1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
.. currentmodule:: xarray
.. _pandas:
===================
Working with pandas
===================
One of the most important features of xarray is the ability to convert to and
from :py:mod:`pandas` objects to interact with the rest of the PyData
ecosystem. For example, for plotting labeled data, we highly recommend
using the visualization `built in to pandas itself`__ or provided by the pandas
aware libraries such as `Seaborn`__.
__ http://pandas.pydata.org/pandas-docs/stable/visualization.html
__ http://seaborn.pydata.org/
.. ipython:: python
:suppress:
import numpy as np
import pandas as pd
import xarray as xr
np.random.seed(123456)
Hierarchical and tidy data
~~~~~~~~~~~~~~~~~~~~~~~~~~
Tabular data is easiest to work with when it meets the criteria for
`tidy data`__:
* Each column holds a different variable.
* Each rows holds a different observation.
__ http://www.jstatsoft.org/v59/i10/
In this "tidy data" format, we can represent any :py:class:`Dataset` and
:py:class:`DataArray` in terms of :py:class:`~pandas.DataFrame` and
:py:class:`~pandas.Series`, respectively (and vice-versa). The representation
works by flattening non-coordinates to 1D, and turning the tensor product of
coordinate indexes into a :py:class:`pandas.MultiIndex`.
Dataset and DataFrame
---------------------
To convert any dataset to a ``DataFrame`` in tidy form, use the
:py:meth:`Dataset.to_dataframe()` method:
.. ipython:: python
ds = xr.Dataset(
{"foo": (("x", "y"), np.random.randn(2, 3))},
coords={
"x": [10, 20],
"y": ["a", "b", "c"],
"along_x": ("x", np.random.randn(2)),
"scalar": 123,
},
)
ds
df = ds.to_dataframe()
df
We see that each variable and coordinate in the Dataset is now a column in the
DataFrame, with the exception of indexes which are in the index.
To convert the ``DataFrame`` to any other convenient representation,
use ``DataFrame`` methods like :py:meth:`~pandas.DataFrame.reset_index`,
:py:meth:`~pandas.DataFrame.stack` and :py:meth:`~pandas.DataFrame.unstack`.
For datasets containing dask arrays where the data should be lazily loaded, see the
:py:meth:`Dataset.to_dask_dataframe()` method.
To create a ``Dataset`` from a ``DataFrame``, use the
:py:meth:`Dataset.from_dataframe` class method or the equivalent
:py:meth:`pandas.DataFrame.to_xarray` method:
.. ipython:: python
xr.Dataset.from_dataframe(df)
Notice that that dimensions of variables in the ``Dataset`` have now
expanded after the round-trip conversion to a ``DataFrame``. This is because
every object in a ``DataFrame`` must have the same indices, so we need to
broadcast the data of each array to the full size of the new ``MultiIndex``.
Likewise, all the coordinates (other than indexes) ended up as variables,
because pandas does not distinguish non-index coordinates.
DataArray and Series
--------------------
``DataArray`` objects have a complementary representation in terms of a
:py:class:`~pandas.Series`. Using a Series preserves the ``Dataset`` to
``DataArray`` relationship, because ``DataFrames`` are dict-like containers
of ``Series``. The methods are very similar to those for working with
DataFrames:
.. ipython:: python
s = ds["foo"].to_series()
s
# or equivalently, with Series.to_xarray()
xr.DataArray.from_series(s)
Both the ``from_series`` and ``from_dataframe`` methods use reindexing, so they
work even if not the hierarchical index is not a full tensor product:
.. ipython:: python
s[::2]
s[::2].to_xarray()
Multi-dimensional data
~~~~~~~~~~~~~~~~~~~~~~
Tidy data is great, but it sometimes you want to preserve dimensions instead of
automatically stacking them into a ``MultiIndex``.
