1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
import logging
import time
import traceback
import numpy as np
from ..conventions import cf_encoder
from ..core import indexing
from ..core.pycompat import is_duck_dask_array
from ..core.utils import FrozenDict, NdimSizeLenMixin
# Create a logger object, but don't add any handlers. Leave that to user code.
logger = logging.getLogger(__name__)
NONE_VAR_NAME = "__values__"
def _encode_variable_name(name):
if name is None:
name = NONE_VAR_NAME
return name
def _decode_variable_name(name):
if name == NONE_VAR_NAME:
name = None
return name
def find_root_and_group(ds):
"""Find the root and group name of a netCDF4/h5netcdf dataset."""
hierarchy = ()
while ds.parent is not None:
hierarchy = (ds.name.split("/")[-1],) + hierarchy
ds = ds.parent
group = "/" + "/".join(hierarchy)
return ds, group
def robust_getitem(array, key, catch=Exception, max_retries=6, initial_delay=500):
"""
Robustly index an array, using retry logic with exponential backoff if any
of the errors ``catch`` are raised. The initial_delay is measured in ms.
With the default settings, the maximum delay will be in the range of 32-64
seconds.
"""
assert max_retries >= 0
for n in range(max_retries + 1):
try:
return array[key]
except catch:
if n == max_retries:
raise
base_delay = initial_delay * 2 ** n
next_delay = base_delay + np.random.randint(base_delay)
msg = (
"getitem failed, waiting %s ms before trying again "
"(%s tries remaining). Full traceback: %s"
% (next_delay, max_retries - n, traceback.format_exc())
)
logger.debug(msg)
time.sleep(1e-3 * next_delay)
class BackendArray(NdimSizeLenMixin, indexing.ExplicitlyIndexed):
__slots__ = ()
def __array__(self, dtype=None):
key = indexing.BasicIndexer((slice(None),) * self.ndim)
return np.asarray(self[key], dtype=dtype)
class AbstractDataStore:
__slots__ = ()
def get_dimensions(self): # pragma: no cover
raise NotImplementedError()
def get_attrs(self): # pragma: no cover
raise NotImplementedError()
def get_variables(self): # pragma: no cover
raise NotImplementedError()
def get_encoding(self):
return {}
def load(self):
"""
This loads the variables and attributes simultaneously.
A centralized loading function makes it easier to create
data stores that do automatic encoding/decoding.
For example::
class SuffixAppendingDataStore(AbstractDataStore):
def load(self):
variables, attributes = AbstractDataStore.load(self)
variables = {'%s_suffix' % k: v
for k, v in variables.items()}
attributes = {'%s_suffix' % k: v
for k, v in attributes.items()}
return variables, attributes
This function will be called anytime variables or attributes
are requested, so care should be taken to make sure its fast.
"""
variables = FrozenDict(
(_decode_variable_name(k), v) for k, v in self.get_variables().items()
)
attributes = FrozenDict(self.get_attrs())
return variables, attributes
def close(self):
pass
def __enter__(self):
return self
def __exit__(self, exception_type, exception_value, traceback):
self.close()
class ArrayWriter:
__slots__ = ("sources", "targets", "regions", "lock")
def __init__(self, lock=None):
self.sources = []
self.targets = []
self.regions = []
self.lock = lock
def add(self, source, target, region=None):
if is_duck_dask_array(source):
self.sources.append(source)
self.targets.append(target)
self.regions.append(region)
else:
if region:
target[region] = source
else:
target[...] = source
def sync(self, compute=True):
if self.sources:
import dask.array as da
# TODO: consider wrapping targets with dask.delayed, if this makes
# for any discernable difference in perforance, e.g.,
# targets = [dask.delayed(t) for t in self.targets]
delayed_store = da.store(
self.sources,
self.targets,
lock=self.lock,
compute=compute,
flush=True,
regions=self.regions,
)
self.sources = []
self.targets = []
self.regions = []
return delayed_store
class AbstractWritableDataStore(AbstractDataStore):
__slots__ = ()
def encode(self, variables, attributes):
"""
Encode the variables and attributes in this store
Parameters
----------
variables : dict-like
Dictionary of key/value (variable name / xr.Variable) pairs
attributes : dict-like
Dictionary of key/value (attribute name / attribute) pairs
