1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
|
import warnings
import numpy as np
from .. import coding, conventions
from ..core import indexing
from ..core.dataset import Dataset
from ..core.pycompat import integer_types
from ..core.utils import FrozenDict, HiddenKeyDict, close_on_error
from ..core.variable import Variable
from .common import AbstractWritableDataStore, BackendArray, _encode_variable_name
# need some special secret attributes to tell us the dimensions
DIMENSION_KEY = "_ARRAY_DIMENSIONS"
def encode_zarr_attr_value(value):
"""
Encode a attribute value as something that can be serialized as json
Many xarray datasets / variables have numpy arrays and values. This
function handles encoding / decoding of such items.
ndarray -> list
scalar array -> scalar
other -> other (no change)
"""
if isinstance(value, np.ndarray):
encoded = value.tolist()
# this checks if it's a scalar number
elif isinstance(value, np.generic):
encoded = value.item()
else:
encoded = value
return encoded
class ZarrArrayWrapper(BackendArray):
__slots__ = ("datastore", "dtype", "shape", "variable_name")
def __init__(self, variable_name, datastore):
self.datastore = datastore
self.variable_name = variable_name
array = self.get_array()
self.shape = array.shape
dtype = array.dtype
self.dtype = dtype
def get_array(self):
return self.datastore.ds[self.variable_name]
def __getitem__(self, key):
array = self.get_array()
if isinstance(key, indexing.BasicIndexer):
return array[key.tuple]
elif isinstance(key, indexing.VectorizedIndexer):
return array.vindex[
indexing._arrayize_vectorized_indexer(key, self.shape).tuple
]
else:
assert isinstance(key, indexing.OuterIndexer)
return array.oindex[key.tuple]
# if self.ndim == 0:
# could possibly have a work-around for 0d data here
def _determine_zarr_chunks(enc_chunks, var_chunks, ndim, name):
"""
Given encoding chunks (possibly None) and variable chunks (possibly None)
"""
# zarr chunk spec:
# chunks : int or tuple of ints, optional
# Chunk shape. If not provided, will be guessed from shape and dtype.
# if there are no chunks in encoding and the variable data is a numpy
# array, then we let zarr use its own heuristics to pick the chunks
if var_chunks is None and enc_chunks is None:
return None
# if there are no chunks in encoding but there are dask chunks, we try to
# use the same chunks in zarr
# However, zarr chunks needs to be uniform for each array
# http://zarr.readthedocs.io/en/latest/spec/v1.html#chunks
# while dask chunks can be variable sized
# http://dask.pydata.org/en/latest/array-design.html#chunks
if var_chunks and enc_chunks is None:
if any(len(set(chunks[:-1])) > 1 for chunks in var_chunks):
raise ValueError(
"Zarr requires uniform chunk sizes except for final chunk. "
f"Variable named {name!r} has incompatible dask chunks: {var_chunks!r}. "
"Consider rechunking using `chunk()`."
)
if any((chunks[0] < chunks[-1]) for chunks in var_chunks):
raise ValueError(
"Final chunk of Zarr array must be the same size or smaller "
f"than the first. Variable named {name!r} has incompatible Dask chunks {var_chunks!r}."
"Consider either rechunking using `chunk()` or instead deleting "
"or modifying `encoding['chunks']`."
)
# return the first chunk for each dimension
return tuple(chunk[0] for chunk in var_chunks)
# from here on, we are dealing with user-specified chunks in encoding
# zarr allows chunks to be an integer, in which case it uses the same chunk
# size on each dimension.
# Here we re-implement this expansion ourselves. That makes the logic of
# checking chunk compatibility easier
if isinstance(enc_chunks, integer_types):
enc_chunks_tuple = ndim * (enc_chunks,)
else:
enc_chunks_tuple = tuple(enc_chunks)
if len(enc_chunks_tuple) != ndim:
# throw away encoding chunks, start over
return _determine_zarr_chunks(None, var_chunks, ndim, name)
for x in enc_chunks_tuple:
if not isinstance(x, int):
raise TypeError(
"zarr chunk sizes specified in `encoding['chunks']` "
"must be an int or a tuple of ints. "
f"Instead found encoding['chunks']={enc_chunks_tuple!r} "
f"for variable named {name!r}."
