1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
|
import functools
import operator
from contextlib import suppress
import numpy as np
from .. import coding
from ..coding.variables import pop_to
from ..core import indexing
from ..core.utils import FrozenDict, is_remote_uri
from ..core.variable import Variable
from .common import (
BackendArray,
WritableCFDataStore,
find_root_and_group,
robust_getitem,
)
from .file_manager import CachingFileManager, DummyFileManager
from .locks import HDF5_LOCK, NETCDFC_LOCK, combine_locks, ensure_lock, get_write_lock
from .netcdf3 import encode_nc3_attr_value, encode_nc3_variable
# This lookup table maps from dtype.byteorder to a readable endian
# string used by netCDF4.
_endian_lookup = {"=": "native", ">": "big", "<": "little", "|": "native"}
NETCDF4_PYTHON_LOCK = combine_locks([NETCDFC_LOCK, HDF5_LOCK])
class BaseNetCDF4Array(BackendArray):
__slots__ = ("datastore", "dtype", "shape", "variable_name")
def __init__(self, variable_name, datastore):
self.datastore = datastore
self.variable_name = variable_name
array = self.get_array()
self.shape = array.shape
dtype = array.dtype
if dtype is str:
# use object dtype because that's the only way in numpy to
# represent variable length strings; it also prevents automatic
# string concatenation via conventions.decode_cf_variable
dtype = np.dtype("O")
self.dtype = dtype
def __setitem__(self, key, value):
with self.datastore.lock:
data = self.get_array(needs_lock=False)
data[key] = value
if self.datastore.autoclose:
self.datastore.close(needs_lock=False)
def get_array(self, needs_lock=True):
raise NotImplementedError("Virtual Method")
class NetCDF4ArrayWrapper(BaseNetCDF4Array):
__slots__ = ()
def get_array(self, needs_lock=True):
ds = self.datastore._acquire(needs_lock)
variable = ds.variables[self.variable_name]
variable.set_auto_maskandscale(False)
# only added in netCDF4-python v1.2.8
with suppress(AttributeError):
variable.set_auto_chartostring(False)
return variable
def __getitem__(self, key):
return indexing.explicit_indexing_adapter(
key, self.shape, indexing.IndexingSupport.OUTER, self._getitem
)
def _getitem(self, key):
if self.datastore.is_remote: # pragma: no cover
getitem = functools.partial(robust_getitem, catch=RuntimeError)
else:
getitem = operator.getitem
try:
with self.datastore.lock:
original_array = self.get_array(needs_lock=False)
array = getitem(original_array, key)
except IndexError:
# Catch IndexError in netCDF4 and return a more informative
# error message. This is most often called when an unsorted
# indexer is used before the data is loaded from disk.
msg = (
"The indexing operation you are attempting to perform "
"is not valid on netCDF4.Variable object. Try loading "
"your data into memory first by calling .load()."
)
raise IndexError(msg)
return array
def _encode_nc4_variable(var):
for coder in [
coding.strings.EncodedStringCoder(allows_unicode=True),
coding.strings.CharacterArrayCoder(),
]:
var = coder.encode(var)
return var
def _check_encoding_dtype_is_vlen_string(dtype):
if dtype is not str:
raise AssertionError( # pragma: no cover
"unexpected dtype encoding %r. This shouldn't happen: please "
"file a bug report at github.com/pydata/xarray" % dtype
)
def _get_datatype(var, nc_format="NETCDF4", raise_on_invalid_encoding=False):
if nc_format == "NETCDF4":
datatype = _nc4_dtype(var)
else:
if "dtype" in var.encoding:
encoded_dtype = var.encoding["dtype"]
_check_encoding_dtype_is_vlen_string(encoded_dtype)
if raise_on_invalid_encoding:
raise ValueError(
"encoding dtype=str for vlen strings is only supported "
"with format='NETCDF4'."
)
datatype = var.dtype
return datatype
def _nc4_dtype(var):
if "dtype" in var.encoding:
dtype = var.encoding.pop("dtype")
_check_encoding_dtype_is_vlen_string(dtype)
elif coding.strings.is_unicode_dtype(var.dtype):
dtype = str
elif var.dtype.kind in ["i", "u", "f", "c", "S"]:
dtype = var.dtype
else:
raise ValueError(f"unsupported dtype for netCDF4 variable: {var.dtype}")
return dtype
def _netcdf4_create_group(dataset, name):
return dataset.createGroup(name)
def _nc4_require_group(ds, group, mode, create_group=_netcdf4_create_group):
if group in {None, "", "/"}:
# use the root group
return ds
else:
# make sure it's a string
if not isinstance(group, str):
raise ValueError("group must be a string or None")
# support path-like syntax
path = group.strip("/").split("/")
for key in path:
try:
ds = ds.groups[key]
except KeyError as e:
if mode != "r":
ds = create_group(ds, key)
else:
# wrap error to provide slightly more helpful message
raise OSError("group not found: %s" % key, e)
return ds
def _ensure_fill_value_valid(data, attributes):
# work around for netCDF4/scipy issue where _FillValue has the wrong type:
# https://github.com/Unidata/netcdf4-python/issues/271
if data.dtype.kind == "S" and "_FillValue" in attributes:
attributes["_FillValue"] = np.string_(attributes["_FillValue"])
def _force_native_endianness(var):
# possible values for byteorder are:
# = native
# < little-endian
# > big-endian
# | not applicable
# Below we check if the data type is not native or NA
if var.dtype.byteorder not in ["=", "|"]:
# if endianness is specified explicitly, convert to the native type
data = var.data.astype(var.dtype.newbyteorder("="))
var = Variable(var.dims, data, var.attrs, var.encoding)
