmp2], infer_order_from_coords=True)

                # With infer_order_from_coords=True this should pass in future
                with open_mfdataset([tmp1, tmp2]) as actual:
                    assert_identical(original, actual)

    def test_attrs_mfdataset(self):
        original = Dataset({'foo': ('x', np.random.randn(10))})
        with create_tmp_file() as tmp1:
            with create_tmp_file() as tmp2:
                ds1 = original.isel(x=slice(5))
                ds2 = original.isel(x=slice(5, 10))
                ds1.attrs['test1'] = 'foo'
                ds2.attrs['test2'] = 'bar'
                ds1.to_netcdf(tmp1)
                ds2.to_netcdf(tmp2)
                with open_mfdataset([tmp1, tmp2]) as actual:
                    # presumes that attributes inherited from
                    # first dataset loaded
                    assert actual.test1 == ds1.test1
                    # attributes from ds2 are not retained, e.g.,
                    with raises_regex(AttributeError,
                                      'no attribute'):
                        actual.test2

    def test_preprocess_mfdataset(self):
        original = Dataset({'foo': ('x', np.random.randn(10))})
        with create_tmp_file() as tmp:
            original.to_netcdf(tmp)

            def preprocess(ds):
                return ds.assign_coords(z=0)

            expected = preprocess(original)
            with open_mfdataset(tmp, preprocess=preprocess) as actual:
                assert_identical(expected, actual)

    def test_save_mfdataset_roundtrip(self):
        original = Dataset({'foo': ('x', np.random.randn(10))})
        datasets = [original.isel(x=slice(5)),
                    original.isel(x=slice(5, 10))]
        with create_tmp_file() as tmp1:
            with create_tmp_file() as tmp2:
                save_mfdataset(datasets, [tmp1, tmp2])
                with open_mfdataset([tmp1, tmp2]) as actual:
                    assert_identical(actual, original)

    def test_save_mfdataset_invalid(self):
        ds = Dataset()
        with raises_regex(ValueError, 'cannot use mode'):
            save_mfdataset([ds, ds], ['same', 'same'])
        with raises_regex(ValueError, 'same length'):
            save_mfdataset([ds, ds], ['only one path'])

    def test_save_mfdataset_invalid_dataarray(self):
        # regression test for GH1555
        da = DataArray([1, 2])
        with raises_regex(TypeError, 'supports writing Dataset'):
            save_mfdataset([da], ['dataarray'])

    @requires_pathlib
    def test_save_mfdataset_pathlib_roundtrip(self):
        original = Dataset({'foo': ('x', np.random.randn(10))})
        datasets = [original.isel(x=slice(5)),
                    original.isel(x=slice(5, 10))]
        with create_tmp_file() as tmp1:
            with create_tmp_file() as tmp2:
                tmp1 = Path(tmp1)
                tmp2 = Path(tmp2)
                save_mfdataset(datasets, [tmp1, tmp2])
                with open_mfdataset([tmp1, tmp2]) as actual:
                    assert_identical(actual, original)

    def test_open_and_do_math(self):
        original = Dataset({'foo': ('x', np.random.randn(10))})
        with create_tmp_file() as tmp:
            original.to_netcdf(tmp)
            with open_mfdataset(tmp) as ds:
                actual = 1.0 * ds
                assert_allclose(original, actual, decode_bytes=False)

    def test_open_mfdataset_concat_dim_none(self):
        with create_tmp_file() as tmp1:
            with create_tmp_file() as tmp2:
                data = Dataset({'x': 0})
                data.to_netcdf(tmp1)
                Dataset({'x': np.nan}).to_netcdf(tmp2)
                with open_mfdataset([tmp1, tmp2], concat_dim=None) as actual:
                    assert_identical(data, actual)

    def test_open_dataset(self):
        original = Dataset({'foo': ('x', np.random.randn(10))})
        with create_tmp_file() as tmp:
            original.to_netcdf(tmp)
            with open_dataset(tmp, chunks={'x': 5}) as actual:
                assert isinstance(actual.foo.variable.data, da.Array)
                assert actual.foo.variable.data.chunks == ((5, 5),)
                assert_identical(original, actual)
            with open_dataset(tmp, chunks=5) as actual:
                assert_identical(original, actual)
            with open_dataset(tmp) as actual:
                assert isinstance(actual.foo.variable.data, np.ndarray)
                assert_identical(original, actual)

    def test_open_single_dataset(self):
        # Test for issue GH #1988. This makes sure that the
        # concat_dim is utilized when specified in open_mfdataset().
        rnddata = np.random.randn(10)
        original = Dataset({'foo': ('x', rnddata)})
        dim = DataArray([100], name='baz', dims='baz')
        expected = Dataset({'foo': (('baz', 'x'), rnddata[np.newaxis, :])},
                           {'baz': [100]})
        with create_tmp_file() as tmp:
            original.to_netcdf(tmp)
            with open_mfdataset([tmp], concat_dim=dim) as actual:
                assert_identical(expected, actual)

    def test_open_multi_dataset(self):
        # Test for issue GH #1988 and #2647. This makes sure that the
        # concat_dim is utilized when specified in open_mfdataset().
        # The additional wrinkle is to ensure that a length greater
        # than one is tested as well due to numpy's implicit casting
        # of 1-length arrays to booleans in tests, which allowed
        # #2647 to still pass the test_open_single_dataset(),
        # which is itself still needed as-is because the original
        # bug caused one-length arrays to not be used correctly
        # in concatenation.
        rnddata = np.random.randn(10)
        original = Dataset({'foo': ('x', rnddata)})
        dim = DataArray([100, 150], name='baz', dims='baz')
        expected = Dataset({'foo': (('baz', 'x'),
                                    np.tile(rnddata[np.newaxis, :], (2, 1)))},
                           {'baz': [100, 150]})
        with create_tmp_file() as tmp1, \
                create_tmp_file() as tmp2:
            original.to_netcdf(tmp1)
            original.to_netcdf(tmp2)
            with open_mfdataset([tmp1, tmp2], concat_dim=dim) as actual:
                assert_identical(expected, actual)

    def test_dask_roundtrip(self):
        with create_tmp_file() as tmp:
            data = create_test_data()
            data.to_netcdf(tmp)
            chunks = {'dim1': 4, 'dim2': 4, 'dim3': 4, 'time': 10}
            with open_dataset(tmp, chunks=chunks) as dask_ds:
                assert_identical(data, dask_ds)
                with create_tmp_file() as tmp2:
                    dask_ds.to_netcdf(tmp2)
                    with open_dataset(tmp2) as on_disk:
                        assert_identical(data, on_disk)

