1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
|
.. _data structures:
Data Structures
===============
.. ipython:: python
:suppress:
import numpy as np
import pandas as pd
import xarray as xr
np.random.seed(123456)
np.set_printoptions(threshold=10)
DataArray
---------
:py:class:`xarray.DataArray` is xarray's implementation of a labeled,
multi-dimensional array. It has several key properties:
- ``values``: a :py:class:`numpy.ndarray` holding the array's values
- ``dims``: dimension names for each axis (e.g., ``('x', 'y', 'z')``)
- ``coords``: a dict-like container of arrays (*coordinates*) that label each
point (e.g., 1-dimensional arrays of numbers, datetime objects or
strings)
- ``attrs``: :py:class:`dict` to hold arbitrary metadata (*attributes*)
xarray uses ``dims`` and ``coords`` to enable its core metadata aware operations.
Dimensions provide names that xarray uses instead of the ``axis`` argument found
in many numpy functions. Coordinates enable fast label based indexing and
alignment, building on the functionality of the ``index`` found on a pandas
:py:class:`~pandas.DataFrame` or :py:class:`~pandas.Series`.
DataArray objects also can have a ``name`` and can hold arbitrary metadata in
the form of their ``attrs`` property. Names and attributes are strictly for
users and user-written code: xarray makes no attempt to interpret them, and
propagates them only in unambiguous cases
(see FAQ, :ref:`approach to metadata`).
.. _creating a dataarray:
Creating a DataArray
~~~~~~~~~~~~~~~~~~~~
The :py:class:`~xarray.DataArray` constructor takes:
- ``data``: a multi-dimensional array of values (e.g., a numpy ndarray,
:py:class:`~pandas.Series`, :py:class:`~pandas.DataFrame` or ``pandas.Panel``)
- ``coords``: a list or dictionary of coordinates. If a list, it should be a
list of tuples where the first element is the dimension name and the second
element is the corresponding coordinate array_like object.
- ``dims``: a list of dimension names. If omitted and ``coords`` is a list of
tuples, dimension names are taken from ``coords``.
- ``attrs``: a dictionary of attributes to add to the instance
- ``name``: a string that names the instance
.. ipython:: python
data = np.random.rand(4, 3)
locs = ["IA", "IL", "IN"]
times = pd.date_range("2000-01-01", periods=4)
foo = xr.DataArray(data, coords=[times, locs], dims=["time", "space"])
foo
Only ``data`` is required; all of other arguments will be filled
in with default values:
.. ipython:: python
xr.DataArray(data)
As you can see, dimension names are always present in the xarray data model: if
you do not provide them, defaults of the form ``dim_N`` will be created.
However, coordinates are always optional, and dimensions do not have automatic
coordinate labels.
.. note::
This is different from pandas, where axes always have tick labels, which
default to the integers ``[0, ..., n-1]``.
Prior to xarray v0.9, xarray copied this behavior: default coordinates for
each dimension would be created if coordinates were not supplied explicitly.
This is no longer the case.
Coordinates can be specified in the following ways:
- A list of values with length equal to the number of dimensions, providing
coordinate labels for each dimension. Each value must be of one of the
following forms:
* A :py:class:`~xarray.DataArray` or :py:class:`~xarray.Variable`
* A tuple of the form ``(dims, data[, attrs])``, which is converted into
arguments for :py:class:`~xarray.Variable`
* A pandas object or scalar value, which is converted into a ``DataArray``
* A 1D array or list, which is interpreted as values for a one dimensional
coordinate variable along the same dimension as it's name
- A dictionary of ``{coord_name: coord}`` where values are of the same form
as the list. Supplying coordinates as a dictionary allows other coordinates
than those corresponding to dimensions (more on these later). If you supply
``coords`` as a dictionary, you must explicitly provide ``dims``.
