1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
|
.. currentmodule:: xarray
.. _plotting:
Plotting
========
Introduction
------------
Labeled data enables expressive computations. These same
labels can also be used to easily create informative plots.
xarray's plotting capabilities are centered around
:py:class:`DataArray` objects.
To plot :py:class:`Dataset` objects
simply access the relevant DataArrays, i.e. ``dset['var1']``.
Dataset specific plotting routines are also available (see :ref:`plot-dataset`).
Here we focus mostly on arrays 2d or larger. If your data fits
nicely into a pandas DataFrame then you're better off using one of the more
developed tools there.
xarray plotting functionality is a thin wrapper around the popular
`matplotlib <http://matplotlib.org/>`_ library.
Matplotlib syntax and function names were copied as much as possible, which
makes for an easy transition between the two.
Matplotlib must be installed before xarray can plot.
To use xarray's plotting capabilities with time coordinates containing
``cftime.datetime`` objects
`nc-time-axis <https://github.com/SciTools/nc-time-axis>`_ v1.2.0 or later
needs to be installed.
For more extensive plotting applications consider the following projects:
- `Seaborn <http://seaborn.pydata.org/>`_: "provides
a high-level interface for drawing attractive statistical graphics."
Integrates well with pandas.
- `HoloViews <http://holoviews.org/>`_
and `GeoViews <https://geoviews.org/>`_: "Composable, declarative
data structures for building even complex visualizations easily." Includes
native support for xarray objects.
- `hvplot <https://hvplot.pyviz.org/>`_: ``hvplot`` makes it very easy to produce
dynamic plots (backed by ``Holoviews`` or ``Geoviews``) by adding a ``hvplot``
accessor to DataArrays.
- `Cartopy <http://scitools.org.uk/cartopy/>`_: Provides cartographic
tools.
Imports
~~~~~~~
.. ipython:: python
:suppress:
# Use defaults so we don't get gridlines in generated docs
import matplotlib as mpl
mpl.rcdefaults()
The following imports are necessary for all of the examples.
.. ipython:: python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import xarray as xr
For these examples we'll use the North American air temperature dataset.
.. ipython:: python
airtemps = xr.tutorial.open_dataset("air_temperature")
airtemps
# Convert to celsius
air = airtemps.air - 273.15
# copy attributes to get nice figure labels and change Kelvin to Celsius
air.attrs = airtemps.air.attrs
air.attrs["units"] = "deg C"
.. note::
Until :issue:`1614` is solved, you might need to copy over the metadata in ``attrs`` to get informative figure labels (as was done above).
DataArrays
----------
One Dimension
~~~~~~~~~~~~~
================
Simple Example
================
The simplest way to make a plot is to call the :py:func:`DataArray.plot()` method.
.. ipython:: python
:okwarning:
air1d = air.isel(lat=10, lon=10)
@savefig plotting_1d_simple.png width=4in
air1d.plot()
xarray uses the coordinate name along with metadata ``attrs.long_name``, ``attrs.standard_name``, ``DataArray.name`` and ``attrs.units`` (if available) to label the axes. The names ``long_name``, ``standard_name`` and ``units`` are copied from the `CF-conventions spec <http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/build/ch03s03.html>`_. When choosing names, the order of precedence is ``long_name``, ``standard_name`` and finally ``DataArray.name``. The y-axis label in the above plot was constructed from the ``long_name`` and ``units`` attributes of ``air1d``.
.. ipython:: python
air1d.attrs
======================
Additional Arguments
======================
Additional arguments are passed directly to the matplotlib function which
does the work.
For example, :py:func:`xarray.plot.line` calls
matplotlib.pyplot.plot_ passing in the index and the array values as x and y, respectively.
So to make a line plot with blue triangles a matplotlib format string
can be used:
.. _matplotlib.pyplot.plot: http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot
.. ipython:: python
:okwarning:
@savefig plotting_1d_additional_args.png width=4in
air1d[:200].plot.line("b-^")
.. note::
Not all xarray plotting methods support passing positional arguments
to the wrapped matplotlib functions, but they do all
support keyword arguments.