)
# if there are chunks in encoding and the variable data is a numpy array,
# we use the specified chunks
if var_chunks is None:
return enc_chunks_tuple
# the hard case
# DESIGN CHOICE: do not allow multiple dask chunks on a single zarr chunk
# this avoids the need to get involved in zarr synchronization / locking
# From zarr docs:
# "If each worker in a parallel computation is writing to a separate
# region of the array, and if region boundaries are perfectly aligned
# with chunk boundaries, then no synchronization is required."
# TODO: incorporate synchronizer to allow writes from multiple dask
# threads
if var_chunks and enc_chunks_tuple:
for zchunk, dchunks in zip(enc_chunks_tuple, var_chunks):
if len(dchunks) == 1:
continue
for dchunk in dchunks[:-1]:
if dchunk % zchunk:
raise NotImplementedError(
f"Specified zarr chunks encoding['chunks']={enc_chunks_tuple!r} for "
f"variable named {name!r} would overlap multiple dask chunks {var_chunks!r}. "
"This is not implemented in xarray yet. "
"Consider either rechunking using `chunk()` or instead deleting "
"or modifying `encoding['chunks']`."
)
if dchunks[-1] > zchunk:
raise ValueError(
"Final chunk of Zarr array must be the same size or "
"smaller than the first. "
f"Specified Zarr chunk encoding['chunks']={enc_chunks_tuple}, "
f"for variable named {name!r} "
f"but {dchunks} in the variable's Dask chunks {var_chunks} is "
"incompatible with this encoding. "
"Consider either rechunking using `chunk()` or instead deleting "
"or modifying `encoding['chunks']`."
)
return enc_chunks_tuple
raise AssertionError("We should never get here. Function logic must be wrong.")
def _get_zarr_dims_and_attrs(zarr_obj, dimension_key):
# Zarr arrays do not have dimenions. To get around this problem, we add
# an attribute that specifies the dimension. We have to hide this attribute
# when we send the attributes to the user.
# zarr_obj can be either a zarr group or zarr array
try:
dimensions = zarr_obj.attrs[dimension_key]
except KeyError:
raise KeyError(
"Zarr object is missing the attribute `%s`, which is "
"required for xarray to determine variable dimensions." % (dimension_key)
)
attributes = HiddenKeyDict(zarr_obj.attrs, [dimension_key])
return dimensions, attributes
def extract_zarr_variable_encoding(variable, raise_on_invalid=False, name=None):
"""
Extract zarr encoding dictionary from xarray Variable
Parameters
----------
variable : Variable
raise_on_invalid : bool, optional
Returns
-------
encoding : dict
Zarr encoding for `variable`
"""
encoding = variable.encoding.copy()
valid_encodings = {"chunks", "compressor", "filters", "cache_metadata"}
if raise_on_invalid:
invalid = [k for k in encoding if k not in valid_encodings]
if invalid:
raise ValueError(
"unexpected encoding parameters for zarr backend: %r" % invalid
)
else:
for k in list(encoding):
if k not in valid_encodings:
del encoding[k]
chunks = _determine_zarr_chunks(
encoding.get("chunks"), variable.chunks, variable.ndim, name
)
encoding["chunks"] = chunks
return encoding
# Function below is copied from conventions.encode_cf_variable.
# The only change is to raise an error for object dtypes.
def encode_zarr_variable(var, needs_copy=True, name=None):
"""
Converts an Variable into an Variable which follows some
of the CF conventions:
- Nans are masked using _FillValue (or the deprecated missing_value)
- Rescaling via: scale_factor and add_offset
- datetimes are converted to the CF 'units since time' format
- dtype encodings are enforced.
Parameters
----------
var : Variable
A variable holding un-encoded data.
Returns
-------
out : Variable
A variable which has been encoded as described above.
"""
var = conventions.encode_cf_variable(var, name=name)
