File: netCDF4_.py

package info (click to toggle)
python-xarray 0.16.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,568 kB
  • sloc: python: 60,570; makefile: 236; sh: 38
file content (498 lines) | stat: -rw-r--r-- 16,720 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import functools
import operator
from contextlib import suppress

import numpy as np

from .. import coding
from ..coding.variables import pop_to
from ..core import indexing
from ..core.utils import FrozenDict, is_remote_uri
from ..core.variable import Variable
from .common import (
    BackendArray,
    WritableCFDataStore,
    find_root_and_group,
    robust_getitem,
)
from .file_manager import CachingFileManager, DummyFileManager
from .locks import HDF5_LOCK, NETCDFC_LOCK, combine_locks, ensure_lock, get_write_lock
from .netcdf3 import encode_nc3_attr_value, encode_nc3_variable

# This lookup table maps from dtype.byteorder to a readable endian
# string used by netCDF4.
_endian_lookup = {"=": "native", ">": "big", "<": "little", "|": "native"}


NETCDF4_PYTHON_LOCK = combine_locks([NETCDFC_LOCK, HDF5_LOCK])


class BaseNetCDF4Array(BackendArray):
    __slots__ = ("datastore", "dtype", "shape", "variable_name")

    def __init__(self, variable_name, datastore):
        self.datastore = datastore
        self.variable_name = variable_name

        array = self.get_array()
        self.shape = array.shape

        dtype = array.dtype
        if dtype is str:
            # use object dtype because that's the only way in numpy to
            # represent variable length strings; it also prevents automatic
            # string concatenation via conventions.decode_cf_variable
            dtype = np.dtype("O")
        self.dtype = dtype

    def __setitem__(self, key, value):
        with self.datastore.lock:
            data = self.get_array(needs_lock=False)
            data[key] = value
            if self.datastore.autoclose:
                self.datastore.close(needs_lock=False)

    def get_array(self, needs_lock=True):
        raise NotImplementedError("Virtual Method")


class NetCDF4ArrayWrapper(BaseNetCDF4Array):
    __slots__ = ()

    def get_array(self, needs_lock=True):
        ds = self.datastore._acquire(needs_lock)
        variable = ds.variables[self.variable_name]
        variable.set_auto_maskandscale(False)
        # only added in netCDF4-python v1.2.8
        with suppress(AttributeError):
            variable.set_auto_chartostring(False)
        return variable

    def __getitem__(self, key):
        return indexing.explicit_indexing_adapter(
            key, self.shape, indexing.IndexingSupport.OUTER, self._getitem
        )

    def _getitem(self, key):
        if self.datastore.is_remote:  # pragma: no cover
            getitem = functools.partial(robust_getitem, catch=RuntimeError)
        else:
            getitem = operator.getitem

        try:
            with self.datastore.lock:
                original_array = self.get_array(needs_lock=False)
                array = getitem(original_array, key)
        except IndexError:
            # Catch IndexError in netCDF4 and return a more informative
            # error message.  This is most often called when an unsorted
            # indexer is used before the data is loaded from disk.
            msg = (
                "The indexing operation you are attempting to perform "
                "is not valid on netCDF4.Variable object. Try loading "
                "your data into memory first by calling .load()."
            )
            raise IndexError(msg)
        return array


def _encode_nc4_variable(var):
    for coder in [
        coding.strings.EncodedStringCoder(allows_unicode=True),
        coding.strings.CharacterArrayCoder(),
    ]:
        var = coder.encode(var)
    return var


def _check_encoding_dtype_is_vlen_string(dtype):
    if dtype is not str:
        raise AssertionError(  # pragma: no cover
            "unexpected dtype encoding %r. This shouldn't happen: please "
            "file a bug report at github.com/pydata/xarray" % dtype
        )