Returns
-------
variables : dict-like
attributes : dict-like
"""
variables = {k: self.encode_variable(v) for k, v in variables.items()}
attributes = {k: self.encode_attribute(v) for k, v in attributes.items()}
return variables, attributes
def encode_variable(self, v):
"""encode one variable"""
return v
def encode_attribute(self, a):
"""encode one attribute"""
return a
def set_dimension(self, dim, length): # pragma: no cover
raise NotImplementedError()
def set_attribute(self, k, v): # pragma: no cover
raise NotImplementedError()
def set_variable(self, k, v): # pragma: no cover
raise NotImplementedError()
def store_dataset(self, dataset):
"""
in stores, variables are all variables AND coordinates
in xarray.Dataset variables are variables NOT coordinates,
so here we pass the whole dataset in instead of doing
dataset.variables
"""
self.store(dataset, dataset.attrs)
def store(
self,
variables,
attributes,
check_encoding_set=frozenset(),
writer=None,
unlimited_dims=None,
):
"""
Top level method for putting data on this store, this method:
- encodes variables/attributes
- sets dimensions
- sets variables
Parameters
----------
variables : dict-like
Dictionary of key/value (variable name / xr.Variable) pairs
attributes : dict-like
Dictionary of key/value (attribute name / attribute) pairs
check_encoding_set : list-like
List of variables that should be checked for invalid encoding
values
writer : ArrayWriter
unlimited_dims : list-like
List of dimension names that should be treated as unlimited
dimensions.
"""
if writer is None:
writer = ArrayWriter()
variables, attributes = self.encode(variables, attributes)
self.set_attributes(attributes)
self.set_dimensions(variables, unlimited_dims=unlimited_dims)
self.set_variables(
variables, check_encoding_set, writer, unlimited_dims=unlimited_dims
)
def set_attributes(self, attributes):
"""
This provides a centralized method to set the dataset attributes on the
data store.
Parameters
----------
attributes : dict-like
Dictionary of key/value (attribute name / attribute) pairs
"""
for k, v in attributes.items():
self.set_attribute(k, v)
def set_variables(self, variables, check_encoding_set, writer, unlimited_dims=None):
"""
This provides a centralized method to set the variables on the data
store.
Parameters
----------
variables : dict-like
Dictionary of key/value (variable name / xr.Variable) pairs
check_encoding_set : list-like
List of variables that should be checked for invalid encoding
values
writer : ArrayWriter
unlimited_dims : list-like
List of dimension names that should be treated as unlimited
dimensions.
"""
for vn, v in variables.items():
name = _encode_variable_name(vn)
check = vn in check_encoding_set
target, source = self.prepare_variable(
name, v, check, unlimited_dims=unlimited_dims
)
writer.add(source, target)
def set_dimensions(self, variables, unlimited_dims=None):
"""
This provides a centralized method to set the dimensions on the data
store.
Parameters
----------
variables : dict-like
Dictionary of key/value (variable name / xr.Variable) pairs
unlimited_dims : list-like
List of dimension names that should be treated as unlimited
dimensions.
"""
if unlimited_dims is None:
unlimited_dims = set()
existing_dims = self.get_dimensions()
dims = {}
for v in unlimited_dims: # put unlimited_dims first
dims[v] = None
for v in variables.values():
dims.update(dict(zip(v.dims, v.shape)))
for dim, length in dims.items():
if dim in existing_dims and length != existing_dims[dim]:
raise ValueError(
"Unable to update size for existing dimension"
"%r (%d != %d)" % (dim, length, existing_dims[dim])
)
elif dim not in existing_dims:
is_unlimited = dim in unlimited_dims
self.set_dimension(dim, length, is_unlimited)
class WritableCFDataStore(AbstractWritableDataStore):
__slots__ = ()
def encode(self, variables, attributes):
# All NetCDF files get CF encoded by default, without this attempting
# to write times, for example, would fail.
variables, attributes = cf_encoder(variables, attributes)
variables = {k: self.encode_variable(v) for k, v in variables.items()}
attributes = {k: self.encode_attribute(v) for k, v in attributes.items()}
return variables, attributes
|