Keyword arguments work the same way, and are more explicit.
.. ipython:: python
:okwarning:
@savefig plotting_example_sin3.png width=4in
air1d[:200].plot.line(color="purple", marker="o")
=========================
Adding to Existing Axis
=========================
To add the plot to an existing axis pass in the axis as a keyword argument
``ax``. This works for all xarray plotting methods.
In this example ``axes`` is an array consisting of the left and right
axes created by ``plt.subplots``.
.. ipython:: python
:okwarning:
fig, axes = plt.subplots(ncols=2)
axes
air1d.plot(ax=axes[0])
air1d.plot.hist(ax=axes[1])
plt.tight_layout()
@savefig plotting_example_existing_axes.png width=6in
plt.draw()
On the right is a histogram created by :py:func:`xarray.plot.hist`.
.. _plotting.figsize:
=============================
Controlling the figure size
=============================
You can pass a ``figsize`` argument to all xarray's plotting methods to
control the figure size. For convenience, xarray's plotting methods also
support the ``aspect`` and ``size`` arguments which control the size of the
resulting image via the formula ``figsize = (aspect * size, size)``:
.. ipython:: python
:okwarning:
air1d.plot(aspect=2, size=3)
@savefig plotting_example_size_and_aspect.png
plt.tight_layout()
.. ipython:: python
:suppress:
# create a dummy figure so sphinx plots everything below normally
plt.figure()
This feature also works with :ref:`plotting.faceting`. For facet plots,
``size`` and ``aspect`` refer to a single panel (so that ``aspect * size``
gives the width of each facet in inches), while ``figsize`` refers to the
entire figure (as for matplotlib's ``figsize`` argument).
.. note::
If ``figsize`` or ``size`` are used, a new figure is created,
so this is mutually exclusive with the ``ax`` argument.
.. note::
The convention used by xarray (``figsize = (aspect * size, size)``) is
borrowed from seaborn: it is therefore `not equivalent to matplotlib's`_.
.. _not equivalent to matplotlib's: https://github.com/mwaskom/seaborn/issues/746
.. _plotting.multiplelines:
=========================
Determine x-axis values
=========================
Per default dimension coordinates are used for the x-axis (here the time coordinates).
However, you can also use non-dimension coordinates, MultiIndex levels, and dimensions
without coordinates along the x-axis. To illustrate this, let's calculate a 'decimal day' (epoch)
from the time and assign it as a non-dimension coordinate:
.. ipython:: python
:okwarning:
decimal_day = (air1d.time - air1d.time[0]) / pd.Timedelta("1d")
air1d_multi = air1d.assign_coords(decimal_day=("time", decimal_day))
air1d_multi
To use ``'decimal_day'`` as x coordinate it must be explicitly specified:
.. ipython:: python
:okwarning:
air1d_multi.plot(x="decimal_day")
Creating a new MultiIndex named ``'date'`` from ``'time'`` and ``'decimal_day'``,
it is also possible to use a MultiIndex level as x-axis:
.. ipython:: python
:okwarning:
air1d_multi = air1d_multi.set_index(date=("time", "decimal_day"))
air1d_multi.plot(x="decimal_day")
Finally, if a dataset does not have any coordinates it enumerates all data points:
.. ipython:: python
:okwarning:
air1d_multi = air1d_multi.drop("date")
air1d_multi.plot()
The same applies to 2D plots below.
====================================================
Multiple lines showing variation along a dimension
====================================================
It is possible to make line plots of two-dimensional data by calling :py:func:`xarray.plot.line`
with appropriate arguments. Consider the 3D variable ``air`` defined above. We can use line
plots to check the variation of air temperature at three different latitudes along a longitude line:
.. ipython:: python
:okwarning:
@savefig plotting_example_multiple_lines_x_kwarg.png
air.isel(lon=10, lat=[19, 21, 22]).plot.line(x="time")
It is required to explicitly specify either
1. ``x``: the dimension to be used for the x-axis, or
2. ``hue``: the dimension you want to represent by multiple lines.