    def test_deterministic_names(self):
        with create_tmp_file() as tmp:
            data = create_test_data()
            data.to_netcdf(tmp)
            with open_mfdataset(tmp) as ds:
                original_names = dict((k, v.data.name)
                                      for k, v in ds.data_vars.items())
            with open_mfdataset(tmp) as ds:
                repeat_names = dict((k, v.data.name)
                                    for k, v in ds.data_vars.items())
            for var_name, dask_name in original_names.items():
                assert var_name in dask_name
                assert dask_name[:13] == 'open_dataset-'
            assert original_names == repeat_names

    def test_dataarray_compute(self):
        # Test DataArray.compute() on dask backend.
        # The test for Dataset.compute() is already in DatasetIOBase;
        # however dask is the only tested backend which supports DataArrays
        actual = DataArray([1, 2]).chunk()
        computed = actual.compute()
        assert not actual._in_memory
        assert computed._in_memory
        assert_allclose(actual, computed, decode_bytes=False)

    def test_save_mfdataset_compute_false_roundtrip(self):
        from dask.delayed import Delayed

        original = Dataset({'foo': ('x', np.random.randn(10))}).chunk()
        datasets = [original.isel(x=slice(5)),
                    original.isel(x=slice(5, 10))]
        with create_tmp_file(allow_cleanup_failure=ON_WINDOWS) as tmp1:
            with create_tmp_file(allow_cleanup_failure=ON_WINDOWS) as tmp2:
                delayed_obj = save_mfdataset(datasets, [tmp1, tmp2],
                                             engine=self.engine, compute=False)
                assert isinstance(delayed_obj, Delayed)
                delayed_obj.compute()
                with open_mfdataset([tmp1, tmp2]) as actual:
                    assert_identical(actual, original)


@requires_scipy_or_netCDF4
@requires_pydap
class TestPydap(object):
    def convert_to_pydap_dataset(self, original):
        from pydap.model import GridType, BaseType, DatasetType
        ds = DatasetType('bears', **original.attrs)
        for key, var in original.data_vars.items():
            v = GridType(key)
            v[key] = BaseType(key, var.values, dimensions=var.dims,
                              **var.attrs)
            for d in var.dims:
                v[d] = BaseType(d, var[d].values)
            ds[key] = v
        # check all dims are stored in ds
        for d in original.coords:
            ds[d] = BaseType(d, original[d].values, dimensions=(d, ),
                             **original[d].attrs)
        return ds

    @contextlib.contextmanager
    def create_datasets(self, **kwargs):
        with open_example_dataset('bears.nc') as expected:
            pydap_ds = self.convert_to_pydap_dataset(expected)
            actual = open_dataset(PydapDataStore(pydap_ds))
            # TODO solve this workaround:
            # netcdf converts string to byte not unicode
            expected['bears'] = expected['bears'].astype(str)
            yield actual, expected

    def test_cmp_local_file(self):
        with self.create_datasets() as (actual, expected):
            assert_equal(actual, expected)

            # global attributes should be global attributes on the dataset
            assert 'NC_GLOBAL' not in actual.attrs
            assert 'history' in actual.attrs

            # we don't check attributes exactly with assertDatasetIdentical()
            # because the test DAP server seems to insert some extra
            # attributes not found in the netCDF file.
            assert actual.attrs.keys() == expected.attrs.keys()

        with self.create_datasets() as (actual, expected):
            assert_equal(actual[{'l': 2}], expected[{'l': 2}])

        with self.create_datasets() as (actual, expected):
            assert_equal(actual.isel(i=0, j=-1),
                         expected.isel(i=0, j=-1))

        with self.create_datasets() as (actual, expected):
            assert_equal(actual.isel(j=slice(1, 2)),
                         expected.isel(j=slice(1, 2)))

        with self.create_datasets() as (actual, expected):
            indexers = {'i': [1, 0, 0], 'j': [1, 2, 0, 1]}
            assert_equal(actual.isel(**indexers),
                         expected.isel(**indexers))

        with self.create_datasets() as (actual, expected):
            indexers = {'i': DataArray([0, 1, 0], dims='a'),
                        'j': DataArray([0, 2, 1], dims='a')}
            assert_equal(actual.isel(**indexers),
                         expected.isel(**indexers))

    def test_compatible_to_netcdf(self):
        # make sure it can be saved as a netcdf
        with self.create_datasets() as (actual, expected):
            with create_tmp_file() as tmp_file:
                actual.to_netcdf(tmp_file)
                actual = open_dataset(tmp_file)
                actual['bears'] = actual['bears'].astype(str)
                assert_equal(actual, expected)

    @requires_dask
    def test_dask(self):
        with self.create_datasets(chunks={'j': 2}) as (actual, expected):
            assert_equal(actual, expected)


@network
@requires_scipy_or_netCDF4
@requires_pydap
class TestPydapOnline(TestPydap):
    @contextlib.contextmanager
    def create_datasets(self, **kwargs):
        url = 'http://test.opendap.org/opendap/hyrax/data/nc/bears.nc'
        actual = open_dataset(url, engine='pydap', **kwargs)
        with open_example_dataset('bears.nc') as expected:
            # workaround to restore string which is converted to byte
            expected['bears'] = expected['bears'].astype(str)
            yield actual, expected

    def test_session(self):
        from pydap.cas.urs import setup_session

        session = setup_session('XarrayTestUser', 'Xarray2017')
        with mock.patch('pydap.client.open_url') as mock_func:
            xr.backends.PydapDataStore.open('http://test.url', session=session)
        mock_func.assert_called_with('http://test.url', session=session)


@requires_scipy
@requires_pynio
class TestPyNio(ScipyWriteBase):
    def test_write_store(self):
        # pynio is read-only for now
        pass

    @contextlib.contextmanager
    def open(self, path, **kwargs):
        with open_dataset(path, engine='pynio', **kwargs) as ds:
            yield ds

    def test_kwargs(self):
        kwargs = {'format': 'grib'}
        path = os.path.join(os.path.dirname(__file__), 'data', 'example')
        with backends.NioDataStore(path, **kwargs) as store:
            assert store._manager._kwargs['format'] == 'grib'

    def save(self, dataset, path, **kwargs):
        return dataset.to_netcdf(path, engine='scipy', **kwargs)

    def test_weakrefs(self):
        example = Dataset({'foo': ('x', np.arange(5.0))})
        expected = example.rename({'foo': 'bar', 'x': 'y'})

        with create_tmp_file() as tmp_file:
            example.to_netcdf(tmp_file, engine='scipy')
            on_disk = open_dataset(tmp_file, engine='pynio')
            actual = on_disk.rename({'foo': 'bar', 'x': 'y'})
            del on_disk  # trigger garbage collection
            assert_identical(actual, expected)


@requires_cfgrib
class TestCfGrib(object):

    def test_read(self):
        expected = {'number': 2, 'time': 3, 'isobaricInhPa': 2, 'latitude': 3,
                    'longitude': 4}
        with open_example_dataset('example.grib', engine='cfgrib') as ds:
            assert ds.dims == expected
            assert list(ds.data_vars) == ['z', 't']
            assert ds['z'].min() == 12660.

    def test_read_filter_by_keys(self):
        kwargs = {'filter_by_keys': {'shortName': 't'}}
        expected = {'number': 2, 'time': 3, 'isobaricInhPa': 2, 'latitude': 3,
                    'longitude': 4}
        with open_example_dataset('example.grib', engine='cfgrib',
                                  backend_kwargs=kwargs) as ds:
            assert ds.dims == expected
            assert list(ds.data_vars) == ['t']
            assert ds['t'].min() == 231.