# zarr allows unicode, but not variable-length strings, so it's both
# simpler and more compact to always encode as UTF-8 explicitly.
# TODO: allow toggling this explicitly via dtype in encoding.
coder = coding.strings.EncodedStringCoder(allows_unicode=True)
var = coder.encode(var, name=name)
var = coding.strings.ensure_fixed_length_bytes(var)
return var
class ZarrStore(AbstractWritableDataStore):
"""Store for reading and writing data via zarr"""
__slots__ = (
"ds",
"_append_dim",
"_consolidate_on_close",
"_group",
"_read_only",
"_synchronizer",
"_write_region",
)
@classmethod
def open_group(
cls,
store,
mode="r",
synchronizer=None,
group=None,
consolidated=False,
consolidate_on_close=False,
chunk_store=None,
append_dim=None,
write_region=None,
):
import zarr
open_kwargs = dict(mode=mode, synchronizer=synchronizer, path=group)
if chunk_store:
open_kwargs["chunk_store"] = chunk_store
if consolidated:
# TODO: an option to pass the metadata_key keyword
zarr_group = zarr.open_consolidated(store, **open_kwargs)
else:
zarr_group = zarr.open_group(store, **open_kwargs)
return cls(zarr_group, consolidate_on_close, append_dim, write_region)
def __init__(
self, zarr_group, consolidate_on_close=False, append_dim=None, write_region=None
):
self.ds = zarr_group
self._read_only = self.ds.read_only
self._synchronizer = self.ds.synchronizer
self._group = self.ds.path
self._consolidate_on_close = consolidate_on_close
self._append_dim = append_dim
self._write_region = write_region
def open_store_variable(self, name, zarr_array):
data = indexing.LazilyOuterIndexedArray(ZarrArrayWrapper(name, self))
dimensions, attributes = _get_zarr_dims_and_attrs(zarr_array, DIMENSION_KEY)
attributes = dict(attributes)
encoding = {
"chunks": zarr_array.chunks,
"compressor": zarr_array.compressor,
"filters": zarr_array.filters,
}
# _FillValue needs to be in attributes, not encoding, so it will get
# picked up by decode_cf
if getattr(zarr_array, "fill_value") is not None:
attributes["_FillValue"] = zarr_array.fill_value
return Variable(dimensions, data, attributes, encoding)
def get_variables(self):
return FrozenDict(
(k, self.open_store_variable(k, v)) for k, v in self.ds.arrays()
)
def get_attrs(self):
attributes = dict(self.ds.attrs.asdict())
return attributes
def get_dimensions(self):
dimensions = {}
for k, v in self.ds.arrays():
try:
for d, s in zip(v.attrs[DIMENSION_KEY], v.shape):
if d in dimensions and dimensions[d] != s:
raise ValueError(
"found conflicting lengths for dimension %s "
"(%d != %d)" % (d, s, dimensions[d])
)
dimensions[d] = s
except KeyError:
raise KeyError(
"Zarr object is missing the attribute `%s`, "
"which is required for xarray to determine "
"variable dimensions." % (DIMENSION_KEY)
)
return dimensions
def set_dimensions(self, variables, unlimited_dims=None):
if unlimited_dims is not None:
raise NotImplementedError(
"Zarr backend doesn't know how to handle unlimited dimensions"
)
def set_attributes(self, attributes):
self.ds.attrs.put(attributes)
def encode_variable(self, variable):
variable = encode_zarr_variable(variable)
return variable
def encode_attribute(self, a):
return encode_zarr_attr_value(a)
@staticmethod
def get_chunk(name, var, chunks):
chunk_spec = dict(zip(var.dims, var.encoding.get("chunks")))
# Coordinate labels aren't chunked
if var.ndim == 1 and var.dims[0] == name:
return chunk_spec
if chunks == "auto":
return chunk_spec
for dim in var.dims:
if dim in chunks:
spec = chunks[dim]
if isinstance(spec, int):
spec = (spec,)
if isinstance(spec, (tuple, list)) and chunk_spec[dim]:
if any(s % chunk_spec[dim] for s in spec):
warnings.warn(
"Specified Dask chunks %r would "
"separate Zarr chunk shape %r for "
"dimension %r. This significantly "
"degrades performance. Consider "
"rechunking after loading instead."
% (chunks[dim], chunk_spec[dim], dim),
stacklevel=2,
)
chunk_spec[dim] = chunks[dim]
return chunk_spec
@classmethod
def maybe_chunk(cls, name, var, chunks, overwrite_encoded_chunks):
chunk_spec = cls.get_chunk(name, var, chunks)
if (var.ndim > 0) and (chunk_spec is not None):
from dask.base import tokenize
# does this cause any data to be read?
token2 = tokenize(name, var._data, chunks)
name2 = f"xarray-{name}-{token2}"
var = var.chunk(chunk_spec, name=name2, lock=None)
if overwrite_encoded_chunks and var.chunks is not None:
var.encoding["chunks"] = tuple(x[0] for x in var.chunks)
return var
else:
return var
def store(
self,
variables,
attributes,
check_encoding_set=frozenset(),
writer=None,
unlimited_dims=None,
):
"""
Top level method for putting data on this store, this method:
- encodes variables/attributes
- sets dimensions
- sets variables
Parameters
----------
variables : dict-like
Dictionary of key/value (variable name / xr.Variable) pairs
attributes : dict-like
Dictionary of key/value (attribute name / attribute) pairs
check_encoding_set : list-like
List of variables that should be checked for invalid encoding
values
writer : ArrayWriter
unlimited_dims : list-like
List of dimension names that should be treated as unlimited
dimensions.
