1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
"""Coders for strings."""
from functools import partial
import numpy as np
from ..core import indexing
from ..core.pycompat import is_duck_dask_array
from ..core.variable import Variable
from .variables import (
VariableCoder,
lazy_elemwise_func,
pop_to,
safe_setitem,
unpack_for_decoding,
unpack_for_encoding,
)
def create_vlen_dtype(element_type):
# based on h5py.special_dtype
return np.dtype("O", metadata={"element_type": element_type})
def check_vlen_dtype(dtype):
if dtype.kind != "O" or dtype.metadata is None:
return None
else:
return dtype.metadata.get("element_type")
def is_unicode_dtype(dtype):
return dtype.kind == "U" or check_vlen_dtype(dtype) == str
def is_bytes_dtype(dtype):
return dtype.kind == "S" or check_vlen_dtype(dtype) == bytes
class EncodedStringCoder(VariableCoder):
"""Transforms between unicode strings and fixed-width UTF-8 bytes."""
def __init__(self, allows_unicode=True):
self.allows_unicode = allows_unicode
def encode(self, variable, name=None):
dims, data, attrs, encoding = unpack_for_encoding(variable)
contains_unicode = is_unicode_dtype(data.dtype)
encode_as_char = encoding.get("dtype") == "S1"
if encode_as_char:
del encoding["dtype"] # no longer relevant
if contains_unicode and (encode_as_char or not self.allows_unicode):
if "_FillValue" in attrs:
raise NotImplementedError(
"variable {!r} has a _FillValue specified, but "
"_FillValue is not yet supported on unicode strings: "
"https://github.com/pydata/xarray/issues/1647".format(name)
)
string_encoding = encoding.pop("_Encoding", "utf-8")
safe_setitem(attrs, "_Encoding", string_encoding, name=name)
# TODO: figure out how to handle this in a lazy way with dask
data = encode_string_array(data, string_encoding)
return Variable(dims, data, attrs, encoding)
def decode(self, variable, name=None):
dims, data, attrs, encoding = unpack_for_decoding(variable)
if "_Encoding" in attrs:
string_encoding = pop_to(attrs, encoding, "_Encoding")
func = partial(decode_bytes_array, encoding=string_encoding)
data = lazy_elemwise_func(data, func, np.dtype(object))
return Variable(dims, data, attrs, encoding)
def decode_bytes_array(bytes_array, encoding="utf-8"):
# This is faster than using np.char.decode() or np.vectorize()
bytes_array = np.asarray(bytes_array)
decoded = [x.decode(encoding) for x in bytes_array.ravel()]
return np.array(decoded, dtype=object).reshape(bytes_array.shape)
def encode_string_array(string_array, encoding="utf-8"):
string_array = np.asarray(string_array)
encoded = [x.encode(encoding) for x in string_array.ravel()]
return np.array(encoded, dtype=bytes).reshape(string_array.shape)
def ensure_fixed_length_bytes(var):
"""Ensure that a variable with vlen bytes is converted to fixed width."""
dims, data, attrs, encoding = unpack_for_encoding(var)
if check_vlen_dtype(data.dtype) == bytes:
# TODO: figure out how to handle this with dask
data = np.asarray(data, dtype=np.string_)
return Variable(dims, data, attrs, encoding)
class CharacterArrayCoder(VariableCoder):
"""Transforms between arrays containing bytes and character arrays."""
def encode(self, variable, name=None):
variable = ensure_fixed_length_bytes(variable)
dims, data, attrs, encoding = unpack_for_encoding(variable)
if data.dtype.kind == "S" and encoding.get("dtype") is not str:
data = bytes_to_char(data)
if "char_dim_name" in encoding.keys():
char_dim_name = encoding.pop("char_dim_name")
else:
char_dim_name = "string%s" % data.shape[-1]
dims = dims + (char_dim_name,)
return Variable(dims, data, attrs, encoding)
def decode(self, variable, name=None):
dims, data, attrs, encoding = unpack_for_decoding(variable)
if data.dtype == "S1" and dims:
encoding["char_dim_name"] = dims[-1]
dims = dims[:-1]
data = char_to_bytes(data)
return Variable(dims, data, attrs, encoding)
def bytes_to_char(arr):
"""Convert numpy/dask arrays from fixed width bytes to characters."""
if arr.dtype.kind != "S":
raise ValueError("argument must have a fixed-width bytes dtype")
if is_duck_dask_array(arr):
import dask.array as da
return da.map_blocks(
_numpy_bytes_to_char,
arr,
dtype="S1",
chunks=arr.chunks + ((arr.dtype.itemsize,)),
new_axis=[arr.ndim],
)
else:
return _numpy_bytes_to_char(arr)
def _numpy_bytes_to_char(arr):
"""Like netCDF4.stringtochar, but faster and more flexible."""
# ensure the array is contiguous
arr = np.array(arr, copy=False, order="C", dtype=np.string_)
return arr.reshape(arr.shape + (1,)).view("S1")
def char_to_bytes(arr):
"""Convert numpy/dask arrays from characters to fixed width bytes."""
if arr.dtype != "S1":
raise ValueError("argument must have dtype='S1'")
if not arr.ndim:
# no dimension to concatenate along
return arr
size = arr.shape[-1]
if not size:
# can't make an S0 dtype
return np.zeros(arr.shape[:-1], dtype=np.string_)
if is_duck_dask_array(arr):
import dask.array as da
if len(arr.chunks[-1]) > 1:
raise ValueError(
"cannot stacked dask character array with "
"multiple chunks in the last dimension: {}".format(arr)
)
dtype = np.dtype("S" + str(arr.shape[-1]))
return da.map_blocks(
_numpy_char_to_bytes,
arr,
dtype=dtype,
chunks=arr.chunks[:-1],
drop_axis=[arr.ndim - 1],
)
else:
return StackedBytesArray(arr)
def _numpy_char_to_bytes(arr):
"""Like netCDF4.chartostring, but faster and more flexible."""
# based on: http://stackoverflow.com/a/10984878/809705
arr = np.array(arr, copy=False, order="C")
dtype = "S" + str(arr.shape[-1])
return arr.view(dtype).reshape(arr.shape[:-1])
class StackedBytesArray(indexing.ExplicitlyIndexedNDArrayMixin):
"""Wrapper around array-like objects to create a new indexable object where
values, when accessed, are automatically stacked along the last dimension.
>>> indexer = indexing.BasicIndexer((slice(None),))
>>> StackedBytesArray(np.array(["a", "b", "c"], dtype="S1"))[indexer]
array(b'abc', dtype='|S3')
"""
def __init__(self, array):
"""
Parameters
----------
array : array-like
Original array of values to wrap.
"""
if array.dtype != "S1":
raise ValueError(
"can only use StackedBytesArray if argument has dtype='S1'"
)
self.array = indexing.as_indexable(array)
@property
def dtype(self):
return np.dtype("S" + str(self.array.shape[-1]))
@property
def shape(self):
return self.array.shape[:-1]
def __repr__(self):
return "{}({!r})".format(type(self).__name__, self.array)
def __getitem__(self, key):
# require slicing the last dimension completely
key = type(key)(indexing.expanded_indexer(key.tuple, self.array.ndim))
if key.tuple[-1] != slice(None):
raise IndexError("too many indices")
return _numpy_char_to_bytes(self.array[key])
|