@requires_pseudonetcdf
@pytest.mark.filterwarnings('ignore:IOAPI_ISPH is assumed to be 6370000')
class TestPseudoNetCDFFormat(object):

    def open(self, path, **kwargs):
        return open_dataset(path, engine='pseudonetcdf', **kwargs)

    @contextlib.contextmanager
    def roundtrip(self, data, save_kwargs=None, open_kwargs=None,
                  allow_cleanup_failure=False):
        if save_kwargs is None:
            save_kwargs = {}
        if open_kwargs is None:
            open_kwargs = {}
        with create_tmp_file(
                allow_cleanup_failure=allow_cleanup_failure) as path:
            self.save(data, path, **save_kwargs)
            with self.open(path, **open_kwargs) as ds:
                yield ds

    def test_ict_format(self):
        """
        Open a CAMx file and test data variables
        """
        ictfile = open_example_dataset('example.ict',
                                       engine='pseudonetcdf',
                                       backend_kwargs={'format': 'ffi1001'})
        stdattr = {
            'fill_value': -9999.0,
            'missing_value': -9999,
            'scale': 1,
            'llod_flag': -8888,
            'llod_value': 'N/A',
            'ulod_flag': -7777,
            'ulod_value': 'N/A'
        }

        def myatts(**attrs):
            outattr = stdattr.copy()
            outattr.update(attrs)
            return outattr

        input = {
            'coords': {},
            'attrs': {
                'fmt': '1001', 'n_header_lines': 27,
                'PI_NAME': 'Henderson, Barron',
                'ORGANIZATION_NAME': 'U.S. EPA',
                'SOURCE_DESCRIPTION': 'Example file with artificial data',
                'MISSION_NAME': 'JUST_A_TEST',
                'VOLUME_INFO': '1, 1',
                'SDATE': '2018, 04, 27', 'WDATE': '2018, 04, 27',
                'TIME_INTERVAL': '0',
                'INDEPENDENT_VARIABLE': 'Start_UTC',
                'ULOD_FLAG': '-7777', 'ULOD_VALUE': 'N/A',
                'LLOD_FLAG': '-8888',
                'LLOD_VALUE': ('N/A, N/A, N/A, N/A, 0.025'),
                'OTHER_COMMENTS': ('www-air.larc.nasa.gov/missions/etc/'
                                   + 'IcarttDataFormat.htm'),
                'REVISION': 'R0',
                'R0': 'No comments for this revision.',
                'TFLAG': 'Start_UTC'
            },
            'dims': {'POINTS': 4},
            'data_vars': {
                'Start_UTC': {
                    'data': [43200.0, 46800.0, 50400.0, 50400.0],
                    'dims': ('POINTS',),
                    'attrs': myatts(
                        units='Start_UTC',
                        standard_name='Start_UTC',
                    )
                },
                'lat': {
                    'data': [41.0, 42.0, 42.0, 42.0],
                    'dims': ('POINTS',),
                    'attrs': myatts(
                        units='degrees_north',
                        standard_name='lat',
                    )
                },
                'lon': {
                    'data': [-71.0, -72.0, -73.0, -74.],
                    'dims': ('POINTS',),
                    'attrs': myatts(
                        units='degrees_east',
                        standard_name='lon',
                    )
                },
                'elev': {
                    'data': [5.0, 15.0, 20.0, 25.0],
                    'dims': ('POINTS',),
                    'attrs': myatts(
                        units='meters',
                        standard_name='elev',
                    )
                },
                'TEST_ppbv': {
                    'data': [1.2345, 2.3456, 3.4567, 4.5678],
                    'dims': ('POINTS',),
                    'attrs': myatts(
                        units='ppbv',
                        standard_name='TEST_ppbv',
                    )
                },
                'TESTM_ppbv': {
                    'data': [2.22, -9999.0, -7777.0, -8888.0],
                    'dims': ('POINTS',),
                    'attrs': myatts(
                        units='ppbv',
                        standard_name='TESTM_ppbv',
                        llod_value=0.025
                    )
                }
            }
        }
        chkfile = Dataset.from_dict(input)
        assert_identical(ictfile, chkfile)

    def test_ict_format_write(self):
        fmtkw = {'format': 'ffi1001'}
        expected = open_example_dataset('example.ict',
                                        engine='pseudonetcdf',
                                        backend_kwargs=fmtkw)
        with self.roundtrip(expected, save_kwargs=fmtkw,
                            open_kwargs={'backend_kwargs': fmtkw}) as actual:
            assert_identical(expected, actual)

    def test_uamiv_format_read(self):
        """
        Open a CAMx file and test data variables
        """

        camxfile = open_example_dataset('example.uamiv',
                                        engine='pseudonetcdf',
                                        backend_kwargs={'format': 'uamiv'})
        data = np.arange(20, dtype='f').reshape(1, 1, 4, 5)
        expected = xr.Variable(('TSTEP', 'LAY', 'ROW', 'COL'), data,
                               dict(units='ppm', long_name='O3'.ljust(16),
                                    var_desc='O3'.ljust(80)))
        actual = camxfile.variables['O3']
        assert_allclose(expected, actual)

        data = np.array(['2002-06-03'], 'datetime64[ns]')
        expected = xr.Variable(('TSTEP',), data,
                               dict(bounds='time_bounds',
                                    long_name=('synthesized time coordinate ' +
                                               'from SDATE, STIME, STEP '
                                               + 'global attributes')))
        actual = camxfile.variables['time']
        assert_allclose(expected, actual)
        camxfile.close()

    def test_uamiv_format_mfread(self):
        """
        Open a CAMx file and test data variables
        """

        camxfile = open_example_mfdataset(
            ['example.uamiv',
             'example.uamiv'],
            engine='pseudonetcdf',
            concat_dim=['TSTEP'],
            backend_kwargs={'format': 'uamiv'})

        data1 = np.arange(20, dtype='f').reshape(1, 1, 4, 5)
        data = np.concatenate([data1] * 2, axis=0)
        expected = xr.Variable(('TSTEP', 'LAY', 'ROW', 'COL'), data,
                               dict(units='ppm', long_name='O3'.ljust(16),
                                    var_desc='O3'.ljust(80)))
        actual = camxfile.variables['O3']
        assert_allclose(expected, actual)