Thus, we could have made the previous plot by specifying ``hue='lat'`` instead of ``x='time'``.
If required, the automatic legend can be turned off using ``add_legend=False``. Alternatively,
``hue`` can be passed directly to :py:func:`xarray.plot.line` as `air.isel(lon=10, lat=[19,21,22]).plot.line(hue='lat')`.
========================
Dimension along y-axis
========================
It is also possible to make line plots such that the data are on the x-axis and a dimension is on the y-axis. This can be done by specifying the appropriate ``y`` keyword argument.
.. ipython:: python
:okwarning:
@savefig plotting_example_xy_kwarg.png
air.isel(time=10, lon=[10, 11]).plot(y="lat", hue="lon")
============
Step plots
============
As an alternative, also a step plot similar to matplotlib's ``plt.step`` can be
made using 1D data.
.. ipython:: python
:okwarning:
@savefig plotting_example_step.png width=4in
air1d[:20].plot.step(where="mid")
The argument ``where`` defines where the steps should be placed, options are
``'pre'`` (default), ``'post'``, and ``'mid'``. This is particularly handy
when plotting data grouped with :py:meth:`Dataset.groupby_bins`.
.. ipython:: python
:okwarning:
air_grp = air.mean(["time", "lon"]).groupby_bins("lat", [0, 23.5, 66.5, 90])
air_mean = air_grp.mean()
air_std = air_grp.std()
air_mean.plot.step()
(air_mean + air_std).plot.step(ls=":")
(air_mean - air_std).plot.step(ls=":")
plt.ylim(-20, 30)
@savefig plotting_example_step_groupby.png width=4in
plt.title("Zonal mean temperature")
In this case, the actual boundaries of the bins are used and the ``where`` argument
is ignored.
Other axes kwargs
~~~~~~~~~~~~~~~~~
The keyword arguments ``xincrease`` and ``yincrease`` let you control the axes direction.
.. ipython:: python
:okwarning:
@savefig plotting_example_xincrease_yincrease_kwarg.png
air.isel(time=10, lon=[10, 11]).plot.line(
y="lat", hue="lon", xincrease=False, yincrease=False
)
In addition, one can use ``xscale, yscale`` to set axes scaling; ``xticks, yticks`` to set axes ticks and ``xlim, ylim`` to set axes limits. These accept the same values as the matplotlib methods ``Axes.set_(x,y)scale()``, ``Axes.set_(x,y)ticks()``, ``Axes.set_(x,y)lim()`` respectively.
Two Dimensions
~~~~~~~~~~~~~~
================
Simple Example
================
The default method :py:meth:`DataArray.plot` calls :py:func:`xarray.plot.pcolormesh` by default when the data is two-dimensional.
.. ipython:: python
:okwarning:
air2d = air.isel(time=500)
@savefig 2d_simple.png width=4in
air2d.plot()
All 2d plots in xarray allow the use of the keyword arguments ``yincrease``
and ``xincrease``.
.. ipython:: python
:okwarning:
@savefig 2d_simple_yincrease.png width=4in
air2d.plot(yincrease=False)
.. note::
We use :py:func:`xarray.plot.pcolormesh` as the default two-dimensional plot
method because it is more flexible than :py:func:`xarray.plot.imshow`.
However, for large arrays, ``imshow`` can be much faster than ``pcolormesh``.
If speed is important to you and you are plotting a regular mesh, consider
using ``imshow``.
================
Missing Values
================
xarray plots data with :ref:`missing_values`.
.. ipython:: python
:okwarning:
bad_air2d = air2d.copy()
bad_air2d[dict(lat=slice(0, 10), lon=slice(0, 25))] = np.nan
@savefig plotting_missing_values.png width=4in
bad_air2d.plot()
========================
Nonuniform Coordinates
========================
It's not necessary for the coordinates to be evenly spaced. Both
:py:func:`xarray.plot.pcolormesh` (default) and :py:func:`xarray.plot.contourf` can
produce plots with nonuniform coordinates.