# if endian exists, remove it from the encoding.
var.encoding.pop("endian", None)
# check to see if encoding has a value for endian its 'native'
if not var.encoding.get("endian", "native") == "native":
raise NotImplementedError(
"Attempt to write non-native endian type, "
"this is not supported by the netCDF4 "
"python library."
)
return var
def _extract_nc4_variable_encoding(
variable,
raise_on_invalid=False,
lsd_okay=True,
h5py_okay=False,
backend="netCDF4",
unlimited_dims=None,
):
if unlimited_dims is None:
unlimited_dims = ()
encoding = variable.encoding.copy()
safe_to_drop = {"source", "original_shape"}
valid_encodings = {
"zlib",
"complevel",
"fletcher32",
"contiguous",
"chunksizes",
"shuffle",
"_FillValue",
"dtype",
}
if lsd_okay:
valid_encodings.add("least_significant_digit")
if h5py_okay:
valid_encodings.add("compression")
valid_encodings.add("compression_opts")
if not raise_on_invalid and encoding.get("chunksizes") is not None:
# It's possible to get encoded chunksizes larger than a dimension size
# if the original file had an unlimited dimension. This is problematic
# if the new file no longer has an unlimited dimension.
chunksizes = encoding["chunksizes"]
chunks_too_big = any(
c > d and dim not in unlimited_dims
for c, d, dim in zip(chunksizes, variable.shape, variable.dims)
)
has_original_shape = "original_shape" in encoding
changed_shape = (
has_original_shape and encoding.get("original_shape") != variable.shape
)
if chunks_too_big or changed_shape:
del encoding["chunksizes"]
var_has_unlim_dim = any(dim in unlimited_dims for dim in variable.dims)
if not raise_on_invalid and var_has_unlim_dim and "contiguous" in encoding.keys():
del encoding["contiguous"]
for k in safe_to_drop:
if k in encoding:
del encoding[k]
if raise_on_invalid:
invalid = [k for k in encoding if k not in valid_encodings]
if invalid:
raise ValueError(
"unexpected encoding parameters for %r backend: %r. Valid "
"encodings are: %r" % (backend, invalid, valid_encodings)
)
else:
for k in list(encoding):
if k not in valid_encodings:
del encoding[k]
return encoding
def _is_list_of_strings(value):
if np.asarray(value).dtype.kind in ["U", "S"] and np.asarray(value).size > 1:
return True
else:
return False
class NetCDF4DataStore(WritableCFDataStore):
"""Store for reading and writing data via the Python-NetCDF4 library.
This store supports NetCDF3, NetCDF4 and OpenDAP datasets.