        data1 = np.array(['2002-06-03'], 'datetime64[ns]')
        data = np.concatenate([data1] * 2, axis=0)
        attrs = dict(bounds='time_bounds',
                     long_name=('synthesized time coordinate ' +
                                'from SDATE, STIME, STEP '
                                + 'global attributes'))
        expected = xr.Variable(('TSTEP',), data, attrs)
        actual = camxfile.variables['time']
        assert_allclose(expected, actual)
        camxfile.close()

    def test_uamiv_format_write(self):
        fmtkw = {'format': 'uamiv'}

        expected = open_example_dataset('example.uamiv',
                                        engine='pseudonetcdf',
                                        backend_kwargs=fmtkw)
        with self.roundtrip(expected,
                            save_kwargs=fmtkw,
                            open_kwargs={'backend_kwargs': fmtkw}) as actual:
            assert_identical(expected, actual)

        expected.close()

    def save(self, dataset, path, **save_kwargs):
        import PseudoNetCDF as pnc
        pncf = pnc.PseudoNetCDFFile()
        pncf.dimensions = {k: pnc.PseudoNetCDFDimension(pncf, k, v)
                           for k, v in dataset.dims.items()}
        pncf.variables = {k: pnc.PseudoNetCDFVariable(pncf, k, v.dtype.char,
                                                      v.dims,
                                                      values=v.data[...],
                                                      **v.attrs)
                          for k, v in dataset.variables.items()}
        for pk, pv in dataset.attrs.items():
            setattr(pncf, pk, pv)

        pnc.pncwrite(pncf, path, **save_kwargs)


@requires_rasterio
@contextlib.contextmanager
def create_tmp_geotiff(nx=4, ny=3, nz=3,
                       transform=None,
                       transform_args=[5000, 80000, 1000, 2000.],
                       crs={'units': 'm', 'no_defs': True, 'ellps': 'WGS84',
                            'proj': 'utm', 'zone': 18},
                       open_kwargs=None):
    # yields a temporary geotiff file and a corresponding expected DataArray
    import rasterio
    from rasterio.transform import from_origin

    if open_kwargs is None:
        open_kwargs = {}

    with create_tmp_file(suffix='.tif',
                         allow_cleanup_failure=ON_WINDOWS) as tmp_file:
        # allow 2d or 3d shapes
        if nz == 1:
            data_shape = ny, nx
            write_kwargs = {'indexes': 1}
        else:
            data_shape = nz, ny, nx
            write_kwargs = {}
        data = np.arange(
            nz * ny * nx,
            dtype=rasterio.float32).reshape(
            *data_shape)
        if transform is None:
            transform = from_origin(*transform_args)
        with rasterio.open(
                tmp_file, 'w',
                driver='GTiff', height=ny, width=nx, count=nz,
                crs=crs,
                transform=transform,
                dtype=rasterio.float32,
                **open_kwargs) as s:
            s.write(data, **write_kwargs)
            dx, dy = s.res[0], -s.res[1]

        a, b, c, d = transform_args
        data = data[np.newaxis, ...] if nz == 1 else data
        expected = DataArray(data, dims=('band', 'y', 'x'),
                             coords={
                                 'band': np.arange(nz) + 1,
                                 'y': -np.arange(ny) * d + b + dy / 2,
                                 'x': np.arange(nx) * c + a + dx / 2,
        })
        yield tmp_file, expected


@requires_rasterio
class TestRasterio(object):

    @requires_scipy_or_netCDF4
    def test_serialization(self):
        with create_tmp_geotiff() as (tmp_file, expected):
            # Write it to a netcdf and read again (roundtrip)
            with xr.open_rasterio(tmp_file) as rioda:
                with create_tmp_file(suffix='.nc') as tmp_nc_file:
                    rioda.to_netcdf(tmp_nc_file)
                    with xr.open_dataarray(tmp_nc_file) as ncds:
                        assert_identical(rioda, ncds)

    def test_utm(self):
        with create_tmp_geotiff() as (tmp_file, expected):
            with xr.open_rasterio(tmp_file) as rioda:
                assert_allclose(rioda, expected)
                assert isinstance(rioda.attrs['crs'], str)
                assert isinstance(rioda.attrs['res'], tuple)
                assert isinstance(rioda.attrs['is_tiled'], np.uint8)
                assert isinstance(rioda.attrs['transform'], tuple)
                assert len(rioda.attrs['transform']) == 6
                np.testing.assert_array_equal(rioda.attrs['nodatavals'],
                                              [np.NaN, np.NaN, np.NaN])

            # Check no parse coords
            with xr.open_rasterio(tmp_file, parse_coordinates=False) as rioda:
                assert 'x' not in rioda.coords
                assert 'y' not in rioda.coords

    def test_non_rectilinear(self):
        from rasterio.transform import from_origin
        # Create a geotiff file with 2d coordinates
        with create_tmp_geotiff(transform=from_origin(0, 3, 1, 1).rotation(45),
                                crs=None) as (tmp_file, _):
            # Default is to not parse coords
            with xr.open_rasterio(tmp_file) as rioda:
                assert 'x' not in rioda.coords
                assert 'y' not in rioda.coords
                assert 'crs' not in rioda.attrs
                assert isinstance(rioda.attrs['res'], tuple)
                assert isinstance(rioda.attrs['is_tiled'], np.uint8)
                assert isinstance(rioda.attrs['transform'], tuple)
                assert len(rioda.attrs['transform']) == 6

            # See if a warning is raised if we force it
            with pytest.warns(Warning,
                              match="transformation isn't rectilinear"):
                with xr.open_rasterio(tmp_file,
                                      parse_coordinates=True) as rioda:
                    assert 'x' not in rioda.coords
                    assert 'y' not in rioda.coords

    def test_platecarree(self):
        with create_tmp_geotiff(8, 10, 1, transform_args=[1, 2, 0.5, 2.],
                                crs='+proj=latlong',
                                open_kwargs={'nodata': -9765}) \
                as (tmp_file, expected):
            with xr.open_rasterio(tmp_file) as rioda:
                assert_allclose(rioda, expected)
                assert isinstance(rioda.attrs['crs'], str)
                assert isinstance(rioda.attrs['res'], tuple)
                assert isinstance(rioda.attrs['is_tiled'], np.uint8)
                assert isinstance(rioda.attrs['transform'], tuple)
                assert len(rioda.attrs['transform']) == 6
                np.testing.assert_array_equal(rioda.attrs['nodatavals'],
                                              [-9765.])

    def test_notransform(self):
        # regression test for https://github.com/pydata/xarray/issues/1686
        import rasterio
        import warnings

        # Create a geotiff file
        with warnings.catch_warnings():
            # rasterio throws a NotGeoreferencedWarning here, which is
            # expected since we test rasterio's defaults in this case.
            warnings.filterwarnings('ignore', category=UserWarning,
                                    message='Dataset has no geotransform set')
            with create_tmp_file(suffix='.tif') as tmp_file:
                # data
                nx, ny, nz = 4, 3, 3
                data = np.arange(nx * ny * nz,
                                 dtype=rasterio.float32).reshape(nz, ny, nx)
                with rasterio.open(
                        tmp_file, 'w',
                        driver='GTiff', height=ny, width=nx, count=nz,
                        dtype=rasterio.float32) as s:
                    s.write(data)