.. ipython:: python
:okwarning:
b = air2d.copy()
# Apply a nonlinear transformation to one of the coords
b.coords["lat"] = np.log(b.coords["lat"])
@savefig plotting_nonuniform_coords.png width=4in
b.plot()
====================
Calling Matplotlib
====================
Since this is a thin wrapper around matplotlib, all the functionality of
matplotlib is available.
.. ipython:: python
:okwarning:
air2d.plot(cmap=plt.cm.Blues)
plt.title("These colors prove North America\nhas fallen in the ocean")
plt.ylabel("latitude")
plt.xlabel("longitude")
plt.tight_layout()
@savefig plotting_2d_call_matplotlib.png width=4in
plt.draw()
.. note::
xarray methods update label information and generally play around with the
axes. So any kind of updates to the plot
should be done *after* the call to the xarray's plot.
In the example below, ``plt.xlabel`` effectively does nothing, since
``d_ylog.plot()`` updates the xlabel.
.. ipython:: python
:okwarning:
plt.xlabel("Never gonna see this.")
air2d.plot()
@savefig plotting_2d_call_matplotlib2.png width=4in
plt.draw()
===========
Colormaps
===========
xarray borrows logic from Seaborn to infer what kind of color map to use. For
example, consider the original data in Kelvins rather than Celsius:
.. ipython:: python
:okwarning:
@savefig plotting_kelvin.png width=4in
airtemps.air.isel(time=0).plot()
The Celsius data contain 0, so a diverging color map was used. The
Kelvins do not have 0, so the default color map was used.
.. _robust-plotting:
========
Robust
========
Outliers often have an extreme effect on the output of the plot.
Here we add two bad data points. This affects the color scale,
washing out the plot.
.. ipython:: python
:okwarning:
air_outliers = airtemps.air.isel(time=0).copy()
air_outliers[0, 0] = 100
air_outliers[-1, -1] = 400
@savefig plotting_robust1.png width=4in
air_outliers.plot()
This plot shows that we have outliers. The easy way to visualize
the data without the outliers is to pass the parameter
``robust=True``.
This will use the 2nd and 98th
percentiles of the data to compute the color limits.
.. ipython:: python
:okwarning:
@savefig plotting_robust2.png width=4in
air_outliers.plot(robust=True)
Observe that the ranges of the color bar have changed. The arrows on the
color bar indicate
that the colors include data points outside the bounds.
====================
Discrete Colormaps
====================
It is often useful, when visualizing 2d data, to use a discrete colormap,
rather than the default continuous colormaps that matplotlib uses. The
``levels`` keyword argument can be used to generate plots with discrete
colormaps. For example, to make a plot with 8 discrete color intervals:
.. ipython:: python
:okwarning:
@savefig plotting_discrete_levels.png width=4in
air2d.plot(levels=8)
It is also possible to use a list of levels to specify the boundaries of the
discrete colormap:
.. ipython:: python
:okwarning:
@savefig plotting_listed_levels.png width=4in
air2d.plot(levels=[0, 12, 18, 30])
You can also specify a list of discrete colors through the ``colors`` argument:
.. ipython:: python
:okwarning:
flatui = ["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e", "#2ecc71"]
@savefig plotting_custom_colors_levels.png width=4in
air2d.plot(levels=[0, 12, 18, 30], colors=flatui)
Finally, if you have `Seaborn <http://seaborn.pydata.org/>`_
installed, you can also specify a seaborn color palette to the ``cmap``
argument. Note that ``levels`` *must* be specified with seaborn color palettes
if using ``imshow`` or ``pcolormesh`` (but not with ``contour`` or ``contourf``,
since levels are chosen automatically).
.. ipython:: python
:okwarning:
@savefig plotting_seaborn_palette.png width=4in
air2d.plot(levels=10, cmap="husl")
plt.draw()
.. _plotting.faceting:
Faceting
~~~~~~~~
Faceting here refers to splitting an array along one or two dimensions and
plotting each group.
xarray's basic plotting is useful for plotting two dimensional arrays. What
about three or four dimensional arrays? That's where facets become helpful.
The general approach to plotting here is called “small multiples”, where the same kind of plot is repeated multiple times, and the specific use of small multiples to display the same relationship conditioned on one ore more other variables is often called a “trellis plot”.