"""
__slots__ = (
"autoclose",
"format",
"is_remote",
"lock",
"_filename",
"_group",
"_manager",
"_mode",
)
def __init__(
self, manager, group=None, mode=None, lock=NETCDF4_PYTHON_LOCK, autoclose=False
):
import netCDF4
if isinstance(manager, netCDF4.Dataset):
if group is None:
root, group = find_root_and_group(manager)
else:
if not type(manager) is netCDF4.Dataset:
raise ValueError(
"must supply a root netCDF4.Dataset if the group "
"argument is provided"
)
root = manager
manager = DummyFileManager(root)
self._manager = manager
self._group = group
self._mode = mode
self.format = self.ds.data_model
self._filename = self.ds.filepath()
self.is_remote = is_remote_uri(self._filename)
self.lock = ensure_lock(lock)
self.autoclose = autoclose
@classmethod
def open(
cls,
filename,
mode="r",
format="NETCDF4",
group=None,
clobber=True,
diskless=False,
persist=False,
lock=None,
lock_maker=None,
autoclose=False,
):
import netCDF4
if not isinstance(filename, str):
raise ValueError(
"can only read bytes or file-like objects "
"with engine='scipy' or 'h5netcdf'"
)
if format is None:
format = "NETCDF4"
if lock is None:
if mode == "r":
if is_remote_uri(filename):
lock = NETCDFC_LOCK
else:
lock = NETCDF4_PYTHON_LOCK
else:
if format is None or format.startswith("NETCDF4"):
base_lock = NETCDF4_PYTHON_LOCK
else:
base_lock = NETCDFC_LOCK
lock = combine_locks([base_lock, get_write_lock(filename)])
kwargs = dict(
clobber=clobber, diskless=diskless, persist=persist, format=format
)
manager = CachingFileManager(
netCDF4.Dataset, filename, mode=mode, kwargs=kwargs
)
return cls(manager, group=group, mode=mode, lock=lock, autoclose=autoclose)
def _acquire(self, needs_lock=True):
with self._manager.acquire_context(needs_lock) as root:
ds = _nc4_require_group(root, self._group, self._mode)
return ds
@property
def ds(self):
return self._acquire()
def open_store_variable(self, name, var):
dimensions = var.dimensions
data = indexing.LazilyOuterIndexedArray(NetCDF4ArrayWrapper(name, self))
attributes = {k: var.getncattr(k) for k in var.ncattrs()}
_ensure_fill_value_valid(data, attributes)
# netCDF4 specific encoding; save _FillValue for later
encoding = {}
filters = var.filters()
if filters is not None:
encoding.update(filters)
chunking = var.chunking()
if chunking is not None:
if chunking == "contiguous":
encoding["contiguous"] = True
encoding["chunksizes"] = None
else:
encoding["contiguous"] = False
encoding["chunksizes"] = tuple(chunking)
# TODO: figure out how to round-trip "endian-ness" without raising
# warnings from netCDF4
# encoding['endian'] = var.endian()
pop_to(attributes, encoding, "least_significant_digit")
# save source so __repr__ can detect if it's local or not
encoding["source"] = self._filename
encoding["original_shape"] = var.shape
encoding["dtype"] = var.dtype
return Variable(dimensions, data, attributes, encoding)
def get_variables(self):
dsvars = FrozenDict(
(k, self.open_store_variable(k, v)) for k, v in self.ds.variables.items()
)
return dsvars
def get_attrs(self):
attrs = FrozenDict((k, self.ds.getncattr(k)) for k in self.ds.ncattrs())
return attrs
def get_dimensions(self):
dims = FrozenDict((k, len(v)) for k, v in self.ds.dimensions.items())
return dims
def get_encoding(self):
encoding = {}
encoding["unlimited_dims"] = {
k for k, v in self.ds.dimensions.items() if v.isunlimited()
}
return encoding
def set_dimension(self, name, length, is_unlimited=False):
dim_length = length if not is_unlimited else None
self.ds.createDimension(name, size=dim_length)
def set_attribute(self, key, value):
if self.format != "NETCDF4":
value = encode_nc3_attr_value(value)
if _is_list_of_strings(value):
# encode as NC_STRING if attr is list of strings
self.ds.setncattr_string(key, value)
else:
self.ds.setncattr(key, value)
def encode_variable(self, variable):
variable = _force_native_endianness(variable)
if self.format == "NETCDF4":
variable = _encode_nc4_variable(variable)
else:
variable = encode_nc3_variable(variable)
return variable
def prepare_variable(
self, name, variable, check_encoding=False, unlimited_dims=None
):
datatype = _get_datatype(
variable, self.format, raise_on_invalid_encoding=check_encoding
)
attrs = variable.attrs.copy()
fill_value = attrs.pop("_FillValue", None)
if datatype is str and fill_value is not None:
raise NotImplementedError(
"netCDF4 does not yet support setting a fill value for "
"variable-length strings "
"(https://github.com/Unidata/netcdf4-python/issues/730). "
"Either remove '_FillValue' from encoding on variable %r "
"or set {'dtype': 'S1'} in encoding to use the fixed width "
"NC_CHAR type." % name
)
encoding = _extract_nc4_variable_encoding(
variable, raise_on_invalid=check_encoding, unlimited_dims=unlimited_dims
)
if name in self.ds.variables:
nc4_var = self.ds.variables[name]
else:
nc4_var = self.ds.createVariable(
varname=name,
datatype=datatype,
dimensions=variable.dims,
zlib=encoding.get("zlib", False),
complevel=encoding.get("complevel", 4),
shuffle=encoding.get("shuffle", True),
fletcher32=encoding.get("fletcher32", False),
contiguous=encoding.get("contiguous", False),
chunksizes=encoding.get("chunksizes"),
endian="native",
least_significant_digit=encoding.get("least_significant_digit"),
fill_value=fill_value,
)
nc4_var.setncatts(attrs)
target = NetCDF4ArrayWrapper(name, self)
return target, variable.data
def sync(self):
self.ds.sync()
def close(self, **kwargs):
self._manager.close(**kwargs)
|