File: quick-overview.rst

package info (click to toggle)
python-xarray 0.16.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,568 kB
  • sloc: python: 60,570; makefile: 236; sh: 38
file content (228 lines) | stat: -rw-r--r-- 7,710 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
##############
Quick overview
##############

Here are some quick examples of what you can do with :py:class:`xarray.DataArray`
objects. Everything is explained in much more detail in the rest of the
documentation.

To begin, import numpy, pandas and xarray using their customary abbreviations:

.. ipython:: python

    import numpy as np
    import pandas as pd
    import xarray as xr

Create a DataArray
------------------

You can make a DataArray from scratch by supplying data in the form of a numpy
array or list, with optional *dimensions* and *coordinates*:

.. ipython:: python

    data = xr.DataArray(np.random.randn(2, 3), dims=("x", "y"), coords={"x": [10, 20]})
    data

In this case, we have generated a 2D array, assigned the names *x* and *y* to the two dimensions respectively and associated two *coordinate labels* '10' and '20' with the two locations along the x dimension. If you supply a pandas :py:class:`~pandas.Series` or :py:class:`~pandas.DataFrame`, metadata is copied directly:

.. ipython:: python

    xr.DataArray(pd.Series(range(3), index=list("abc"), name="foo"))

Here are the key properties for a ``DataArray``:

.. ipython:: python

    # like in pandas, values is a numpy array that you can modify in-place
    data.values
    data.dims
    data.coords
    # you can use this dictionary to store arbitrary metadata
    data.attrs


Indexing
--------

xarray supports four kinds of indexing. Since we have assigned coordinate labels to the x dimension we can use label-based indexing along that dimension just like pandas. The four examples below all yield the same result (the value at `x=10`) but at varying levels of convenience and intuitiveness.

.. ipython:: python

    # positional and by integer label, like numpy
    data[0, :]

    # loc or "location": positional and coordinate label, like pandas
    data.loc[10]

    # isel or "integer select":  by dimension name and integer label
    data.isel(x=0)

    # sel or "select": by dimension name and coordinate label
    data.sel(x=10)


Unlike positional indexing, label-based indexing frees us from having to know how our array is organized. All we need to know are the dimension name and the label we wish to index i.e. ``data.sel(x=10)`` works regardless of whether ``x`` is the first or second dimension of the array and regardless of whether ``10`` is the first or second element of ``x``. We have already told xarray that x is the first dimension when we created ``data``: xarray keeps track of this so we don't have to. For more, see :ref:`indexing`.


Attributes
----------

While you're setting up your DataArray, it's often a good idea to set metadata attributes. A useful choice is to set ``data.attrs['long_name']`` and ``data.attrs['units']`` since xarray will use these, if present, to automatically label your plots. These special names were chosen following the `NetCDF Climate and Forecast (CF) Metadata Conventions <http://cfconventions.org/cf-conventions/cf-conventions.html>`_. ``attrs`` is just a Python dictionary, so you can assign anything you wish.

.. ipython:: python

    data.attrs["long_name"] = "random velocity"
    data.attrs["units"] = "metres/sec"
    data.attrs["description"] = "A random variable created as an example."
    data.attrs["random_attribute"] = 123
    data.attrs
    # you can add metadata to coordinates too
    data.x.attrs["units"] = "x units"


Computation
-----------

Data arrays work very similarly to numpy ndarrays:

.. ipython:: python

    data + 10
    np.sin(data)
    # transpose
    data.T
    data.sum()

However, aggregation operations can use dimension names instead of axis
numbers:

.. ipython:: python

    data.mean(dim="x")

Arithmetic operations broadcast based on dimension name. This means you don't
need to insert dummy dimensions for alignment:

.. ipython:: python

    a = xr.DataArray(np.random.randn(3), [data.coords["y"]])
    b = xr.DataArray(np.random.randn(4), dims="z")

    a
    b

    a + b

It also means that in most cases you do not need to worry about the order of
dimensions:

.. ipython:: python

    data - data.T

Operations also align based on index labels:

.. ipython:: python

    data[:-1] - data[:1]

For more, see :ref:`comput`.

GroupBy
-------

xarray supports grouped operations using a very similar API to pandas (see :ref:`groupby`):

.. ipython:: python

    labels = xr.DataArray(["E", "F", "E"], [data.coords["y"]], name="labels")
    labels
    data.groupby(labels).mean("y")
    data.groupby(labels).map(lambda x: x - x.min())

Plotting
--------

Visualizing your datasets is quick and convenient:

.. ipython:: python

    @savefig plotting_quick_overview.png
    data.plot()

Note the automatic labeling with names and units. Our effort in adding metadata attributes has paid off! Many aspects of these figures are customizable: see :ref:`plotting`.
    
pandas
------

Xarray objects can be easily converted to and from pandas objects using the :py:meth:`~xarray.DataArray.to_series`, :py:meth:`~xarray.DataArray.to_dataframe` and :py:meth:`~pandas.DataFrame.to_xarray` methods:

.. ipython:: python

    series = data.to_series()
    series

    # convert back
    series.to_xarray()

Datasets
--------

:py:class:`xarray.Dataset` is a dict-like container of aligned ``DataArray``
objects. You can think of it as a multi-dimensional generalization of the
:py:class:`pandas.DataFrame`:

.. ipython:: python

    ds = xr.Dataset({"foo": data, "bar": ("x", [1, 2]), "baz": np.pi})
    ds


This creates a dataset with three DataArrays named ``foo``, ``bar`` and ``baz``. Use dictionary or dot indexing to pull out ``Dataset`` variables as ``DataArray`` objects but note that assignment only works with dictionary indexing:

.. ipython:: python

    ds["foo"]
    ds.foo


When creating ``ds``, we specified that ``foo`` is identical to ``data`` created earlier, ``bar`` is one-dimensional with single dimension ``x`` and associated values '1' and '2', and ``baz`` is a scalar not associated with any dimension in ``ds``. Variables in datasets can have different ``dtype`` and even different dimensions, but all dimensions are assumed to refer to points in the same shared coordinate system i.e. if two variables have dimension ``x``, that dimension must be identical in both variables.

For example, when creating ``ds`` xarray automatically *aligns* ``bar`` with ``DataArray`` ``foo``, i.e., they share the same coordinate system so that ``ds.bar['x'] == ds.foo['x'] == ds['x']``. Consequently, the following works without explicitly specifying the coordinate ``x`` when creating ``ds['bar']``:

.. ipython:: python

    ds.bar.sel(x=10)



You can do almost everything you can do with ``DataArray`` objects with
``Dataset`` objects (including indexing and arithmetic) if you prefer to work
with multiple variables at once.

Read & write netCDF files
-------------------------

NetCDF is the recommended file format for xarray objects. Users
from the geosciences will recognize that the :py:class:`~xarray.Dataset` data
model looks very similar to a netCDF file (which, in fact, inspired it).

You can directly read and write xarray objects to disk using :py:meth:`~xarray.Dataset.to_netcdf`, :py:func:`~xarray.open_dataset` and
:py:func:`~xarray.open_dataarray`:

.. ipython:: python

    ds.to_netcdf("example.nc")
    xr.open_dataset("example.nc")

.. ipython:: python
    :suppress:

    import os

    os.remove("example.nc")


It is common for datasets to be distributed across multiple files (commonly one file per timestep). xarray supports this use-case by providing the :py:meth:`~xarray.open_mfdataset` and the :py:meth:`~xarray.save_mfdataset` methods. For more, see :ref:`io`.