1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
xarray: N-D labeled arrays and datasets in Python
=================================================
**xarray** (formerly **xray**) is an open source project and Python package
that makes working with labelled multi-dimensional arrays simple,
efficient, and fun!
Xarray introduces labels in the form of dimensions, coordinates and
attributes on top of raw NumPy_-like arrays, which allows for a more
intuitive, more concise, and less error-prone developer experience.
The package includes a large and growing library of domain-agnostic functions
for advanced analytics and visualization with these data structures.
Xarray is inspired by and borrows heavily from pandas_, the popular data
analysis package focused on labelled tabular data.
It is particularly tailored to working with netCDF_ files, which were the
source of xarray's data model, and integrates tightly with dask_ for parallel
computing.
.. _NumPy: http://www.numpy.org
.. _pandas: http://pandas.pydata.org
.. _dask: http://dask.org
.. _netCDF: http://www.unidata.ucar.edu/software/netcdf
Documentation
-------------
**Getting Started**
* :doc:`why-xarray`
* :doc:`faq`
* :doc:`quick-overview`
* :doc:`examples`
* :doc:`installing`
.. toctree::
:maxdepth: 1
:hidden:
:caption: Getting Started
why-xarray
faq
quick-overview
examples
installing
**User Guide**
* :doc:`terminology`
* :doc:`data-structures`
* :doc:`indexing`
* :doc:`interpolation`
* :doc:`computation`
* :doc:`groupby`
* :doc:`reshaping`
* :doc:`combining`
* :doc:`time-series`
* :doc:`weather-climate`
* :doc:`pandas`
* :doc:`io`
* :doc:`dask`
* :doc:`plotting`
* :doc:`duckarrays`
.. toctree::
:maxdepth: 1
:hidden:
:caption: User Guide
terminology
data-structures
indexing
interpolation
computation
groupby
reshaping
combining
time-series
weather-climate
pandas
io
dask
plotting
duckarrays
**Help & reference**
* :doc:`whats-new`
* :doc:`howdoi`
* :doc:`api`
* :doc:`internals`
* :doc:`roadmap`
* :doc:`contributing`
* :doc:`related-projects`
.. toctree::
:maxdepth: 1
:hidden:
:caption: Help & reference
whats-new
howdoi
api
internals
roadmap
contributing
related-projects
See also
--------
- `Xarray's Tutorial`_ presented at the 2020 SciPy Conference (`video recording`_).
- Stephan Hoyer and Joe Hamman's `Journal of Open Research Software paper`_ describing the xarray project.
- The `UW eScience Institute's Geohackweek`_ tutorial on xarray for geospatial data scientists.
- Stephan Hoyer's `SciPy2015 talk`_ introducing xarray to a general audience.
- Stephan Hoyer's `2015 Unidata Users Workshop talk`_ and `tutorial`_ (`with answers`_) introducing
xarray to users familiar with netCDF.
- `Nicolas Fauchereau's tutorial`_ on xarray for netCDF users.
.. _Xarray's Tutorial: https://xarray-contrib.github.io/xarray-tutorial/
.. _video recording: https://youtu.be/mecN-Ph_-78
.. _Journal of Open Research Software paper: http://doi.org/10.5334/jors.148
.. _UW eScience Institute's Geohackweek : https://geohackweek.github.io/nDarrays/
.. _SciPy2015 talk: https://www.youtube.com/watch?v=X0pAhJgySxk
.. _2015 Unidata Users Workshop talk: https://www.youtube.com/watch?v=J9ypQOnt5l8
.. _tutorial: https://github.com/Unidata/unidata-users-workshop/blob/master/notebooks/xray-tutorial.ipynb
.. _with answers: https://github.com/Unidata/unidata-users-workshop/blob/master/notebooks/xray-tutorial-with-answers.ipynb
.. _Nicolas Fauchereau's tutorial: http://nbviewer.iPython.org/github/nicolasfauchereau/metocean/blob/master/notebooks/xray.ipynb
Get in touch
------------
- Ask usage questions ("How do I?") on `StackOverflow`_.
- Report bugs, suggest features or view the source code `on GitHub`_.
- For less well defined questions or ideas, or to announce other projects of
interest to xarray users, use the `mailing list`_.
.. _StackOverFlow: http://stackoverflow.com/questions/tagged/python-xarray
.. _mailing list: https://groups.google.com/forum/#!forum/xarray
.. _on GitHub: http://github.com/pydata/xarray
NumFOCUS
--------
.. image:: _static/numfocus_logo.png
:scale: 50 %
:target: https://numfocus.org/
Xarray is a fiscally sponsored project of NumFOCUS_, a nonprofit dedicated
to supporting the open source scientific computing community. If you like
Xarray and want to support our mission, please consider making a donation_
to support our efforts.
.. _donation: https://numfocus.salsalabs.org/donate-to-xarray/
History
-------
xarray is an evolution of an internal tool developed at `The Climate
Corporation`__. It was originally written by Climate Corp researchers Stephan
Hoyer, Alex Kleeman and Eugene Brevdo and was released as open source in
May 2014. The project was renamed from "xray" in January 2016. Xarray became a
fiscally sponsored project of NumFOCUS_ in August 2018.
__ http://climate.com/
.. _NumFOCUS: https://numfocus.org
License
-------
xarray is available under the open source `Apache License`__.
__ http://www.apache.org/licenses/LICENSE-2.0.html
|