1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
.. _combining data:
Combining data
--------------
.. ipython:: python
:suppress:
import numpy as np
import pandas as pd
import xarray as xr
np.random.seed(123456)
* For combining datasets or data arrays along a single dimension, see concatenate_.
* For combining datasets with different variables, see merge_.
* For combining datasets or data arrays with different indexes or missing values, see combine_.
* For combining datasets or data arrays along multiple dimensions see combining.multi_.
.. _concatenate:
Concatenate
~~~~~~~~~~~
To combine arrays along existing or new dimension into a larger array, you
can use :py:func:`~xarray.concat`. ``concat`` takes an iterable of ``DataArray``
or ``Dataset`` objects, as well as a dimension name, and concatenates along
that dimension:
.. ipython:: python
arr = xr.DataArray(np.random.randn(2, 3), [("x", ["a", "b"]), ("y", [10, 20, 30])])
arr[:, :1]
# this resembles how you would use np.concatenate
xr.concat([arr[:, :1], arr[:, 1:]], dim="y")
In addition to combining along an existing dimension, ``concat`` can create a
new dimension by stacking lower dimensional arrays together:
.. ipython:: python
arr[0]
# to combine these 1d arrays into a 2d array in numpy, you would use np.array
xr.concat([arr[0], arr[1]], "x")
If the second argument to ``concat`` is a new dimension name, the arrays will
be concatenated along that new dimension, which is always inserted as the first
dimension:
.. ipython:: python
xr.concat([arr[0], arr[1]], "new_dim")
The second argument to ``concat`` can also be an :py:class:`~pandas.Index` or
:py:class:`~xarray.DataArray` object as well as a string, in which case it is
used to label the values along the new dimension:
.. ipython:: python
xr.concat([arr[0], arr[1]], pd.Index([-90, -100], name="new_dim"))
Of course, ``concat`` also works on ``Dataset`` objects:
.. ipython:: python
ds = arr.to_dataset(name="foo")
xr.concat([ds.sel(x="a"), ds.sel(x="b")], "x")
:py:func:`~xarray.concat` has a number of options which provide deeper control
over which variables are concatenated and how it handles conflicting variables
between datasets. With the default parameters, xarray will load some coordinate
variables into memory to compare them between datasets. This may be prohibitively
expensive if you are manipulating your dataset lazily using :ref:`dask`.
.. _merge:
Merge
~~~~~
To combine variables and coordinates between multiple ``DataArray`` and/or
``Dataset`` objects, use :py:func:`~xarray.merge`. It can merge a list of
``Dataset``, ``DataArray`` or dictionaries of objects convertible to
``DataArray`` objects:
.. ipython:: python
xr.merge([ds, ds.rename({"foo": "bar"})])
xr.merge([xr.DataArray(n, name="var%d" % n) for n in range(5)])
If you merge another dataset (or a dictionary including data array objects), by
default the resulting dataset will be aligned on the **union** of all index
coordinates:
.. ipython:: python
other = xr.Dataset({"bar": ("x", [1, 2, 3, 4]), "x": list("abcd")})
xr.merge([ds, other])
This ensures that ``merge`` is non-destructive. ``xarray.MergeError`` is raised
if you attempt to merge two variables with the same name but different values:
.. ipython::
@verbatim
In [1]: xr.merge([ds, ds + 1])
MergeError: conflicting values for variable 'foo' on objects to be combined:
first value: <xarray.Variable (x: 2, y: 3)>
array([[ 0.4691123 , -0.28286334, -1.5090585 ],
[-1.13563237, 1.21211203, -0.17321465]])
second value: <xarray.Variable (x: 2, y: 3)>
array([[ 1.4691123 , 0.71713666, -0.5090585 ],
[-0.13563237, 2.21211203, 0.82678535]])
The same non-destructive merging between ``DataArray`` index coordinates is
used in the :py:class:`~xarray.Dataset` constructor:
.. ipython:: python
xr.Dataset({"a": arr[:-1], "b": arr[1:]})
.. _combine:
Combine
~~~~~~~
The instance method :py:meth:`~xarray.DataArray.combine_first` combines two
datasets/data arrays and defaults to non-null values in the calling object,
using values from the called object to fill holes. The resulting coordinates
are the union of coordinate labels. Vacant cells as a result of the outer-join
are filled with ``NaN``. For example:
.. ipython:: python
ar0 = xr.DataArray([[0, 0], [0, 0]], [("x", ["a", "b"]), ("y", [-1, 0])])
ar1 = xr.DataArray([[1, 1], [1, 1]], [("x", ["b", "c"]), ("y", [0, 1])])
ar0.combine_first(ar1)
ar1.combine_first(ar0)
For datasets, ``ds0.combine_first(ds1)`` works similarly to
``xr.merge([ds0, ds1])``, except that ``xr.merge`` raises ``MergeError`` when
there are conflicting values in variables to be merged, whereas
``.combine_first`` defaults to the calling object's values.
.. _update:
Update
~~~~~~
In contrast to ``merge``, :py:meth:`~xarray.Dataset.update` modifies a dataset
in-place without checking for conflicts, and will overwrite any existing
variables with new values:
.. ipython:: python
ds.update({"space": ("space", [10.2, 9.4, 3.9])})
However, dimensions are still required to be consistent between different
Dataset variables, so you cannot change the size of a dimension unless you
replace all dataset variables that use it.