:py:meth:`DataArray.to_pandas()` is a shortcut that lets you convert a
DataArray directly into a pandas object with the same dimensionality, if
available in pandas (i.e., a 1D array is converted to a
:py:class:`~pandas.Series` and 2D to :py:class:`~pandas.DataFrame`):
.. ipython:: python
arr = xr.DataArray(
np.random.randn(2, 3), coords=[("x", [10, 20]), ("y", ["a", "b", "c"])]
)
df = arr.to_pandas()
df
To perform the inverse operation of converting any pandas objects into a data
array with the same shape, simply use the :py:class:`DataArray`
constructor:
.. ipython:: python
xr.DataArray(df)
Both the ``DataArray`` and ``Dataset`` constructors directly convert pandas
objects into xarray objects with the same shape. This means that they
preserve all use of multi-indexes:
.. ipython:: python
index = pd.MultiIndex.from_arrays(
[["a", "a", "b"], [0, 1, 2]], names=["one", "two"]
)
df = pd.DataFrame({"x": 1, "y": 2}, index=index)
ds = xr.Dataset(df)
ds
However, you will need to set dimension names explicitly, either with the
``dims`` argument on in the ``DataArray`` constructor or by calling
:py:class:`~Dataset.rename` on the new object.
.. _panel transition:
Transitioning from pandas.Panel to xarray
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
``Panel``, pandas' data structure for 3D arrays, was always a second class
data structure compared to the Series and DataFrame. To allow pandas
developers to focus more on its core functionality built around the
DataFrame, pandas removed ``Panel`` in favor of directing users who use
multi-dimensional arrays to xarray.
Xarray has most of ``Panel``'s features, a more explicit API (particularly around
indexing), and the ability to scale to >3 dimensions with the same interface.
As discussed :ref:`elsewhere <data structures>` in the docs, there are two primary data structures in
xarray: ``DataArray`` and ``Dataset``. You can imagine a ``DataArray`` as a
n-dimensional pandas ``Series`` (i.e. a single typed array), and a ``Dataset``
as the ``DataFrame`` equivalent (i.e. a dict of aligned ``DataArray`` objects).
So you can represent a Panel, in two ways:
- As a 3-dimensional ``DataArray``,
- Or as a ``Dataset`` containing a number of 2-dimensional DataArray objects.
Let's take a look:
.. ipython:: python
data = np.random.RandomState(0).rand(2, 3, 4)
items = list("ab")
major_axis = list("mno")
minor_axis = pd.date_range(start="2000", periods=4, name="date")
With old versions of pandas (prior to 0.25), this could stored in a ``Panel``:
.. ipython::
:verbatim:
In [1]: pd.Panel(data, items, major_axis, minor_axis)
Out[1]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 4 (minor_axis)
Items axis: a to b
Major_axis axis: m to o
Minor_axis axis: 2000-01-01 00:00:00 to 2000-01-04 00:00:00
To put this data in a ``DataArray``, write:
.. ipython:: python
array = xr.DataArray(data, [items, major_axis, minor_axis])
array
As you can see, there are three dimensions (each is also a coordinate). Two of
the axes of were unnamed, so have been assigned ``dim_0`` and ``dim_1``
respectively, while the third retains its name ``date``.
You can also easily convert this data into ``Dataset``:
.. ipython:: python
array.to_dataset(dim="dim_0")
Here, there are two data variables, each representing a DataFrame on panel's
``items`` axis, and labeled as such. Each variable is a 2D array of the
respective values along the ``items`` dimension.
While the xarray docs are relatively complete, a few items stand out for Panel users:
- A DataArray's data is stored as a numpy array, and so can only contain a single
type. As a result, a Panel that contains :py:class:`~pandas.DataFrame` objects
with multiple types will be converted to ``dtype=object``. A ``Dataset`` of
multiple ``DataArray`` objects each with its own dtype will allow original
types to be preserved.
- :ref:`Indexing <indexing>` is similar to pandas, but more explicit and
leverages xarray's naming of dimensions.
- Because of those features, making much higher dimensional data is very
practical.
- Variables in ``Dataset`` objects can use a subset of its dimensions. For
example, you can have one dataset with Person x Score x Time, and another with
Person x Score.
- You can use coordinates are used for both dimensions and for variables which
_label_ the data variables, so you could have a coordinate Age, that labelled
the Person dimension of a Dataset of Person x Score x Time.
While xarray may take some getting used to, it's worth it! If anything is unclear,
please post an issue on `GitHub <https://github.com/pydata/xarray>`__ or
`StackOverflow <http://stackoverflow.com/questions/tagged/python-xarray>`__,
and we'll endeavor to respond to the specific case or improve the general docs.
|