File: h5netcdf_.py

package info (click to toggle)
python-xarray 0.16.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,568 kB
  • sloc: python: 60,570; makefile: 236; sh: 38
file content (376 lines) | stat: -rw-r--r-- 11,934 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import functools
from distutils.version import LooseVersion

import numpy as np

from .. import conventions
from ..core import indexing
from ..core.dataset import Dataset
from ..core.utils import FrozenDict, close_on_error, is_remote_uri
from ..core.variable import Variable
from .common import WritableCFDataStore, find_root_and_group
from .file_manager import CachingFileManager, DummyFileManager
from .locks import HDF5_LOCK, combine_locks, ensure_lock, get_write_lock
from .netCDF4_ import (
    BaseNetCDF4Array,
    _encode_nc4_variable,
    _extract_nc4_variable_encoding,
    _get_datatype,
    _nc4_require_group,
)


class H5NetCDFArrayWrapper(BaseNetCDF4Array):
    def get_array(self, needs_lock=True):
        ds = self.datastore._acquire(needs_lock)
        variable = ds.variables[self.variable_name]
        return variable

    def __getitem__(self, key):
        return indexing.explicit_indexing_adapter(
            key, self.shape, indexing.IndexingSupport.OUTER_1VECTOR, self._getitem
        )

    def _getitem(self, key):
        # h5py requires using lists for fancy indexing:
        # https://github.com/h5py/h5py/issues/992
        key = tuple(list(k) if isinstance(k, np.ndarray) else k for k in key)
        with self.datastore.lock:
            array = self.get_array(needs_lock=False)
            return array[key]


def maybe_decode_bytes(txt):
    if isinstance(txt, bytes):
        return txt.decode("utf-8")
    else:
        return txt


def _read_attributes(h5netcdf_var):
    # GH451
    # to ensure conventions decoding works properly on Python 3, decode all
    # bytes attributes to strings
    attrs = {}
    for k, v in h5netcdf_var.attrs.items():
        if k not in ["_FillValue", "missing_value"]:
            v = maybe_decode_bytes(v)
        attrs[k] = v
    return attrs


_extract_h5nc_encoding = functools.partial(
    _extract_nc4_variable_encoding, lsd_okay=False, h5py_okay=True, backend="h5netcdf"
)


def _h5netcdf_create_group(dataset, name):
    return dataset.create_group(name)


class H5NetCDFStore(WritableCFDataStore):
    """Store for reading and writing data via h5netcdf"""

    __slots__ = (
        "autoclose",
        "format",
        "is_remote",
        "lock",
        "_filename",
        "_group",
        "_manager",
        "_mode",
    )

    def __init__(self, manager, group=None, mode=None, lock=HDF5_LOCK, autoclose=False):

        import h5netcdf

        if isinstance(manager, (h5netcdf.File, h5netcdf.Group)):
            if group is None:
                root, group = find_root_and_group(manager)
            else:
                if not type(manager) is h5netcdf.File:
                    raise ValueError(
                        "must supply a h5netcdf.File if the group "
                        "argument is provided"
                    )
                root = manager
            manager = DummyFileManager(root)

        self._manager = manager
        self._group = group
        self._mode = mode
        self.format = None
        # todo: utilizing find_root_and_group seems a bit clunky
        #  making filename available on h5netcdf.Group seems better
        self._filename = find_root_and_group(self.ds)[0].filename
        self.is_remote = is_remote_uri(self._filename)
        self.lock = ensure_lock(lock)
        self.autoclose = autoclose

    @classmethod
    def open(
        cls,
        filename,
        mode="r",
        format=None,
        group=None,
        lock=None,
        autoclose=False,
        invalid_netcdf=None,
        phony_dims=None,
    ):
        import h5netcdf

        if isinstance(filename, bytes):
            raise ValueError(
                "can't open netCDF4/HDF5 as bytes "
                "try passing a path or file-like object"
            )
        elif hasattr(filename, "tell"):
            if filename.tell() != 0:
                raise ValueError(
                    "file-like object read/write pointer not at zero "
                    "please close and reopen, or use a context manager"
                )
            else:
                magic_number = filename.read(8)
                filename.seek(0)
                if not magic_number.startswith(b"\211HDF\r\n\032\n"):
                    raise ValueError(
                        f"{magic_number} is not the signature of a valid netCDF file"
                    )

        if format not in [None, "NETCDF4"]:
            raise ValueError("invalid format for h5netcdf backend")

        kwargs = {"invalid_netcdf": invalid_netcdf}
        if phony_dims is not None:
            if LooseVersion(h5netcdf.__version__) >= LooseVersion("0.8.0"):
                kwargs["phony_dims"] = phony_dims
            else:
                raise ValueError(
                    "h5netcdf backend keyword argument 'phony_dims' needs "
                    "h5netcdf >= 0.8.0."
                )

        if lock is None:
            if mode == "r":
                lock = HDF5_LOCK
            else:
                lock = combine_locks([HDF5_LOCK, get_write_lock(filename)])

        manager = CachingFileManager(h5netcdf.File, filename, mode=mode, kwargs=kwargs)
        return cls(manager, group=group, mode=mode, lock=lock, autoclose=autoclose)

    def _acquire(self, needs_lock=True):
        with self._manager.acquire_context(needs_lock) as root:
            ds = _nc4_require_group(
                root, self._group, self._mode, create_group=_h5netcdf_create_group
            )
        return ds

    @property
    def ds(self):
        return self._acquire()

    def open_store_variable(self, name, var):
        import h5py

        dimensions = var.dimensions
        data = indexing.LazilyOuterIndexedArray(H5NetCDFArrayWrapper(name, self))
        attrs = _read_attributes(var)