                # Tests
                expected = DataArray(data,
                                     dims=('band', 'y', 'x'),
                                     coords={'band': [1, 2, 3],
                                             'y': [0.5, 1.5, 2.5],
                                             'x': [0.5, 1.5, 2.5, 3.5],
                                             })
                with xr.open_rasterio(tmp_file) as rioda:
                    assert_allclose(rioda, expected)
                    assert isinstance(rioda.attrs['res'], tuple)
                    assert isinstance(rioda.attrs['is_tiled'], np.uint8)
                    assert isinstance(rioda.attrs['transform'], tuple)
                    assert len(rioda.attrs['transform']) == 6

    def test_indexing(self):
        with create_tmp_geotiff(8, 10, 3, transform_args=[1, 2, 0.5, 2.],
                                crs='+proj=latlong') as (tmp_file, expected):
            with xr.open_rasterio(tmp_file, cache=False) as actual:

                # tests
                # assert_allclose checks all data + coordinates
                assert_allclose(actual, expected)
                assert not actual.variable._in_memory

                # Basic indexer
                ind = {'x': slice(2, 5), 'y': slice(5, 7)}
                assert_allclose(expected.isel(**ind), actual.isel(**ind))
                assert not actual.variable._in_memory

                ind = {'band': slice(1, 2), 'x': slice(2, 5), 'y': slice(5, 7)}
                assert_allclose(expected.isel(**ind), actual.isel(**ind))
                assert not actual.variable._in_memory

                ind = {'band': slice(1, 2), 'x': slice(2, 5), 'y': 0}
                assert_allclose(expected.isel(**ind), actual.isel(**ind))
                assert not actual.variable._in_memory

                # orthogonal indexer
                ind = {'band': np.array([2, 1, 0]),
                       'x': np.array([1, 0]), 'y': np.array([0, 2])}
                assert_allclose(expected.isel(**ind), actual.isel(**ind))
                assert not actual.variable._in_memory

                ind = {'band': np.array([2, 1, 0]),
                       'x': np.array([1, 0]), 'y': 0}
                assert_allclose(expected.isel(**ind), actual.isel(**ind))
                assert not actual.variable._in_memory

                ind = {'band': 0, 'x': np.array(
                    [0, 0]), 'y': np.array([1, 1, 1])}
                assert_allclose(expected.isel(**ind), actual.isel(**ind))
                assert not actual.variable._in_memory

                # minus-stepped slice
                ind = {'band': np.array([2, 1, 0]),
                       'x': slice(-1, None, -1), 'y': 0}
                assert_allclose(expected.isel(**ind), actual.isel(**ind))
                assert not actual.variable._in_memory

                ind = {'band': np.array([2, 1, 0]),
                       'x': 1, 'y': slice(-1, 1, -2)}
                assert_allclose(expected.isel(**ind), actual.isel(**ind))
                assert not actual.variable._in_memory

                # empty selection
                ind = {'band': np.array([2, 1, 0]),
                       'x': 1, 'y': slice(2, 2, 1)}
                assert_allclose(expected.isel(**ind), actual.isel(**ind))
                assert not actual.variable._in_memory

                ind = {'band': slice(0, 0), 'x': 1, 'y': 2}
                assert_allclose(expected.isel(**ind), actual.isel(**ind))
                assert not actual.variable._in_memory

                # vectorized indexer
                ind = {'band': DataArray([2, 1, 0], dims='a'),
                       'x': DataArray([1, 0, 0], dims='a'),
                       'y': np.array([0, 2])}
                assert_allclose(expected.isel(**ind), actual.isel(**ind))
                assert not actual.variable._in_memory

                ind = {
                    'band': DataArray([[2, 1, 0], [1, 0, 2]], dims=['a', 'b']),
                    'x': DataArray([[1, 0, 0], [0, 1, 0]], dims=['a', 'b']),
                    'y': 0}
                assert_allclose(expected.isel(**ind), actual.isel(**ind))
                assert not actual.variable._in_memory

                # Selecting lists of bands is fine
                ex = expected.isel(band=[1, 2])
                ac = actual.isel(band=[1, 2])
                assert_allclose(ac, ex)
                ex = expected.isel(band=[0, 2])
                ac = actual.isel(band=[0, 2])
                assert_allclose(ac, ex)

                # Integer indexing
                ex = expected.isel(band=1)
                ac = actual.isel(band=1)
                assert_allclose(ac, ex)

                ex = expected.isel(x=1, y=2)
                ac = actual.isel(x=1, y=2)
                assert_allclose(ac, ex)

                ex = expected.isel(band=0, x=1, y=2)
                ac = actual.isel(band=0, x=1, y=2)
                assert_allclose(ac, ex)

                # Mixed
                ex = actual.isel(x=slice(2), y=slice(2))
                ac = actual.isel(x=[0, 1], y=[0, 1])
                assert_allclose(ac, ex)

                ex = expected.isel(band=0, x=1, y=slice(5, 7))
                ac = actual.isel(band=0, x=1, y=slice(5, 7))
                assert_allclose(ac, ex)

                ex = expected.isel(band=0, x=slice(2, 5), y=2)
                ac = actual.isel(band=0, x=slice(2, 5), y=2)
                assert_allclose(ac, ex)

                # One-element lists
                ex = expected.isel(band=[0], x=slice(2, 5), y=[2])
                ac = actual.isel(band=[0], x=slice(2, 5), y=[2])
                assert_allclose(ac, ex)

    def test_caching(self):
        with create_tmp_geotiff(8, 10, 3, transform_args=[1, 2, 0.5, 2.],
                                crs='+proj=latlong') as (tmp_file, expected):
            # Cache is the default
            with xr.open_rasterio(tmp_file) as actual:

                # This should cache everything
                assert_allclose(actual, expected)

                # once cached, non-windowed indexing should become possible
                ac = actual.isel(x=[2, 4])
                ex = expected.isel(x=[2, 4])
                assert_allclose(ac, ex)

    @requires_dask
    def test_chunks(self):
        with create_tmp_geotiff(8, 10, 3, transform_args=[1, 2, 0.5, 2.],
                                crs='+proj=latlong') as (tmp_file, expected):
            # Chunk at open time
            with xr.open_rasterio(tmp_file, chunks=(1, 2, 2)) as actual:

                import dask.array as da
                assert isinstance(actual.data, da.Array)
                assert 'open_rasterio' in actual.data.name