def _get_datatype(var, nc_format="NETCDF4", raise_on_invalid_encoding=False):
    if nc_format == "NETCDF4":
        datatype = _nc4_dtype(var)
    else:
        if "dtype" in var.encoding:
            encoded_dtype = var.encoding["dtype"]
            _check_encoding_dtype_is_vlen_string(encoded_dtype)
            if raise_on_invalid_encoding:
                raise ValueError(
                    "encoding dtype=str for vlen strings is only supported "
                    "with format='NETCDF4'."
                )
        datatype = var.dtype
    return datatype


def _nc4_dtype(var):
    if "dtype" in var.encoding:
        dtype = var.encoding.pop("dtype")
        _check_encoding_dtype_is_vlen_string(dtype)
    elif coding.strings.is_unicode_dtype(var.dtype):
        dtype = str
    elif var.dtype.kind in ["i", "u", "f", "c", "S"]:
        dtype = var.dtype
    else:
        raise ValueError(f"unsupported dtype for netCDF4 variable: {var.dtype}")
    return dtype


def _netcdf4_create_group(dataset, name):
    return dataset.createGroup(name)


def _nc4_require_group(ds, group, mode, create_group=_netcdf4_create_group):
    if group in {None, "", "/"}:
        # use the root group
        return ds
    else:
        # make sure it's a string
        if not isinstance(group, str):
            raise ValueError("group must be a string or None")
        # support path-like syntax
        path = group.strip("/").split("/")
        for key in path:
            try:
                ds = ds.groups[key]
            except KeyError as e:
                if mode != "r":
                    ds = create_group(ds, key)
                else:
                    # wrap error to provide slightly more helpful message
                    raise OSError("group not found: %s" % key, e)
        return ds


def _ensure_fill_value_valid(data, attributes):
    # work around for netCDF4/scipy issue where _FillValue has the wrong type:
    # https://github.com/Unidata/netcdf4-python/issues/271
    if data.dtype.kind == "S" and "_FillValue" in attributes:
        attributes["_FillValue"] = np.string_(attributes["_FillValue"])


def _force_native_endianness(var):
    # possible values for byteorder are:
    #     =    native
    #     <    little-endian
    #     >    big-endian
    #     |    not applicable
    # Below we check if the data type is not native or NA
    if var.dtype.byteorder not in ["=", "|"]:
        # if endianness is specified explicitly, convert to the native type
        data = var.data.astype(var.dtype.newbyteorder("="))
        var = Variable(var.dims, data, var.attrs, var.encoding)
        # if endian exists, remove it from the encoding.
        var.encoding.pop("endian", None)
    # check to see if encoding has a value for endian its 'native'
    if not var.encoding.get("endian", "native") == "native":
        raise NotImplementedError(
            "Attempt to write non-native endian type, "
            "this is not supported by the netCDF4 "
            "python library."
        )
    return var


def _extract_nc4_variable_encoding(
    variable,
    raise_on_invalid=False,
    lsd_okay=True,
    h5py_okay=False,
    backend="netCDF4",
    unlimited_dims=None,
):
    if unlimited_dims is None:
        unlimited_dims = ()

    encoding = variable.encoding.copy()

    safe_to_drop = {"source", "original_shape"}
    valid_encodings = {
        "zlib",
        "complevel",
        "fletcher32",
        "contiguous",
        "chunksizes",
        "shuffle",
        "_FillValue",
        "dtype",
    }
    if lsd_okay:
        valid_encodings.add("least_significant_digit")
    if h5py_okay:
        valid_encodings.add("compression")
        valid_encodings.add("compression_opts")

    if not raise_on_invalid and encoding.get("chunksizes") is not None:
        # It's possible to get encoded chunksizes larger than a dimension size
        # if the original file had an unlimited dimension. This is problematic
        # if the new file no longer has an unlimited dimension.
        chunksizes = encoding["chunksizes"]
        chunks_too_big = any(
            c > d and dim not in unlimited_dims
            for c, d, dim in zip(chunksizes, variable.shape, variable.dims)
        )
        has_original_shape = "original_shape" in encoding
        changed_shape = (
            has_original_shape and encoding.get("original_shape") != variable.shape
        )
        if chunks_too_big or changed_shape:
            del encoding["chunksizes"]