Consider the temperature data set. There are 4 observations per day for two
years which makes for 2920 values along the time dimension.
One way to visualize this data is to make a
separate plot for each time period.
The faceted dimension should not have too many values;
faceting on the time dimension will produce 2920 plots. That's
too much to be helpful. To handle this situation try performing
an operation that reduces the size of the data in some way. For example, we
could compute the average air temperature for each month and reduce the
size of this dimension from 2920 -> 12. A simpler way is
to just take a slice on that dimension.
So let's use a slice to pick 6 times throughout the first year.
.. ipython:: python
t = air.isel(time=slice(0, 365 * 4, 250))
t.coords
================
Simple Example
================
The easiest way to create faceted plots is to pass in ``row`` or ``col``
arguments to the xarray plotting methods/functions. This returns a
:py:class:`xarray.plot.FacetGrid` object.
.. ipython:: python
:okwarning:
@savefig plot_facet_dataarray.png
g_simple = t.plot(x="lon", y="lat", col="time", col_wrap=3)
Faceting also works for line plots.
.. ipython:: python
:okwarning:
@savefig plot_facet_dataarray_line.png
g_simple_line = t.isel(lat=slice(0, None, 4)).plot(
x="lon", hue="lat", col="time", col_wrap=3
)
===============
4 dimensional
===============
For 4 dimensional arrays we can use the rows and columns of the grids.
Here we create a 4 dimensional array by taking the original data and adding
a fixed amount. Now we can see how the temperature maps would compare if
one were much hotter.
.. ipython:: python
:okwarning:
t2 = t.isel(time=slice(0, 2))
t4d = xr.concat([t2, t2 + 40], pd.Index(["normal", "hot"], name="fourth_dim"))
# This is a 4d array
t4d.coords
@savefig plot_facet_4d.png
t4d.plot(x="lon", y="lat", col="time", row="fourth_dim")
================
Other features
================
Faceted plotting supports other arguments common to xarray 2d plots.
.. ipython:: python
:suppress:
plt.close("all")
.. ipython:: python
:okwarning:
hasoutliers = t.isel(time=slice(0, 5)).copy()
hasoutliers[0, 0, 0] = -100
hasoutliers[-1, -1, -1] = 400
@savefig plot_facet_robust.png
g = hasoutliers.plot.pcolormesh(
"lon",
"lat",
col="time",
col_wrap=3,
robust=True,
cmap="viridis",
cbar_kwargs={"label": "this has outliers"},
)
===================
FacetGrid Objects
===================
The object returned, ``g`` in the above examples, is a :py:class:`~xarray.plot.FacetGrid` object
that links a :py:class:`DataArray` to a matplotlib figure with a particular structure.
This object can be used to control the behavior of the multiple plots.
It borrows an API and code from `Seaborn's FacetGrid
<http://seaborn.pydata.org/tutorial/axis_grids.html>`_.
The structure is contained within the ``axes`` and ``name_dicts``
attributes, both 2d Numpy object arrays.
.. ipython:: python
g.axes
g.name_dicts
It's possible to select the :py:class:`xarray.DataArray` or
:py:class:`xarray.Dataset` corresponding to the FacetGrid through the
``name_dicts``.
.. ipython:: python
g.data.loc[g.name_dicts[0, 0]]
Here is an example of using the lower level API and then modifying the axes after
they have been plotted.
.. ipython:: python
:okwarning:
g = t.plot.imshow("lon", "lat", col="time", col_wrap=3, robust=True)
for i, ax in enumerate(g.axes.flat):
ax.set_title("Air Temperature %d" % i)
bottomright = g.axes[-1, -1]
bottomright.annotate("bottom right", (240, 40))
@savefig plot_facet_iterator.png
plt.draw()
:py:class:`~xarray.plot.FacetGrid` objects have methods that let you customize the automatically generated
axis labels, axis ticks and plot titles. See :py:meth:`~xarray.plot.FacetGrid.set_titles`,
:py:meth:`~xarray.plot.FacetGrid.set_xlabels`, :py:meth:`~xarray.plot.FacetGrid.set_ylabels` and
:py:meth:`~xarray.plot.FacetGrid.set_ticks` for more information.