                # do some arithmetic
                ac = actual.mean()
                ex = expected.mean()
                assert_allclose(ac, ex)

                ac = actual.sel(band=1).mean(dim='x')
                ex = expected.sel(band=1).mean(dim='x')
                assert_allclose(ac, ex)

    def test_pickle_rasterio(self):
        # regression test for https://github.com/pydata/xarray/issues/2121
        with create_tmp_geotiff() as (tmp_file, expected):
            with xr.open_rasterio(tmp_file) as rioda:
                temp = pickle.dumps(rioda)
                with pickle.loads(temp) as actual:
                    assert_equal(actual, rioda)

    def test_ENVI_tags(self):
        rasterio = pytest.importorskip('rasterio', minversion='1.0a')
        from rasterio.transform import from_origin

        # Create an ENVI file with some tags in the ENVI namespace
        # this test uses a custom driver, so we can't use create_tmp_geotiff
        with create_tmp_file(suffix='.dat') as tmp_file:
            # data
            nx, ny, nz = 4, 3, 3
            data = np.arange(nx * ny * nz,
                             dtype=rasterio.float32).reshape(nz, ny, nx)
            transform = from_origin(5000, 80000, 1000, 2000.)
            with rasterio.open(
                    tmp_file, 'w',
                    driver='ENVI', height=ny, width=nx, count=nz,
                    crs={'units': 'm', 'no_defs': True, 'ellps': 'WGS84',
                         'proj': 'utm', 'zone': 18},
                    transform=transform,
                    dtype=rasterio.float32) as s:
                s.update_tags(
                    ns='ENVI',
                    description='{Tagged file}',
                    wavelength='{123.000000, 234.234000, 345.345678}',
                    fwhm='{1.000000, 0.234000, 0.000345}')
                s.write(data)
                dx, dy = s.res[0], -s.res[1]

            # Tests
            coords = {
                'band': [1, 2, 3],
                'y': -np.arange(ny) * 2000 + 80000 + dy / 2,
                'x': np.arange(nx) * 1000 + 5000 + dx / 2,
                'wavelength': ('band', np.array([123, 234.234, 345.345678])),
                'fwhm': ('band', np.array([1, 0.234, 0.000345])),
            }
            expected = DataArray(data, dims=('band', 'y', 'x'), coords=coords)

            with xr.open_rasterio(tmp_file) as rioda:
                assert_allclose(rioda, expected)
                assert isinstance(rioda.attrs['crs'], str)
                assert isinstance(rioda.attrs['res'], tuple)
                assert isinstance(rioda.attrs['is_tiled'], np.uint8)
                assert isinstance(rioda.attrs['transform'], tuple)
                assert len(rioda.attrs['transform']) == 6
                # from ENVI tags
                assert isinstance(rioda.attrs['description'], str)
                assert isinstance(rioda.attrs['map_info'], str)
                assert isinstance(rioda.attrs['samples'], str)

    def test_no_mftime(self):
        # rasterio can accept "filename" urguments that are actually urls,
        # including paths to remote files.
        # In issue #1816, we found that these caused dask to break, because
        # the modification time was used to determine the dask token. This
        # tests ensure we can still chunk such files when reading with
        # rasterio.
        with create_tmp_geotiff(8, 10, 3, transform_args=[1, 2, 0.5, 2.],
                                crs='+proj=latlong') as (tmp_file, expected):
            with mock.patch('os.path.getmtime', side_effect=OSError):
                with xr.open_rasterio(tmp_file, chunks=(1, 2, 2)) as actual:
                    import dask.array as da
                    assert isinstance(actual.data, da.Array)
                    assert_allclose(actual, expected)

    @network
    def test_http_url(self):
        # more examples urls here
        # http://download.osgeo.org/geotiff/samples/
        url = 'http://download.osgeo.org/geotiff/samples/made_up/ntf_nord.tif'
        with xr.open_rasterio(url) as actual:
            assert actual.shape == (1, 512, 512)
        # make sure chunking works
        with xr.open_rasterio(url, chunks=(1, 256, 256)) as actual:
            import dask.array as da
            assert isinstance(actual.data, da.Array)

    def test_rasterio_environment(self):
        import rasterio
        with create_tmp_geotiff() as (tmp_file, expected):
            # Should fail with error since suffix not allowed
            with pytest.raises(Exception):
                with rasterio.Env(GDAL_SKIP='GTiff'):
                    with xr.open_rasterio(tmp_file) as actual:
                        assert_allclose(actual, expected)

    def test_rasterio_vrt(self):
        import rasterio
        # tmp_file default crs is UTM: CRS({'init': 'epsg:32618'}
        with create_tmp_geotiff() as (tmp_file, expected):
            with rasterio.open(tmp_file) as src:
                with rasterio.vrt.WarpedVRT(src, crs='epsg:4326') as vrt:
                    expected_shape = (vrt.width, vrt.height)
                    expected_crs = vrt.crs
                    print(expected_crs)
                    expected_res = vrt.res
                    # Value of single pixel in center of image
                    lon, lat = vrt.xy(vrt.width // 2, vrt.height // 2)
                    expected_val = next(vrt.sample([(lon, lat)]))
                    with xr.open_rasterio(vrt) as da:
                        actual_shape = (da.sizes['x'], da.sizes['y'])
                        actual_crs = da.crs
                        print(actual_crs)
                        actual_res = da.res
                        actual_val = da.sel(dict(x=lon, y=lat),
                                            method='nearest').data

                        assert actual_crs == expected_crs
                        assert actual_res == expected_res
                        assert actual_shape == expected_shape
                        assert expected_val.all() == actual_val.all()

    @network
    def test_rasterio_vrt_network(self):
        import rasterio

        url = 'https://storage.googleapis.com/\
        gcp-public-data-landsat/LC08/01/047/027/\
        LC08_L1TP_047027_20130421_20170310_01_T1/\
        LC08_L1TP_047027_20130421_20170310_01_T1_B4.TIF'
        env = rasterio.Env(GDAL_DISABLE_READDIR_ON_OPEN='EMPTY_DIR',
                           CPL_VSIL_CURL_USE_HEAD=False,
                           CPL_VSIL_CURL_ALLOWED_EXTENSIONS='TIF')
        with env:
            with rasterio.open(url) as src:
                with rasterio.vrt.WarpedVRT(src, crs='epsg:4326') as vrt:
                    expected_shape = (vrt.width, vrt.height)
                    expected_crs = vrt.crs
                    expected_res = vrt.res
                    # Value of single pixel in center of image
                    lon, lat = vrt.xy(vrt.width // 2, vrt.height // 2)
                    expected_val = next(vrt.sample([(lon, lat)]))
                    with xr.open_rasterio(vrt) as da:
                        actual_shape = (da.sizes['x'], da.sizes['y'])
                        actual_crs = da.crs
                        actual_res = da.res
                        actual_val = da.sel(dict(x=lon, y=lat),
                                            method='nearest').data