    var_has_unlim_dim = any(dim in unlimited_dims for dim in variable.dims)
    if not raise_on_invalid and var_has_unlim_dim and "contiguous" in encoding.keys():
        del encoding["contiguous"]

    for k in safe_to_drop:
        if k in encoding:
            del encoding[k]

    if raise_on_invalid:
        invalid = [k for k in encoding if k not in valid_encodings]
        if invalid:
            raise ValueError(
                "unexpected encoding parameters for %r backend: %r. Valid "
                "encodings are: %r" % (backend, invalid, valid_encodings)
            )
    else:
        for k in list(encoding):
            if k not in valid_encodings:
                del encoding[k]

    return encoding


def _is_list_of_strings(value):
    if np.asarray(value).dtype.kind in ["U", "S"] and np.asarray(value).size > 1:
        return True
    else:
        return False


class NetCDF4DataStore(WritableCFDataStore):
    """Store for reading and writing data via the Python-NetCDF4 library.

    This store supports NetCDF3, NetCDF4 and OpenDAP datasets.
    """

    __slots__ = (
        "autoclose",
        "format",
        "is_remote",
        "lock",
        "_filename",
        "_group",
        "_manager",
        "_mode",
    )

    def __init__(
        self, manager, group=None, mode=None, lock=NETCDF4_PYTHON_LOCK, autoclose=False
    ):
        import netCDF4

        if isinstance(manager, netCDF4.Dataset):
            if group is None:
                root, group = find_root_and_group(manager)
            else:
                if not type(manager) is netCDF4.Dataset:
                    raise ValueError(
                        "must supply a root netCDF4.Dataset if the group "
                        "argument is provided"
                    )
                root = manager
            manager = DummyFileManager(root)

        self._manager = manager
        self._group = group
        self._mode = mode
        self.format = self.ds.data_model
        self._filename = self.ds.filepath()
        self.is_remote = is_remote_uri(self._filename)
        self.lock = ensure_lock(lock)
        self.autoclose = autoclose

    @classmethod
    def open(
        cls,
        filename,
        mode="r",
        format="NETCDF4",
        group=None,
        clobber=True,
        diskless=False,
        persist=False,
        lock=None,
        lock_maker=None,
        autoclose=False,
    ):
        import netCDF4

        if not isinstance(filename, str):
            raise ValueError(
                "can only read bytes or file-like objects "
                "with engine='scipy' or 'h5netcdf'"
            )

        if format is None:
            format = "NETCDF4"

        if lock is None:
            if mode == "r":
                if is_remote_uri(filename):
                    lock = NETCDFC_LOCK
                else:
                    lock = NETCDF4_PYTHON_LOCK
            else:
                if format is None or format.startswith("NETCDF4"):
                    base_lock = NETCDF4_PYTHON_LOCK
                else:
                    base_lock = NETCDFC_LOCK
                lock = combine_locks([base_lock, get_write_lock(filename)])

        kwargs = dict(
            clobber=clobber, diskless=diskless, persist=persist, format=format
        )
        manager = CachingFileManager(
            netCDF4.Dataset, filename, mode=mode, kwargs=kwargs
        )
        return cls(manager, group=group, mode=mode, lock=lock, autoclose=autoclose)

    def _acquire(self, needs_lock=True):
        with self._manager.acquire_context(needs_lock) as root:
            ds = _nc4_require_group(root, self._group, self._mode)
        return ds