dimension on which the zarray will be appended
only needed in append mode
"""
import zarr
existing_variables = {
vn for vn in variables if _encode_variable_name(vn) in self.ds
}
new_variables = set(variables) - existing_variables
variables_without_encoding = {vn: variables[vn] for vn in new_variables}
variables_encoded, attributes = self.encode(
variables_without_encoding, attributes
)
if len(existing_variables) > 0:
# there are variables to append
# their encoding must be the same as in the store
ds = open_zarr(self.ds.store, group=self.ds.path, chunks=None)
variables_with_encoding = {}
for vn in existing_variables:
variables_with_encoding[vn] = variables[vn].copy(deep=False)
variables_with_encoding[vn].encoding = ds[vn].encoding
variables_with_encoding, _ = self.encode(variables_with_encoding, {})
variables_encoded.update(variables_with_encoding)
if self._write_region is None:
self.set_attributes(attributes)
self.set_dimensions(variables_encoded, unlimited_dims=unlimited_dims)
self.set_variables(
variables_encoded, check_encoding_set, writer, unlimited_dims=unlimited_dims
)
if self._consolidate_on_close:
zarr.consolidate_metadata(self.ds.store)
def sync(self):
pass
def set_variables(self, variables, check_encoding_set, writer, unlimited_dims=None):
"""
This provides a centralized method to set the variables on the data
store.
Parameters
----------
variables : dict-like
Dictionary of key/value (variable name / xr.Variable) pairs
check_encoding_set : list-like
List of variables that should be checked for invalid encoding
values
writer :
unlimited_dims : list-like
List of dimension names that should be treated as unlimited
dimensions.
"""
for vn, v in variables.items():
name = _encode_variable_name(vn)
check = vn in check_encoding_set
attrs = v.attrs.copy()
dims = v.dims
dtype = v.dtype
shape = v.shape
fill_value = attrs.pop("_FillValue", None)
if v.encoding == {"_FillValue": None} and fill_value is None:
v.encoding = {}
if name in self.ds:
# existing variable
zarr_array = self.ds[name]
else:
# new variable
encoding = extract_zarr_variable_encoding(
v, raise_on_invalid=check, name=vn
)
encoded_attrs = {}
# the magic for storing the hidden dimension data
encoded_attrs[DIMENSION_KEY] = dims
for k2, v2 in attrs.items():
encoded_attrs[k2] = self.encode_attribute(v2)
if coding.strings.check_vlen_dtype(dtype) == str:
dtype = str
zarr_array = self.ds.create(
name, shape=shape, dtype=dtype, fill_value=fill_value, **encoding
)
zarr_array.attrs.put(encoded_attrs)
write_region = self._write_region if self._write_region is not None else {}
write_region = {dim: write_region.get(dim, slice(None)) for dim in dims}
if self._append_dim is not None and self._append_dim in dims:
# resize existing variable
append_axis = dims.index(self._append_dim)
assert write_region[self._append_dim] == slice(None)
write_region[self._append_dim] = slice(
zarr_array.shape[append_axis], None
)
new_shape = list(zarr_array.shape)
new_shape[append_axis] += v.shape[append_axis]
zarr_array.resize(new_shape)
region = tuple(write_region[dim] for dim in dims)
writer.add(v.data, zarr_array, region)
def close(self):
pass
def open_zarr(
store,
group=None,
synchronizer=None,
chunks="auto",
decode_cf=True,
mask_and_scale=True,
decode_times=True,
concat_characters=True,
decode_coords=True,
drop_variables=None,
consolidated=False,
overwrite_encoded_chunks=False,
chunk_store=None,
decode_timedelta=None,
use_cftime=None,
**kwargs,
):
"""Load and decode a dataset from a Zarr store.
.. note:: Experimental
The Zarr backend is new and experimental. Please report any
unexpected behavior via github issues.
The `store` object should be a valid store for a Zarr group. `store`
variables must contain dimension metadata encoded in the
`_ARRAY_DIMENSIONS` attribute.
