File: plot_rasterio.py

package info (click to toggle)
python-xarray 0.16.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,568 kB
  • sloc: python: 60,570; makefile: 236; sh: 38
file content (54 lines) | stat: -rw-r--r-- 1,486 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
"""
.. _recipes.rasterio:

=================================
Parsing rasterio's geocoordinates
=================================


Converting a projection's cartesian coordinates into 2D longitudes and
latitudes.

These new coordinates might be handy for plotting and indexing, but it should
be kept in mind that a grid which is regular in projection coordinates will
likely be irregular in lon/lat. It is often recommended to work in the data's
original map projection (see :ref:`recipes.rasterio_rgb`).
"""

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import numpy as np
from rasterio.warp import transform

import xarray as xr

# Read the data
url = "https://github.com/mapbox/rasterio/raw/master/tests/data/RGB.byte.tif"
da = xr.open_rasterio(url)

# Compute the lon/lat coordinates with rasterio.warp.transform
ny, nx = len(da["y"]), len(da["x"])
x, y = np.meshgrid(da["x"], da["y"])

# Rasterio works with 1D arrays
lon, lat = transform(da.crs, {"init": "EPSG:4326"}, x.flatten(), y.flatten())
lon = np.asarray(lon).reshape((ny, nx))
lat = np.asarray(lat).reshape((ny, nx))
da.coords["lon"] = (("y", "x"), lon)
da.coords["lat"] = (("y", "x"), lat)

# Compute a greyscale out of the rgb image
greyscale = da.mean(dim="band")

# Plot on a map
ax = plt.subplot(projection=ccrs.PlateCarree())
greyscale.plot(
    ax=ax,
    x="lon",
    y="lat",
    transform=ccrs.PlateCarree(),
    cmap="Greys_r",
    add_colorbar=False,
)
ax.coastlines("10m", color="r")
plt.show()