As a list of tuples:
.. ipython:: python
xr.DataArray(data, coords=[("time", times), ("space", locs)])
As a dictionary:
.. ipython:: python
xr.DataArray(
data,
coords={
"time": times,
"space": locs,
"const": 42,
"ranking": ("space", [1, 2, 3]),
},
dims=["time", "space"],
)
As a dictionary with coords across multiple dimensions:
.. ipython:: python
xr.DataArray(
data,
coords={
"time": times,
"space": locs,
"const": 42,
"ranking": (("time", "space"), np.arange(12).reshape(4, 3)),
},
dims=["time", "space"],
)
If you create a ``DataArray`` by supplying a pandas
:py:class:`~pandas.Series`, :py:class:`~pandas.DataFrame` or
``pandas.Panel``, any non-specified arguments in the
``DataArray`` constructor will be filled in from the pandas object:
.. ipython:: python
df = pd.DataFrame({"x": [0, 1], "y": [2, 3]}, index=["a", "b"])
df.index.name = "abc"
df.columns.name = "xyz"
df
xr.DataArray(df)
DataArray properties
~~~~~~~~~~~~~~~~~~~~
Let's take a look at the important properties on our array:
.. ipython:: python
foo.values
foo.dims
foo.coords
foo.attrs
print(foo.name)
You can modify ``values`` inplace:
.. ipython:: python
foo.values = 1.0 * foo.values
.. note::
The array values in a :py:class:`~xarray.DataArray` have a single
(homogeneous) data type. To work with heterogeneous or structured data
types in xarray, use coordinates, or put separate ``DataArray`` objects
in a single :py:class:`~xarray.Dataset` (see below).
Now fill in some of that missing metadata:
.. ipython:: python
foo.name = "foo"
foo.attrs["units"] = "meters"
foo
The :py:meth:`~xarray.DataArray.rename` method is another option, returning a
new data array:
.. ipython:: python
foo.rename("bar")
DataArray Coordinates
~~~~~~~~~~~~~~~~~~~~~
The ``coords`` property is ``dict`` like. Individual coordinates can be
accessed from the coordinates by name, or even by indexing the data array
itself:
.. ipython:: python
foo.coords["time"]
foo["time"]
These are also :py:class:`~xarray.DataArray` objects, which contain tick-labels
for each dimension.
Coordinates can also be set or removed by using the dictionary like syntax:
.. ipython:: python
foo["ranking"] = ("space", [1, 2, 3])
foo.coords
del foo["ranking"]
foo.coords
For more details, see :ref:`coordinates` below.
Dataset
-------
:py:class:`xarray.Dataset` is xarray's multi-dimensional equivalent of a
:py:class:`~pandas.DataFrame`. It is a dict-like
container of labeled arrays (:py:class:`~xarray.DataArray` objects) with aligned
dimensions. It is designed as an in-memory representation of the data model
from the `netCDF`__ file format.
__ http://www.unidata.ucar.edu/software/netcdf/
In addition to the dict-like interface of the dataset itself, which can be used
to access any variable in a dataset, datasets have four key properties:
- ``dims``: a dictionary mapping from dimension names to the fixed length of
each dimension (e.g., ``{'x': 6, 'y': 6, 'time': 8}``)
- ``data_vars``: a dict-like container of DataArrays corresponding to variables
- ``coords``: another dict-like container of DataArrays intended to label points
used in ``data_vars`` (e.g., arrays of numbers, datetime objects or strings)
- ``attrs``: :py:class:`dict` to hold arbitrary metadata
The distinction between whether a variables falls in data or coordinates
(borrowed from `CF conventions`_) is mostly semantic, and you can probably get
away with ignoring it if you like: dictionary like access on a dataset will
supply variables found in either category. However, xarray does make use of the
distinction for indexing and computations. Coordinates indicate
constant/fixed/independent quantities, unlike the varying/measured/dependent
quantities that belong in data.
.. _CF conventions: http://cfconventions.org/
Here is an example of how we might structure a dataset for a weather forecast:
.. image:: _static/dataset-diagram.png
In this example, it would be natural to call ``temperature`` and
``precipitation`` "data variables" and all the other arrays "coordinate
variables" because they label the points along the dimensions. (see [1]_ for
more background on this example).
.. _dataarray constructor:
Creating a Dataset
~~~~~~~~~~~~~~~~~~
To make an :py:class:`~xarray.Dataset` from scratch, supply dictionaries for any
variables (``data_vars``), coordinates (``coords``) and attributes (``attrs``).