                        assert_equal(actual_shape, expected_shape)
                        assert_equal(actual_crs, expected_crs)
                        assert_equal(actual_res, expected_res)
                        assert_equal(expected_val, actual_val)


class TestEncodingInvalid(object):

    def test_extract_nc4_variable_encoding(self):
        var = xr.Variable(('x',), [1, 2, 3], {}, {'foo': 'bar'})
        with raises_regex(ValueError, 'unexpected encoding'):
            _extract_nc4_variable_encoding(var, raise_on_invalid=True)

        var = xr.Variable(('x',), [1, 2, 3], {}, {'chunking': (2, 1)})
        encoding = _extract_nc4_variable_encoding(var)
        assert {} == encoding

        # regression test
        var = xr.Variable(('x',), [1, 2, 3], {}, {'shuffle': True})
        encoding = _extract_nc4_variable_encoding(var, raise_on_invalid=True)
        assert {'shuffle': True} == encoding

    def test_extract_h5nc_encoding(self):
        # not supported with h5netcdf (yet)
        var = xr.Variable(('x',), [1, 2, 3], {},
                          {'least_sigificant_digit': 2})
        with raises_regex(ValueError, 'unexpected encoding'):
            _extract_nc4_variable_encoding(var, raise_on_invalid=True)


class MiscObject:
    pass


@requires_netCDF4
class TestValidateAttrs(object):
    def test_validating_attrs(self):
        def new_dataset():
            return Dataset({'data': ('y', np.arange(10.0))},
                           {'y': np.arange(10)})

        def new_dataset_and_dataset_attrs():
            ds = new_dataset()
            return ds, ds.attrs

        def new_dataset_and_data_attrs():
            ds = new_dataset()
            return ds, ds.data.attrs

        def new_dataset_and_coord_attrs():
            ds = new_dataset()
            return ds, ds.coords['y'].attrs

        for new_dataset_and_attrs in [new_dataset_and_dataset_attrs,
                                      new_dataset_and_data_attrs,
                                      new_dataset_and_coord_attrs]:
            ds, attrs = new_dataset_and_attrs()

            attrs[123] = 'test'
            with raises_regex(TypeError, 'Invalid name for attr'):
                ds.to_netcdf('test.nc')

            ds, attrs = new_dataset_and_attrs()
            attrs[MiscObject()] = 'test'
            with raises_regex(TypeError, 'Invalid name for attr'):
                ds.to_netcdf('test.nc')

            ds, attrs = new_dataset_and_attrs()
            attrs[''] = 'test'
            with raises_regex(ValueError, 'Invalid name for attr'):
                ds.to_netcdf('test.nc')

            # This one should work
            ds, attrs = new_dataset_and_attrs()
            attrs['test'] = 'test'
            with create_tmp_file() as tmp_file:
                ds.to_netcdf(tmp_file)

            ds, attrs = new_dataset_and_attrs()
            attrs['test'] = {'a': 5}
            with raises_regex(TypeError, 'Invalid value for attr'):
                ds.to_netcdf('test.nc')

            ds, attrs = new_dataset_and_attrs()
            attrs['test'] = MiscObject()
            with raises_regex(TypeError, 'Invalid value for attr'):
                ds.to_netcdf('test.nc')

            ds, attrs = new_dataset_and_attrs()
            attrs['test'] = 5
            with create_tmp_file() as tmp_file:
                ds.to_netcdf(tmp_file)

            ds, attrs = new_dataset_and_attrs()
            attrs['test'] = 3.14
            with create_tmp_file() as tmp_file:
                ds.to_netcdf(tmp_file)

            ds, attrs = new_dataset_and_attrs()
            attrs['test'] = [1, 2, 3, 4]
            with create_tmp_file() as tmp_file:
                ds.to_netcdf(tmp_file)

            ds, attrs = new_dataset_and_attrs()
            attrs['test'] = (1.9, 2.5)
            with create_tmp_file() as tmp_file:
                ds.to_netcdf(tmp_file)

            ds, attrs = new_dataset_and_attrs()
            attrs['test'] = np.arange(5)
            with create_tmp_file() as tmp_file:
                ds.to_netcdf(tmp_file)

            ds, attrs = new_dataset_and_attrs()
            attrs['test'] = 'This is a string'
            with create_tmp_file() as tmp_file:
                ds.to_netcdf(tmp_file)

            ds, attrs = new_dataset_and_attrs()
            attrs['test'] = ''
            with create_tmp_file() as tmp_file:
                ds.to_netcdf(tmp_file)


@requires_scipy_or_netCDF4
class TestDataArrayToNetCDF(object):

    def test_dataarray_to_netcdf_no_name(self):
        original_da = DataArray(np.arange(12).reshape((3, 4)))

        with create_tmp_file() as tmp:
            original_da.to_netcdf(tmp)

            with open_dataarray(tmp) as loaded_da:
                assert_identical(original_da, loaded_da)

    def test_dataarray_to_netcdf_with_name(self):
        original_da = DataArray(np.arange(12).reshape((3, 4)),
                                name='test')

        with create_tmp_file() as tmp:
            original_da.to_netcdf(tmp)

            with open_dataarray(tmp) as loaded_da:
                assert_identical(original_da, loaded_da)

    def test_dataarray_to_netcdf_coord_name_clash(self):
        original_da = DataArray(np.arange(12).reshape((3, 4)),
                                dims=['x', 'y'],
                                name='x')

        with create_tmp_file() as tmp:
            original_da.to_netcdf(tmp)

            with open_dataarray(tmp) as loaded_da:
                assert_identical(original_da, loaded_da)

    def test_open_dataarray_options(self):
        data = DataArray(
            np.arange(5), coords={'y': ('x', range(5))}, dims=['x'])

        with create_tmp_file() as tmp:
            data.to_netcdf(tmp)

            expected = data.drop('y')
            with open_dataarray(tmp, drop_variables=['y']) as loaded:
                assert_identical(expected, loaded)

    def test_dataarray_to_netcdf_return_bytes(self):
        # regression test for GH1410
        data = xr.DataArray([1, 2, 3])
        output = data.to_netcdf()
        assert isinstance(output, bytes)

    @requires_pathlib
    def test_dataarray_to_netcdf_no_name_pathlib(self):
        original_da = DataArray(np.arange(12).reshape((3, 4)))

        with create_tmp_file() as tmp:
            tmp = Path(tmp)
            original_da.to_netcdf(tmp)

            with open_dataarray(tmp) as loaded_da:
                assert_identical(original_da, loaded_da)


@requires_scipy_or_netCDF4
def test_no_warning_from_dask_effective_get():
    with create_tmp_file() as tmpfile:
        with pytest.warns(None) as record:
            ds = Dataset()
            ds.to_netcdf(tmpfile)
        assert len(record) == 0