Plotting functions can be applied to each subset of the data by calling :py:meth:`~xarray.plot.FacetGrid.map_dataarray` or to each subplot by calling :py:meth:`~xarray.plot.FacetGrid.map`.
TODO: add an example of using the ``map`` method to plot dataset variables
(e.g., with ``plt.quiver``).
.. _plot-dataset:
Datasets
--------
``xarray`` has limited support for plotting Dataset variables against each other.
Consider this dataset
.. ipython:: python
ds = xr.tutorial.scatter_example_dataset()
ds
Suppose we want to scatter ``A`` against ``B``
.. ipython:: python
:okwarning:
@savefig ds_simple_scatter.png
ds.plot.scatter(x="A", y="B")
The ``hue`` kwarg lets you vary the color by variable value
.. ipython:: python
:okwarning:
@savefig ds_hue_scatter.png
ds.plot.scatter(x="A", y="B", hue="w")
When ``hue`` is specified, a colorbar is added for numeric ``hue`` DataArrays by
default and a legend is added for non-numeric ``hue`` DataArrays (as above).
You can force a legend instead of a colorbar by setting ``hue_style='discrete'``.
Additionally, the boolean kwarg ``add_guide`` can be used to prevent the display of a legend or colorbar (as appropriate).
.. ipython:: python
:okwarning:
ds = ds.assign(w=[1, 2, 3, 5])
@savefig ds_discrete_legend_hue_scatter.png
ds.plot.scatter(x="A", y="B", hue="w", hue_style="discrete")
The ``markersize`` kwarg lets you vary the point's size by variable value. You can additionally pass ``size_norm`` to control how the variable's values are mapped to point sizes.
.. ipython:: python
:okwarning:
@savefig ds_hue_size_scatter.png
ds.plot.scatter(x="A", y="B", hue="z", hue_style="discrete", markersize="z")
Faceting is also possible
.. ipython:: python
:okwarning:
@savefig ds_facet_scatter.png
ds.plot.scatter(x="A", y="B", col="x", row="z", hue="w", hue_style="discrete")
For more advanced scatter plots, we recommend converting the relevant data variables to a pandas DataFrame and using the extensive plotting capabilities of ``seaborn``.
.. _plot-maps:
Maps
----
To follow this section you'll need to have Cartopy installed and working.
This script will plot the air temperature on a map.
.. ipython:: python
:okwarning:
import cartopy.crs as ccrs
air = xr.tutorial.open_dataset("air_temperature").air
p = air.isel(time=0).plot(
subplot_kws=dict(projection=ccrs.Orthographic(-80, 35), facecolor="gray"),
transform=ccrs.PlateCarree(),
)
p.axes.set_global()
@savefig plotting_maps_cartopy.png width=100%
p.axes.coastlines()
When faceting on maps, the projection can be transferred to the ``plot``
function using the ``subplot_kws`` keyword. The axes for the subplots created
by faceting are accessible in the object returned by ``plot``:
.. ipython:: python
:okwarning:
p = air.isel(time=[0, 4]).plot(
transform=ccrs.PlateCarree(),
col="time",
subplot_kws={"projection": ccrs.Orthographic(-80, 35)},
)
for ax in p.axes.flat:
ax.coastlines()
ax.gridlines()
@savefig plotting_maps_cartopy_facetting.png width=100%
plt.draw()
Details
-------
Ways to Use
~~~~~~~~~~~
There are three ways to use the xarray plotting functionality:
1. Use ``plot`` as a convenience method for a DataArray.
2. Access a specific plotting method from the ``plot`` attribute of a
DataArray.
3. Directly from the xarray plot submodule.
These are provided for user convenience; they all call the same code.