        # netCDF4 specific encoding
        encoding = {
            "chunksizes": var.chunks,
            "fletcher32": var.fletcher32,
            "shuffle": var.shuffle,
        }
        # Convert h5py-style compression options to NetCDF4-Python
        # style, if possible
        if var.compression == "gzip":
            encoding["zlib"] = True
            encoding["complevel"] = var.compression_opts
        elif var.compression is not None:
            encoding["compression"] = var.compression
            encoding["compression_opts"] = var.compression_opts

        # save source so __repr__ can detect if it's local or not
        encoding["source"] = self._filename
        encoding["original_shape"] = var.shape

        vlen_dtype = h5py.check_dtype(vlen=var.dtype)
        if vlen_dtype is str:
            encoding["dtype"] = str
        elif vlen_dtype is not None:  # pragma: no cover
            # xarray doesn't support writing arbitrary vlen dtypes yet.
            pass
        else:
            encoding["dtype"] = var.dtype

        return Variable(dimensions, data, attrs, encoding)

    def get_variables(self):
        return FrozenDict(
            (k, self.open_store_variable(k, v)) for k, v in self.ds.variables.items()
        )

    def get_attrs(self):
        return FrozenDict(_read_attributes(self.ds))

    def get_dimensions(self):
        return self.ds.dimensions

    def get_encoding(self):
        encoding = {}
        encoding["unlimited_dims"] = {
            k for k, v in self.ds.dimensions.items() if v is None
        }
        return encoding

    def set_dimension(self, name, length, is_unlimited=False):
        if is_unlimited:
            self.ds.dimensions[name] = None
            self.ds.resize_dimension(name, length)
        else:
            self.ds.dimensions[name] = length

    def set_attribute(self, key, value):
        self.ds.attrs[key] = value

    def encode_variable(self, variable):
        return _encode_nc4_variable(variable)

    def prepare_variable(
        self, name, variable, check_encoding=False, unlimited_dims=None
    ):
        import h5py

        attrs = variable.attrs.copy()
        dtype = _get_datatype(variable, raise_on_invalid_encoding=check_encoding)

        fillvalue = attrs.pop("_FillValue", None)
        if dtype is str and fillvalue is not None:
            raise NotImplementedError(
                "h5netcdf does not yet support setting a fill value for "
                "variable-length strings "
                "(https://github.com/shoyer/h5netcdf/issues/37). "
                "Either remove '_FillValue' from encoding on variable %r "
                "or set {'dtype': 'S1'} in encoding to use the fixed width "
                "NC_CHAR type." % name
            )

        if dtype is str:
            dtype = h5py.special_dtype(vlen=str)

        encoding = _extract_h5nc_encoding(variable, raise_on_invalid=check_encoding)
        kwargs = {}

        # Convert from NetCDF4-Python style compression settings to h5py style
        # If both styles are used together, h5py takes precedence
        # If set_encoding=True, raise ValueError in case of mismatch
        if encoding.pop("zlib", False):
            if check_encoding and encoding.get("compression") not in (None, "gzip"):
                raise ValueError("'zlib' and 'compression' encodings mismatch")
            encoding.setdefault("compression", "gzip")

        if (
            check_encoding
            and "complevel" in encoding
            and "compression_opts" in encoding
            and encoding["complevel"] != encoding["compression_opts"]
        ):
            raise ValueError("'complevel' and 'compression_opts' encodings mismatch")
        complevel = encoding.pop("complevel", 0)
        if complevel != 0:
            encoding.setdefault("compression_opts", complevel)

        encoding["chunks"] = encoding.pop("chunksizes", None)

        # Do not apply compression, filters or chunking to scalars.
        if variable.shape:
            for key in [
                "compression",
                "compression_opts",
                "shuffle",
                "chunks",
                "fletcher32",
            ]:
                if key in encoding:
                    kwargs[key] = encoding[key]
        if name not in self.ds:
            nc4_var = self.ds.create_variable(
                name,
                dtype=dtype,
                dimensions=variable.dims,
                fillvalue=fillvalue,
                **kwargs,
            )
        else:
            nc4_var = self.ds[name]

        for k, v in attrs.items():
            nc4_var.attrs[k] = v

        target = H5NetCDFArrayWrapper(name, self)

        return target, variable.data

    def sync(self):
        self.ds.sync()

    def close(self, **kwargs):
        self._manager.close(**kwargs)


def open_backend_dataset_h5necdf(
    filename_or_obj,
    *,
    mask_and_scale=True,
    decode_times=None,
    concat_characters=None,
    decode_coords=None,
    drop_variables=None,
    use_cftime=None,
    decode_timedelta=None,
    format=None,
    group=None,
    lock=None,
    invalid_netcdf=None,
    phony_dims=None,
):

    store = H5NetCDFStore.open(
        filename_or_obj,
        format=format,
        group=group,
        lock=lock,
        invalid_netcdf=invalid_netcdf,
        phony_dims=phony_dims,
    )

    with close_on_error(store):
        vars, attrs = store.load()
        file_obj = store
        encoding = store.get_encoding()

        vars, attrs, coord_names = conventions.decode_cf_variables(
            vars,
            attrs,
            mask_and_scale=mask_and_scale,
            decode_times=decode_times,
            concat_characters=concat_characters,
            decode_coords=decode_coords,
            drop_variables=drop_variables,
            use_cftime=use_cftime,
            decode_timedelta=decode_timedelta,
        )

        ds = Dataset(vars, attrs=attrs)
        ds = ds.set_coords(coord_names.intersection(vars))
        ds._file_obj = file_obj
        ds.encoding = encoding

    return ds