``update`` also performs automatic alignment if necessary. Unlike ``merge``, it
maintains the alignment of the original array instead of merging indexes:
.. ipython:: python
ds.update(other)
The exact same alignment logic when setting a variable with ``__setitem__``
syntax:
.. ipython:: python
ds["baz"] = xr.DataArray([9, 9, 9, 9, 9], coords=[("x", list("abcde"))])
ds.baz
Equals and identical
~~~~~~~~~~~~~~~~~~~~
xarray objects can be compared by using the :py:meth:`~xarray.Dataset.equals`,
:py:meth:`~xarray.Dataset.identical` and
:py:meth:`~xarray.Dataset.broadcast_equals` methods. These methods are used by
the optional ``compat`` argument on ``concat`` and ``merge``.
:py:attr:`~xarray.Dataset.equals` checks dimension names, indexes and array
values:
.. ipython:: python
arr.equals(arr.copy())
:py:attr:`~xarray.Dataset.identical` also checks attributes, and the name of each
object:
.. ipython:: python
arr.identical(arr.rename("bar"))
:py:attr:`~xarray.Dataset.broadcast_equals` does a more relaxed form of equality
check that allows variables to have different dimensions, as long as values
are constant along those new dimensions:
.. ipython:: python
left = xr.Dataset(coords={"x": 0})
right = xr.Dataset({"x": [0, 0, 0]})
left.broadcast_equals(right)
Like pandas objects, two xarray objects are still equal or identical if they have
missing values marked by ``NaN`` in the same locations.
In contrast, the ``==`` operation performs element-wise comparison (like
numpy):
.. ipython:: python
arr == arr.copy()
Note that ``NaN`` does not compare equal to ``NaN`` in element-wise comparison;
you may need to deal with missing values explicitly.
.. _combining.no_conflicts:
Merging with 'no_conflicts'
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ``compat`` argument ``'no_conflicts'`` is only available when
combining xarray objects with ``merge``. In addition to the above comparison
methods it allows the merging of xarray objects with locations where *either*
have ``NaN`` values. This can be used to combine data with overlapping
coordinates as long as any non-missing values agree or are disjoint:
.. ipython:: python
ds1 = xr.Dataset({"a": ("x", [10, 20, 30, np.nan])}, {"x": [1, 2, 3, 4]})
ds2 = xr.Dataset({"a": ("x", [np.nan, 30, 40, 50])}, {"x": [2, 3, 4, 5]})
xr.merge([ds1, ds2], compat="no_conflicts")
Note that due to the underlying representation of missing values as floating
point numbers (``NaN``), variable data type is not always preserved when merging
in this manner.
.. _combining.multi:
Combining along multiple dimensions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For combining many objects along multiple dimensions xarray provides
:py:func:`~xarray.combine_nested` and :py:func:`~xarray.combine_by_coords`. These
functions use a combination of ``concat`` and ``merge`` across different
variables to combine many objects into one.
:py:func:`~xarray.combine_nested` requires specifying the order in which the
objects should be combined, while :py:func:`~xarray.combine_by_coords` attempts to
infer this ordering automatically from the coordinates in the data.
:py:func:`~xarray.combine_nested` is useful when you know the spatial
relationship between each object in advance. The datasets must be provided in
the form of a nested list, which specifies their relative position and
ordering. A common task is collecting data from a parallelized simulation where
each processor wrote out data to a separate file. A domain which was decomposed
into 4 parts, 2 each along both the x and y axes, requires organising the
datasets into a doubly-nested list, e.g:
.. ipython:: python
arr = xr.DataArray(
name="temperature", data=np.random.randint(5, size=(2, 2)), dims=["x", "y"]
)
arr
ds_grid = [[arr, arr], [arr, arr]]
xr.combine_nested(ds_grid, concat_dim=["x", "y"])
:py:func:`~xarray.combine_nested` can also be used to explicitly merge datasets
with different variables. For example if we have 4 datasets, which are divided
along two times, and contain two different variables, we can pass ``None``
to ``'concat_dim'`` to specify the dimension of the nested list over which
we wish to use ``merge`` instead of ``concat``:
.. ipython:: python
temp = xr.DataArray(name="temperature", data=np.random.randn(2), dims=["t"])
precip = xr.DataArray(name="precipitation", data=np.random.randn(2), dims=["t"])
ds_grid = [[temp, precip], [temp, precip]]
xr.combine_nested(ds_grid, concat_dim=["t", None])
:py:func:`~xarray.combine_by_coords` is for combining objects which have dimension
coordinates which specify their relationship to and order relative to one
another, for example a linearly-increasing 'time' dimension coordinate.
Here we combine two datasets using their common dimension coordinates. Notice
they are concatenated in order based on the values in their dimension
coordinates, not on their position in the list passed to ``combine_by_coords``.
.. ipython:: python
:okwarning:
x1 = xr.DataArray(name="foo", data=np.random.randn(3), coords=[("x", [0, 1, 2])])
x2 = xr.DataArray(name="foo", data=np.random.randn(3), coords=[("x", [3, 4, 5])])
xr.combine_by_coords([x2, x1])
These functions can be used by :py:func:`~xarray.open_mfdataset` to open many
files as one dataset. The particular function used is specified by setting the
argument ``'combine'`` to ``'by_coords'`` or ``'nested'``. This is useful for
situations where your data is split across many files in multiple locations,
which have some known relationship between one another.
|