- ``data_vars`` should be a dictionary with each key as the name of the variable
and each value as one of:
* A :py:class:`~xarray.DataArray` or :py:class:`~xarray.Variable`
* A tuple of the form ``(dims, data[, attrs])``, which is converted into
arguments for :py:class:`~xarray.Variable`
* A pandas object, which is converted into a ``DataArray``
* A 1D array or list, which is interpreted as values for a one dimensional
coordinate variable along the same dimension as it's name
- ``coords`` should be a dictionary of the same form as ``data_vars``.
- ``attrs`` should be a dictionary.
Let's create some fake data for the example we show above:
.. ipython:: python
temp = 15 + 8 * np.random.randn(2, 2, 3)
precip = 10 * np.random.rand(2, 2, 3)
lon = [[-99.83, -99.32], [-99.79, -99.23]]
lat = [[42.25, 42.21], [42.63, 42.59]]
# for real use cases, its good practice to supply array attributes such as
# units, but we won't bother here for the sake of brevity
ds = xr.Dataset(
{
"temperature": (["x", "y", "time"], temp),
"precipitation": (["x", "y", "time"], precip),
},
coords={
"lon": (["x", "y"], lon),
"lat": (["x", "y"], lat),
"time": pd.date_range("2014-09-06", periods=3),
"reference_time": pd.Timestamp("2014-09-05"),
},
)
ds
Here we pass :py:class:`xarray.DataArray` objects or a pandas object as values
in the dictionary:
.. ipython:: python
xr.Dataset({"bar": foo})
.. ipython:: python
xr.Dataset({"bar": foo.to_pandas()})
Where a pandas object is supplied as a value, the names of its indexes are used as dimension
names, and its data is aligned to any existing dimensions.
You can also create an dataset from:
- A :py:class:`pandas.DataFrame` or ``pandas.Panel`` along its columns and items
respectively, by passing it into the :py:class:`~xarray.Dataset` directly
- A :py:class:`pandas.DataFrame` with :py:meth:`Dataset.from_dataframe <xarray.Dataset.from_dataframe>`,
which will additionally handle MultiIndexes See :ref:`pandas`
- A netCDF file on disk with :py:func:`~xarray.open_dataset`. See :ref:`io`.
Dataset contents
~~~~~~~~~~~~~~~~
:py:class:`~xarray.Dataset` implements the Python mapping interface, with
values given by :py:class:`xarray.DataArray` objects:
.. ipython:: python
"temperature" in ds
ds["temperature"]
Valid keys include each listed coordinate and data variable.
Data and coordinate variables are also contained separately in the
:py:attr:`~xarray.Dataset.data_vars` and :py:attr:`~xarray.Dataset.coords`
dictionary-like attributes:
.. ipython:: python
ds.data_vars
ds.coords
Finally, like data arrays, datasets also store arbitrary metadata in the form
of `attributes`:
.. ipython:: python
ds.attrs
ds.attrs["title"] = "example attribute"
ds
xarray does not enforce any restrictions on attributes, but serialization to
some file formats may fail if you use objects that are not strings, numbers
or :py:class:`numpy.ndarray` objects.
As a useful shortcut, you can use attribute style access for reading (but not
setting) variables and attributes:
.. ipython:: python
ds.temperature
This is particularly useful in an exploratory context, because you can
tab-complete these variable names with tools like IPython.
.. _dictionary_like_methods:
Dictionary like methods
~~~~~~~~~~~~~~~~~~~~~~~
We can update a dataset in-place using Python's standard dictionary syntax. For
example, to create this example dataset from scratch, we could have written:
.. ipython:: python
ds = xr.Dataset()
ds["temperature"] = (("x", "y", "time"), temp)
ds["temperature_double"] = (("x", "y", "time"), temp * 2)
ds["precipitation"] = (("x", "y", "time"), precip)
ds.coords["lat"] = (("x", "y"), lat)
ds.coords["lon"] = (("x", "y"), lon)
ds.coords["time"] = pd.date_range("2014-09-06", periods=3)
ds.coords["reference_time"] = pd.Timestamp("2014-09-05")
To change the variables in a ``Dataset``, you can use all the standard dictionary
methods, including ``values``, ``items``, ``__delitem__``, ``get`` and
:py:meth:`~xarray.Dataset.update`. Note that assigning a ``DataArray`` or pandas
object to a ``Dataset`` variable using ``__setitem__`` or ``update`` will
:ref:`automatically align<update>` the array(s) to the original
dataset's indexes.