    @property
    def ds(self):
        return self._acquire()

    def open_store_variable(self, name, var):
        dimensions = var.dimensions
        data = indexing.LazilyOuterIndexedArray(NetCDF4ArrayWrapper(name, self))
        attributes = {k: var.getncattr(k) for k in var.ncattrs()}
        _ensure_fill_value_valid(data, attributes)
        # netCDF4 specific encoding; save _FillValue for later
        encoding = {}
        filters = var.filters()
        if filters is not None:
            encoding.update(filters)
        chunking = var.chunking()
        if chunking is not None:
            if chunking == "contiguous":
                encoding["contiguous"] = True
                encoding["chunksizes"] = None
            else:
                encoding["contiguous"] = False
                encoding["chunksizes"] = tuple(chunking)
        # TODO: figure out how to round-trip "endian-ness" without raising
        # warnings from netCDF4
        # encoding['endian'] = var.endian()
        pop_to(attributes, encoding, "least_significant_digit")
        # save source so __repr__ can detect if it's local or not
        encoding["source"] = self._filename
        encoding["original_shape"] = var.shape
        encoding["dtype"] = var.dtype

        return Variable(dimensions, data, attributes, encoding)

    def get_variables(self):
        dsvars = FrozenDict(
            (k, self.open_store_variable(k, v)) for k, v in self.ds.variables.items()
        )
        return dsvars

    def get_attrs(self):
        attrs = FrozenDict((k, self.ds.getncattr(k)) for k in self.ds.ncattrs())
        return attrs

    def get_dimensions(self):
        dims = FrozenDict((k, len(v)) for k, v in self.ds.dimensions.items())
        return dims

    def get_encoding(self):
        encoding = {}
        encoding["unlimited_dims"] = {
            k for k, v in self.ds.dimensions.items() if v.isunlimited()
        }
        return encoding

    def set_dimension(self, name, length, is_unlimited=False):
        dim_length = length if not is_unlimited else None
        self.ds.createDimension(name, size=dim_length)

    def set_attribute(self, key, value):
        if self.format != "NETCDF4":
            value = encode_nc3_attr_value(value)
        if _is_list_of_strings(value):
            # encode as NC_STRING if attr is list of strings
            self.ds.setncattr_string(key, value)
        else:
            self.ds.setncattr(key, value)

    def encode_variable(self, variable):
        variable = _force_native_endianness(variable)
        if self.format == "NETCDF4":
            variable = _encode_nc4_variable(variable)
        else:
            variable = encode_nc3_variable(variable)
        return variable

    def prepare_variable(
        self, name, variable, check_encoding=False, unlimited_dims=None
    ):
        datatype = _get_datatype(
            variable, self.format, raise_on_invalid_encoding=check_encoding
        )
        attrs = variable.attrs.copy()

        fill_value = attrs.pop("_FillValue", None)

        if datatype is str and fill_value is not None:
            raise NotImplementedError(
                "netCDF4 does not yet support setting a fill value for "
                "variable-length strings "
                "(https://github.com/Unidata/netcdf4-python/issues/730). "
                "Either remove '_FillValue' from encoding on variable %r "
                "or set {'dtype': 'S1'} in encoding to use the fixed width "
                "NC_CHAR type." % name
            )

        encoding = _extract_nc4_variable_encoding(
            variable, raise_on_invalid=check_encoding, unlimited_dims=unlimited_dims
        )

        if name in self.ds.variables:
            nc4_var = self.ds.variables[name]
        else:
            nc4_var = self.ds.createVariable(
                varname=name,
                datatype=datatype,
                dimensions=variable.dims,
                zlib=encoding.get("zlib", False),
                complevel=encoding.get("complevel", 4),
                shuffle=encoding.get("shuffle", True),
                fletcher32=encoding.get("fletcher32", False),
                contiguous=encoding.get("contiguous", False),
                chunksizes=encoding.get("chunksizes"),
                endian="native",
                least_significant_digit=encoding.get("least_significant_digit"),
                fill_value=fill_value,
            )

        nc4_var.setncatts(attrs)

        target = NetCDF4ArrayWrapper(name, self)

        return target, variable.data

    def sync(self):
        self.ds.sync()

    def close(self, **kwargs):
        self._manager.close(**kwargs)