1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
import functools
from distutils.version import LooseVersion
import numpy as np
from .. import conventions
from ..core import indexing
from ..core.dataset import Dataset
from ..core.utils import FrozenDict, close_on_error, is_remote_uri
from ..core.variable import Variable
from .common import WritableCFDataStore, find_root_and_group
from .file_manager import CachingFileManager, DummyFileManager
from .locks import HDF5_LOCK, combine_locks, ensure_lock, get_write_lock
from .netCDF4_ import (
BaseNetCDF4Array,
_encode_nc4_variable,
_extract_nc4_variable_encoding,
_get_datatype,
_nc4_require_group,
)
class H5NetCDFArrayWrapper(BaseNetCDF4Array):
def get_array(self, needs_lock=True):
ds = self.datastore._acquire(needs_lock)
variable = ds.variables[self.variable_name]
return variable
def __getitem__(self, key):
return indexing.explicit_indexing_adapter(
key, self.shape, indexing.IndexingSupport.OUTER_1VECTOR, self._getitem
)
def _getitem(self, key):
# h5py requires using lists for fancy indexing:
# https://github.com/h5py/h5py/issues/992
key = tuple(list(k) if isinstance(k, np.ndarray) else k for k in key)
with self.datastore.lock:
array = self.get_array(needs_lock=False)
return array[key]
def maybe_decode_bytes(txt):
if isinstance(txt, bytes):
return txt.decode("utf-8")
else:
return txt
def _read_attributes(h5netcdf_var):
# GH451
# to ensure conventions decoding works properly on Python 3, decode all
# bytes attributes to strings
attrs = {}
for k, v in h5netcdf_var.attrs.items():
if k not in ["_FillValue", "missing_value"]:
v = maybe_decode_bytes(v)
attrs[k] = v
return attrs
_extract_h5nc_encoding = functools.partial(
_extract_nc4_variable_encoding, lsd_okay=False, h5py_okay=True, backend="h5netcdf"
)
def _h5netcdf_create_group(dataset, name):
return dataset.create_group(name)
class H5NetCDFStore(WritableCFDataStore):
"""Store for reading and writing data via h5netcdf"""
__slots__ = (
"autoclose",
"format",
"is_remote",
"lock",
"_filename",
"_group",
"_manager",
"_mode",
)
def __init__(self, manager, group=None, mode=None, lock=HDF5_LOCK, autoclose=False):
import h5netcdf
if isinstance(manager, (h5netcdf.File, h5netcdf.Group)):
if group is None:
root, group = find_root_and_group(manager)
else:
if not type(manager) is h5netcdf.File:
raise ValueError(
"must supply a h5netcdf.File if the group "
"argument is provided"
)
root = manager
manager = DummyFileManager(root)
self._manager = manager
self._group = group
self._mode = mode
self.format = None
# todo: utilizing find_root_and_group seems a bit clunky
# making filename available on h5netcdf.Group seems better
self._filename = find_root_and_group(self.ds)[0].filename
self.is_remote = is_remote_uri(self._filename)
self.lock = ensure_lock(lock)
self.autoclose = autoclose
@classmethod
def open(
cls,
filename,
mode="r",
format=None,
group=None,
lock=None,
autoclose=False,
invalid_netcdf=None,
phony_dims=None,
):
import h5netcdf
if isinstance(filename, bytes):
raise ValueError(
"can't open netCDF4/HDF5 as bytes "
"try passing a path or file-like object"
)
elif hasattr(filename, "tell"):
if filename.tell() != 0:
raise ValueError(
"file-like object read/write pointer not at zero "
"please close and reopen, or use a context manager"
)
else:
magic_number = filename.read(8)
filename.seek(0)
if not magic_number.startswith(b"\211HDF\r\n\032\n"):
raise ValueError(
f"{magic_number} is not the signature of a valid netCDF file"
)
if format not in [None, "NETCDF4"]:
raise ValueError("invalid format for h5netcdf backend")
kwargs = {"invalid_netcdf": invalid_netcdf}
if phony_dims is not None:
if LooseVersion(h5netcdf.__version__) >= LooseVersion("0.8.0"):
kwargs["phony_dims"] = phony_dims
else:
raise ValueError(
"h5netcdf backend keyword argument 'phony_dims' needs "
"h5netcdf >= 0.8.0."
)
if lock is None:
if mode == "r":
lock = HDF5_LOCK
else:
lock = combine_locks([HDF5_LOCK, get_write_lock(filename)])
manager = CachingFileManager(h5netcdf.File, filename, mode=mode, kwargs=kwargs)
return cls(manager, group=group, mode=mode, lock=lock, autoclose=autoclose)
def _acquire(self, needs_lock=True):
with self._manager.acquire_context(needs_lock) as root:
ds = _nc4_require_group(
root, self._group, self._mode, create_group=_h5netcdf_create_group
)
return ds
@property
def ds(self):
return self._acquire()
def open_store_variable(self, name, var):
import h5py
dimensions = var.dimensions
data = indexing.LazilyOuterIndexedArray(H5NetCDFArrayWrapper(name, self))
attrs = _read_attributes(var)
# netCDF4 specific encoding
encoding = {
"chunksizes": var.chunks,
"fletcher32": var.fletcher32,
"shuffle": var.shuffle,
}
# Convert h5py-style compression options to NetCDF4-Python
# style, if possible
if var.compression == "gzip":
encoding["zlib"] = True
encoding["complevel"] = var.compression_opts
elif var.compression is not None:
encoding["compression"] = var.compression
encoding["compression_opts"] = var.compression_opts
# save source so __repr__ can detect if it's local or not
encoding["source"] = self._filename
encoding["original_shape"] = var.shape
vlen_dtype = h5py.check_dtype(vlen=var.dtype)
if vlen_dtype is str:
encoding["dtype"] = str
elif vlen_dtype is not None: # pragma: no cover
# xarray doesn't support writing arbitrary vlen dtypes yet.
pass
else:
encoding["dtype"] = var.dtype
return Variable(dimensions, data, attrs, encoding)
def get_variables(self):
return FrozenDict(
(k, self.open_store_variable(k, v)) for k, v in self.ds.variables.items()
)
def get_attrs(self):
return FrozenDict(_read_attributes(self.ds))
def get_dimensions(self):
return self.ds.dimensions
def get_encoding(self):
encoding = {}
encoding["unlimited_dims"] = {
k for k, v in self.ds.dimensions.items() if v is None
}
return encoding
def set_dimension(self, name, length, is_unlimited=False):
if is_unlimited:
self.ds.dimensions[name] = None
self.ds.resize_dimension(name, length)
else:
self.ds.dimensions[name] = length
def set_attribute(self, key, value):
self.ds.attrs[key] = value
def encode_variable(self, variable):
return _encode_nc4_variable(variable)
def prepare_variable(
self, name, variable, check_encoding=False, unlimited_dims=None
):
import h5py
attrs = variable.attrs.copy()
dtype = _get_datatype(variable, raise_on_invalid_encoding=check_encoding)
fillvalue = attrs.pop("_FillValue", None)
if dtype is str and fillvalue is not None:
raise NotImplementedError(
"h5netcdf does not yet support setting a fill value for "
"variable-length strings "
"(https://github.com/shoyer/h5netcdf/issues/37). "
"Either remove '_FillValue' from encoding on variable %r "
"or set {'dtype': 'S1'} in encoding to use the fixed width "
"NC_CHAR type." % name
)
if dtype is str:
dtype = h5py.special_dtype(vlen=str)
encoding = _extract_h5nc_encoding(variable, raise_on_invalid=check_encoding)
kwargs = {}
# Convert from NetCDF4-Python style compression settings to h5py style
# If both styles are used together, h5py takes precedence
# If set_encoding=True, raise ValueError in case of mismatch
if encoding.pop("zlib", False):
if check_encoding and encoding.get("compression") not in (None, "gzip"):
raise ValueError("'zlib' and 'compression' encodings mismatch")
encoding.setdefault("compression", "gzip")
if (
check_encoding
and "complevel" in encoding
and "compression_opts" in encoding
and encoding["complevel"] != encoding["compression_opts"]
):
raise ValueError("'complevel' and 'compression_opts' encodings mismatch")
complevel = encoding.pop("complevel", 0)
if complevel != 0:
encoding.setdefault("compression_opts", complevel)
encoding["chunks"] = encoding.pop("chunksizes", None)
# Do not apply compression, filters or chunking to scalars.
if variable.shape:
for key in [
"compression",
"compression_opts",
"shuffle",
"chunks",
"fletcher32",
]:
if key in encoding:
kwargs[key] = encoding[key]
if name not in self.ds:
nc4_var = self.ds.create_variable(
name,
dtype=dtype,
dimensions=variable.dims,
fillvalue=fillvalue,
**kwargs,
)
else:
nc4_var = self.ds[name]
for k, v in attrs.items():
nc4_var.attrs[k] = v
target = H5NetCDFArrayWrapper(name, self)
return target, variable.data
def sync(self):
self.ds.sync()
def close(self, **kwargs):
self._manager.close(**kwargs)
def open_backend_dataset_h5necdf(
filename_or_obj,
*,
mask_and_scale=True,
decode_times=None,
concat_characters=None,
decode_coords=None,
drop_variables=None,
use_cftime=None,
decode_timedelta=None,
format=None,
group=None,
lock=None,
invalid_netcdf=None,
phony_dims=None,
):
store = H5NetCDFStore.open(
filename_or_obj,
format=format,
group=group,
lock=lock,
invalid_netcdf=invalid_netcdf,
phony_dims=phony_dims,
)
with close_on_error(store):
vars, attrs = store.load()
file_obj = store
encoding = store.get_encoding()
vars, attrs, coord_names = conventions.decode_cf_variables(
vars,
attrs,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
concat_characters=concat_characters,
decode_coords=decode_coords,
drop_variables=drop_variables,
use_cftime=use_cftime,
decode_timedelta=decode_timedelta,
)
ds = Dataset(vars, attrs=attrs)
ds = ds.set_coords(coord_names.intersection(vars))
ds._file_obj = file_obj
ds.encoding = encoding
return ds
|