You can copy a ``Dataset`` by calling the :py:meth:`~xarray.Dataset.copy`
method. By default, the copy is shallow, so only the container will be copied:
the arrays in the ``Dataset`` will still be stored in the same underlying
:py:class:`numpy.ndarray` objects. You can copy all data by calling
``ds.copy(deep=True)``.
.. _transforming datasets:
Transforming datasets
~~~~~~~~~~~~~~~~~~~~~
In addition to dictionary-like methods (described above), xarray has additional
methods (like pandas) for transforming datasets into new objects.
For removing variables, you can select and drop an explicit list of
variables by indexing with a list of names or using the
:py:meth:`~xarray.Dataset.drop_vars` methods to return a new ``Dataset``. These
operations keep around coordinates:
.. ipython:: python
ds[["temperature"]]
ds[["temperature", "temperature_double"]]
ds.drop_vars("temperature")
To remove a dimension, you can use :py:meth:`~xarray.Dataset.drop_dims` method.
Any variables using that dimension are dropped:
.. ipython:: python
ds.drop_dims("time")
As an alternate to dictionary-like modifications, you can use
:py:meth:`~xarray.Dataset.assign` and :py:meth:`~xarray.Dataset.assign_coords`.
These methods return a new dataset with additional (or replaced) values:
.. ipython:: python
ds.assign(temperature2=2 * ds.temperature)
There is also the :py:meth:`~xarray.Dataset.pipe` method that allows you to use
a method call with an external function (e.g., ``ds.pipe(func)``) instead of
simply calling it (e.g., ``func(ds)``). This allows you to write pipelines for
transforming your data (using "method chaining") instead of writing hard to
follow nested function calls:
.. ipython:: python
# these lines are equivalent, but with pipe we can make the logic flow
# entirely from left to right
plt.plot((2 * ds.temperature.sel(x=0)).mean("y"))
(ds.temperature.sel(x=0).pipe(lambda x: 2 * x).mean("y").pipe(plt.plot))
Both ``pipe`` and ``assign`` replicate the pandas methods of the same names
(:py:meth:`DataFrame.pipe <pandas.DataFrame.pipe>` and
:py:meth:`DataFrame.assign <pandas.DataFrame.assign>`).
With xarray, there is no performance penalty for creating new datasets, even if
variables are lazily loaded from a file on disk. Creating new objects instead
of mutating existing objects often results in easier to understand code, so we
encourage using this approach.
Renaming variables
~~~~~~~~~~~~~~~~~~
Another useful option is the :py:meth:`~xarray.Dataset.rename` method to rename
dataset variables:
.. ipython:: python
ds.rename({"temperature": "temp", "precipitation": "precip"})
The related :py:meth:`~xarray.Dataset.swap_dims` method allows you do to swap
dimension and non-dimension variables:
.. ipython:: python
ds.coords["day"] = ("time", [6, 7, 8])
ds.swap_dims({"time": "day"})
.. _coordinates:
Coordinates
-----------
Coordinates are ancillary variables stored for ``DataArray`` and ``Dataset``
objects in the ``coords`` attribute:
.. ipython:: python
ds.coords
Unlike attributes, xarray *does* interpret and persist coordinates in
operations that transform xarray objects. There are two types of coordinates
in xarray:
- **dimension coordinates** are one dimensional coordinates with a name equal
to their sole dimension (marked by ``*`` when printing a dataset or data
array). They are used for label based indexing and alignment,
like the ``index`` found on a pandas :py:class:`~pandas.DataFrame` or
:py:class:`~pandas.Series`. Indeed, these "dimension" coordinates use a
:py:class:`pandas.Index` internally to store their values.