.. ipython:: python
:okwarning:
import xarray.plot as xplt
da = xr.DataArray(range(5))
fig, axes = plt.subplots(ncols=2, nrows=2)
da.plot(ax=axes[0, 0])
da.plot.line(ax=axes[0, 1])
xplt.plot(da, ax=axes[1, 0])
xplt.line(da, ax=axes[1, 1])
plt.tight_layout()
@savefig plotting_ways_to_use.png width=6in
plt.draw()
Here the output is the same. Since the data is 1 dimensional the line plot
was used.
The convenience method :py:meth:`xarray.DataArray.plot` dispatches to an appropriate
plotting function based on the dimensions of the ``DataArray`` and whether
the coordinates are sorted and uniformly spaced. This table
describes what gets plotted:
=============== ===========================
Dimensions Plotting function
--------------- ---------------------------
1 :py:func:`xarray.plot.line`
2 :py:func:`xarray.plot.pcolormesh`
Anything else :py:func:`xarray.plot.hist`
=============== ===========================
Coordinates
~~~~~~~~~~~
If you'd like to find out what's really going on in the coordinate system,
read on.
.. ipython:: python
a0 = xr.DataArray(np.zeros((4, 3, 2)), dims=("y", "x", "z"), name="temperature")
a0[0, 0, 0] = 1
a = a0.isel(z=0)
a
The plot will produce an image corresponding to the values of the array.
Hence the top left pixel will be a different color than the others.
Before reading on, you may want to look at the coordinates and
think carefully about what the limits, labels, and orientation for
each of the axes should be.
.. ipython:: python
:okwarning:
@savefig plotting_example_2d_simple.png width=4in
a.plot()
It may seem strange that
the values on the y axis are decreasing with -0.5 on the top. This is because
the pixels are centered over their coordinates, and the
axis labels and ranges correspond to the values of the
coordinates.
Multidimensional coordinates
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See also: :ref:`/examples/multidimensional-coords.ipynb`.
You can plot irregular grids defined by multidimensional coordinates with
xarray, but you'll have to tell the plot function to use these coordinates
instead of the default ones:
.. ipython:: python
:okwarning:
lon, lat = np.meshgrid(np.linspace(-20, 20, 5), np.linspace(0, 30, 4))
lon += lat / 10
lat += lon / 10
da = xr.DataArray(
np.arange(20).reshape(4, 5),
dims=["y", "x"],
coords={"lat": (("y", "x"), lat), "lon": (("y", "x"), lon)},
)
@savefig plotting_example_2d_irreg.png width=4in
da.plot.pcolormesh("lon", "lat")
Note that in this case, xarray still follows the pixel centered convention.
This might be undesirable in some cases, for example when your data is defined
on a polar projection (:issue:`781`). This is why the default is to not follow
this convention when plotting on a map:
.. ipython:: python
:okwarning:
import cartopy.crs as ccrs
ax = plt.subplot(projection=ccrs.PlateCarree())
da.plot.pcolormesh("lon", "lat", ax=ax)
ax.scatter(lon, lat, transform=ccrs.PlateCarree())
ax.coastlines()
@savefig plotting_example_2d_irreg_map.png width=4in
ax.gridlines(draw_labels=True)
You can however decide to infer the cell boundaries and use the
``infer_intervals`` keyword:
.. ipython:: python
:okwarning:
ax = plt.subplot(projection=ccrs.PlateCarree())
da.plot.pcolormesh("lon", "lat", ax=ax, infer_intervals=True)
ax.scatter(lon, lat, transform=ccrs.PlateCarree())
ax.coastlines()
@savefig plotting_example_2d_irreg_map_infer.png width=4in
ax.gridlines(draw_labels=True)
.. note::
The data model of xarray does not support datasets with `cell boundaries`_
yet. If you want to use these coordinates, you'll have to make the plots
outside the xarray framework.
.. _cell boundaries: http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html#cell-boundaries
One can also make line plots with multidimensional coordinates. In this case, ``hue`` must be a dimension name, not a coordinate name.
.. ipython:: python
:okwarning:
f, ax = plt.subplots(2, 1)
da.plot.line(x="lon", hue="y", ax=ax[0])
@savefig plotting_example_2d_hue_xy.png
da.plot.line(x="lon", hue="x", ax=ax[1])
|