@requires_scipy_or_netCDF4
def test_source_encoding_always_present():
    # Test for GH issue #2550.
    rnddata = np.random.randn(10)
    original = Dataset({'foo': ('x', rnddata)})
    with create_tmp_file() as tmp:
        original.to_netcdf(tmp)
        with open_dataset(tmp) as ds:
            assert ds.encoding['source'] == tmp


@requires_scipy_or_netCDF4
@pytest.mark.parametrize('calendar', _STANDARD_CALENDARS)
def test_use_cftime_standard_calendar_default_in_range(calendar):
    x = [0, 1]
    time = [0, 720]
    units_date = '2000-01-01'
    units = 'days since 2000-01-01'
    original = DataArray(x, [('time', time)], name='x')
    original = original.to_dataset()
    for v in ['x', 'time']:
        original[v].attrs['units'] = units
        original[v].attrs['calendar'] = calendar

    x_timedeltas = np.array(x).astype('timedelta64[D]')
    time_timedeltas = np.array(time).astype('timedelta64[D]')
    decoded_x = np.datetime64(units_date, 'ns') + x_timedeltas
    decoded_time = np.datetime64(units_date, 'ns') + time_timedeltas
    expected_x = DataArray(decoded_x, [('time', decoded_time)], name='x')
    expected_time = DataArray(decoded_time, [('time', decoded_time)],
                              name='time')

    with create_tmp_file() as tmp_file:
        original.to_netcdf(tmp_file)
        with pytest.warns(None) as record:
            with open_dataset(tmp_file) as ds:
                assert_identical(expected_x, ds.x)
                assert_identical(expected_time, ds.time)
            assert not record


@requires_cftime
@requires_scipy_or_netCDF4
@pytest.mark.parametrize('calendar', _STANDARD_CALENDARS)
@pytest.mark.parametrize('units_year', [1500, 2500])
def test_use_cftime_standard_calendar_default_out_of_range(
        calendar,
        units_year):
    import cftime

    x = [0, 1]
    time = [0, 720]
    units = 'days since {}-01-01'.format(units_year)
    original = DataArray(x, [('time', time)], name='x')
    original = original.to_dataset()
    for v in ['x', 'time']:
        original[v].attrs['units'] = units
        original[v].attrs['calendar'] = calendar

    decoded_x = cftime.num2date(x, units, calendar,
                                only_use_cftime_datetimes=True)
    decoded_time = cftime.num2date(time, units, calendar,
                                   only_use_cftime_datetimes=True)
    expected_x = DataArray(decoded_x, [('time', decoded_time)], name='x')
    expected_time = DataArray(decoded_time, [('time', decoded_time)],
                              name='time')

    with create_tmp_file() as tmp_file:
        original.to_netcdf(tmp_file)
        with pytest.warns(SerializationWarning):
            with open_dataset(tmp_file) as ds:
                assert_identical(expected_x, ds.x)
                assert_identical(expected_time, ds.time)


@requires_cftime
@requires_scipy_or_netCDF4
@pytest.mark.parametrize('calendar', _ALL_CALENDARS)
@pytest.mark.parametrize('units_year', [1500, 2000, 2500])
def test_use_cftime_true(
        calendar,
        units_year):
    import cftime

    x = [0, 1]
    time = [0, 720]
    units = 'days since {}-01-01'.format(units_year)
    original = DataArray(x, [('time', time)], name='x')
    original = original.to_dataset()
    for v in ['x', 'time']:
        original[v].attrs['units'] = units
        original[v].attrs['calendar'] = calendar

    decoded_x = cftime.num2date(x, units, calendar,
                                only_use_cftime_datetimes=True)
    decoded_time = cftime.num2date(time, units, calendar,
                                   only_use_cftime_datetimes=True)
    expected_x = DataArray(decoded_x, [('time', decoded_time)], name='x')
    expected_time = DataArray(decoded_time, [('time', decoded_time)],
                              name='time')

    with create_tmp_file() as tmp_file:
        original.to_netcdf(tmp_file)
        with pytest.warns(None) as record:
            with open_dataset(tmp_file, use_cftime=True) as ds:
                assert_identical(expected_x, ds.x)
                assert_identical(expected_time, ds.time)
            assert not record


@requires_scipy_or_netCDF4
@pytest.mark.parametrize('calendar', _STANDARD_CALENDARS)
def test_use_cftime_false_standard_calendar_in_range(calendar):
    x = [0, 1]
    time = [0, 720]
    units_date = '2000-01-01'
    units = 'days since 2000-01-01'
    original = DataArray(x, [('time', time)], name='x')
    original = original.to_dataset()
    for v in ['x', 'time']:
        original[v].attrs['units'] = units
        original[v].attrs['calendar'] = calendar

    x_timedeltas = np.array(x).astype('timedelta64[D]')
    time_timedeltas = np.array(time).astype('timedelta64[D]')
    decoded_x = np.datetime64(units_date, 'ns') + x_timedeltas
    decoded_time = np.datetime64(units_date, 'ns') + time_timedeltas
    expected_x = DataArray(decoded_x, [('time', decoded_time)], name='x')
    expected_time = DataArray(decoded_time, [('time', decoded_time)],
                              name='time')

    with create_tmp_file() as tmp_file:
        original.to_netcdf(tmp_file)
        with pytest.warns(None) as record:
            with open_dataset(tmp_file, use_cftime=False) as ds:
                assert_identical(expected_x, ds.x)
                assert_identical(expected_time, ds.time)
            assert not record


@requires_scipy_or_netCDF4
@pytest.mark.parametrize('calendar', _STANDARD_CALENDARS)
@pytest.mark.parametrize('units_year', [1500, 2500])
def test_use_cftime_false_standard_calendar_out_of_range(calendar, units_year):
    x = [0, 1]
    time = [0, 720]
    units = 'days since {}-01-01'.format(units_year)
    original = DataArray(x, [('time', time)], name='x')
    original = original.to_dataset()
    for v in ['x', 'time']:
        original[v].attrs['units'] = units
        original[v].attrs['calendar'] = calendar

    with create_tmp_file() as tmp_file:
        original.to_netcdf(tmp_file)
        with pytest.raises((OutOfBoundsDatetime, ValueError)):
            open_dataset(tmp_file, use_cftime=False)


@requires_scipy_or_netCDF4
@pytest.mark.parametrize('calendar', _NON_STANDARD_CALENDARS)
@pytest.mark.parametrize('units_year', [1500, 2000, 2500])
def test_use_cftime_false_nonstandard_calendar(calendar, units_year):
    x = [0, 1]
    time = [0, 720]
    units = 'days since {}'.format(units_year)
    original = DataArray(x, [('time', time)], name='x')
    original = original.to_dataset()
    for v in ['x', 'time']:
        original[v].attrs['units'] = units
        original[v].attrs['calendar'] = calendar

    with create_tmp_file() as tmp_file:
        original.to_netcdf(tmp_file)
        with pytest.raises((OutOfBoundsDatetime, ValueError)):
            open_dataset(tmp_file, use_cftime=False)