- **non-dimension coordinates** are variables that contain coordinate
data, but are not a dimension coordinate. They can be multidimensional (see
:ref:`/examples/multidimensional-coords.ipynb`), and there is no
relationship between the name of a non-dimension coordinate and the
name(s) of its dimension(s). Non-dimension coordinates can be
useful for indexing or plotting; otherwise, xarray does not make any
direct use of the values associated with them. They are not used
for alignment or automatic indexing, nor are they required to match
when doing arithmetic (see :ref:`coordinates math`).
.. note::
xarray's terminology differs from the `CF terminology`_, where the
"dimension coordinates" are called "coordinate variables", and the
"non-dimension coordinates" are called "auxiliary coordinate variables"
(see :issue:`1295` for more details).
.. _CF terminology: http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html#terminology
Modifying coordinates
~~~~~~~~~~~~~~~~~~~~~
To entirely add or remove coordinate arrays, you can use dictionary like
syntax, as shown above.
To convert back and forth between data and coordinates, you can use the
:py:meth:`~xarray.Dataset.set_coords` and
:py:meth:`~xarray.Dataset.reset_coords` methods:
.. ipython:: python
ds.reset_coords()
ds.set_coords(["temperature", "precipitation"])
ds["temperature"].reset_coords(drop=True)
Notice that these operations skip coordinates with names given by dimensions,
as used for indexing. This mostly because we are not entirely sure how to
design the interface around the fact that xarray cannot store a coordinate and
variable with the name but different values in the same dictionary. But we do
recognize that supporting something like this would be useful.
Coordinates methods
~~~~~~~~~~~~~~~~~~~
``Coordinates`` objects also have a few useful methods, mostly for converting
them into dataset objects:
.. ipython:: python
ds.coords.to_dataset()
The merge method is particularly interesting, because it implements the same
logic used for merging coordinates in arithmetic operations
(see :ref:`comput`):
.. ipython:: python
alt = xr.Dataset(coords={"z": [10], "lat": 0, "lon": 0})
ds.coords.merge(alt.coords)
The ``coords.merge`` method may be useful if you want to implement your own
binary operations that act on xarray objects. In the future, we hope to write
more helper functions so that you can easily make your functions act like
xarray's built-in arithmetic.
Indexes
~~~~~~~
To convert a coordinate (or any ``DataArray``) into an actual
:py:class:`pandas.Index`, use the :py:meth:`~xarray.DataArray.to_index` method:
.. ipython:: python
ds["time"].to_index()
A useful shortcut is the ``indexes`` property (on both ``DataArray`` and
``Dataset``), which lazily constructs a dictionary whose keys are given by each
dimension and whose the values are ``Index`` objects:
.. ipython:: python
ds.indexes
MultiIndex coordinates
~~~~~~~~~~~~~~~~~~~~~~
Xarray supports labeling coordinate values with a :py:class:`pandas.MultiIndex`:
.. ipython:: python
midx = pd.MultiIndex.from_arrays(
[["R", "R", "V", "V"], [0.1, 0.2, 0.7, 0.9]], names=("band", "wn")
)
mda = xr.DataArray(np.random.rand(4), coords={"spec": midx}, dims="spec")
mda
For convenience multi-index levels are directly accessible as "virtual" or
"derived" coordinates (marked by ``-`` when printing a dataset or data array):
.. ipython:: python
mda["band"]
mda.wn
Indexing with multi-index levels is also possible using the ``sel`` method
(see :ref:`multi-level indexing`).
Unlike other coordinates, "virtual" level coordinates are not stored in
the ``coords`` attribute of ``DataArray`` and ``Dataset`` objects
(although they are shown when printing the ``coords`` attribute).
Consequently, most of the coordinates related methods don't apply for them.
It also can't be used to replace one particular level.
Because in a ``DataArray`` or ``Dataset`` object each multi-index level is
accessible as a "virtual" coordinate, its name must not conflict with the names
of the other levels, coordinates and data variables of the same object.
Even though Xarray set default names for multi-indexes with unnamed levels,
it is recommended that you explicitly set the names of the levels.
.. [1] Latitude and longitude are 2D arrays because the dataset uses
`projected coordinates`__. ``reference_time`` refers to the reference time
at which the forecast was made, rather than ``time`` which is the valid time
for which the forecast applies.
__ http://en.wikipedia.org/wiki/Map_projection
|