Parameters
----------
store : MutableMapping or str
A MutableMapping where a Zarr Group has been stored or a path to a
directory in file system where a Zarr DirectoryStore has been stored.
synchronizer : object, optional
Array synchronizer provided to zarr
group : str, optional
Group path. (a.k.a. `path` in zarr terminology.)
chunks : int or dict or tuple or {None, 'auto'}, optional
Chunk sizes along each dimension, e.g., ``5`` or
``{'x': 5, 'y': 5}``. If `chunks='auto'`, dask chunks are created
based on the variable's zarr chunks. If `chunks=None`, zarr array
data will lazily convert to numpy arrays upon access. This accepts
all the chunk specifications as Dask does.
overwrite_encoded_chunks: bool, optional
Whether to drop the zarr chunks encoded for each variable when a
dataset is loaded with specified chunk sizes (default: False)
decode_cf : bool, optional
Whether to decode these variables, assuming they were saved according
to CF conventions.
mask_and_scale : bool, optional
If True, replace array values equal to `_FillValue` with NA and scale
values according to the formula `original_values * scale_factor +
add_offset`, where `_FillValue`, `scale_factor` and `add_offset` are
taken from variable attributes (if they exist). If the `_FillValue` or
`missing_value` attribute contains multiple values a warning will be
issued and all array values matching one of the multiple values will
be replaced by NA.
decode_times : bool, optional
If True, decode times encoded in the standard NetCDF datetime format
into datetime objects. Otherwise, leave them encoded as numbers.
concat_characters : bool, optional
If True, concatenate along the last dimension of character arrays to
form string arrays. Dimensions will only be concatenated over (and
removed) if they have no corresponding variable and if they are only
used as the last dimension of character arrays.
decode_coords : bool, optional
If True, decode the 'coordinates' attribute to identify coordinates in
the resulting dataset.
drop_variables : str or iterable, optional
A variable or list of variables to exclude from being parsed from the
dataset. This may be useful to drop variables with problems or
inconsistent values.
consolidated : bool, optional
Whether to open the store using zarr's consolidated metadata
capability. Only works for stores that have already been consolidated.
chunk_store : MutableMapping, optional
A separate Zarr store only for chunk data.
decode_timedelta : bool, optional
If True, decode variables and coordinates with time units in
{'days', 'hours', 'minutes', 'seconds', 'milliseconds', 'microseconds'}
into timedelta objects. If False, leave them encoded as numbers.
If None (default), assume the same value of decode_time.
use_cftime: bool, optional
Only relevant if encoded dates come from a standard calendar
(e.g. "gregorian", "proleptic_gregorian", "standard", or not
specified). If None (default), attempt to decode times to
``np.datetime64[ns]`` objects; if this is not possible, decode times to
``cftime.datetime`` objects. If True, always decode times to
``cftime.datetime`` objects, regardless of whether or not they can be
represented using ``np.datetime64[ns]`` objects. If False, always
decode times to ``np.datetime64[ns]`` objects; if this is not possible
raise an error.
Returns
-------
dataset : Dataset
The newly created dataset.
See Also
--------
open_dataset
References
----------
http://zarr.readthedocs.io/
"""
from .api import open_dataset
if kwargs:
raise TypeError(
"open_zarr() got unexpected keyword arguments " + ",".join(kwargs.keys())
)
backend_kwargs = {
"synchronizer": synchronizer,
"consolidated": consolidated,
"overwrite_encoded_chunks": overwrite_encoded_chunks,
"chunk_store": chunk_store,
}
ds = open_dataset(
filename_or_obj=store,
group=group,
decode_cf=decode_cf,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
concat_characters=concat_characters,
decode_coords=decode_coords,
engine="zarr",
chunks=chunks,
drop_variables=drop_variables,
backend_kwargs=backend_kwargs,
decode_timedelta=decode_timedelta,
use_cftime=use_cftime,
)
return ds
def open_backend_dataset_zarr(
filename_or_obj,
mask_and_scale=True,
decode_times=None,
concat_characters=None,
decode_coords=None,
drop_variables=None,
use_cftime=None,
decode_timedelta=None,
group=None,
mode="r",
synchronizer=None,
consolidated=False,
consolidate_on_close=False,
chunk_store=None,
):
store = ZarrStore.open_group(
filename_or_obj,
group=group,
mode=mode,
synchronizer=synchronizer,
consolidated=consolidated,
consolidate_on_close=consolidate_on_close,
chunk_store=chunk_store,
)
with close_on_error(store):
vars, attrs = store.load()
file_obj = store
encoding = store.get_encoding()
vars, attrs, coord_names = conventions.decode_cf_variables(
vars,
attrs,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
concat_characters=concat_characters,
decode_coords=decode_coords,
drop_variables=drop_variables,
use_cftime=use_cftime,
decode_timedelta=decode_timedelta,
)
ds = Dataset(vars, attrs=attrs)
ds = ds.set_coords(coord_names.intersection(vars))
ds._file_obj = file_obj
ds.encoding = encoding
return ds
|